TW202033771A - Combined smelting of molten slags and residuals from stainless steel and ferrochromium works - Google Patents

Combined smelting of molten slags and residuals from stainless steel and ferrochromium works Download PDF

Info

Publication number
TW202033771A
TW202033771A TW109106471A TW109106471A TW202033771A TW 202033771 A TW202033771 A TW 202033771A TW 109106471 A TW109106471 A TW 109106471A TW 109106471 A TW109106471 A TW 109106471A TW 202033771 A TW202033771 A TW 202033771A
Authority
TW
Taiwan
Prior art keywords
slag
metal
stainless steel
electric arc
arc furnace
Prior art date
Application number
TW109106471A
Other languages
Chinese (zh)
Inventor
基莫 瓦洛
提莫 帕爾維艾寧
Original Assignee
芬蘭商烏托昆普公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 芬蘭商烏托昆普公司 filed Critical 芬蘭商烏托昆普公司
Publication of TW202033771A publication Critical patent/TW202033771A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/02Working-up flue dust
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B5/00Treatment of  metallurgical  slag ; Artificial stone from molten  metallurgical  slag 
    • C04B5/06Ingredients, other than water, added to the molten slag or to the granulating medium or before remelting; Treatment with gases or gas generating compounds, e.g. to obtain porous slag
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B3/00General features in the manufacture of pig-iron
    • C21B3/04Recovery of by-products, e.g. slag
    • C21B3/06Treatment of liquid slag
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/005Manufacture of stainless steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C5/5264Manufacture of alloyed steels including ferro-alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0087Treatment of slags covering the steel bath, e.g. for separating slag from the molten metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/04Working-up slag
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/16Remelting metals
    • C22B9/20Arc remelting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/02Physical or chemical treatment of slags
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C2200/00Recycling of waste material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Ceramic Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Structural Engineering (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

The present invention relates to a method for smelting metal- and metal oxide- containing side streams, such as slags and wastes generated at stainless steel and ferrochromium works. The invented processing method is a smelting process for all side streams and residuals from the mentioned fields of industry. The streams are treated mainly in liquid phase for energy saving.

Description

來自不鏽鋼及鉻鐵處理廠的熔渣與殘渣的組合冶煉Combined smelting of slag and residue from stainless steel and ferrochrome treatment plants

本發明涉及一種用於冶煉含金屬及含金屬氧化物的側流的方法,該等側流諸如是在不鏽鋼及鉻鐵廠產生的熔渣及廢料。本發明的製程方法是用於來自述及的工業領域的所有側流及殘渣的冶煉製程。這些流主要在液相中經處理以節省能源。The present invention relates to a method for smelting metal-containing and metal-oxide-containing side streams, such as slag and waste produced in stainless steel and ferrochrome plants. The process method of the present invention is used for the smelting process of all side streams and residues from the mentioned industrial fields. These streams are mainly processed in the liquid phase to save energy.

在使用電弧爐的鋼鐵工業中,會生產大量的含金屬氧化物的粉塵。這種粉塵產生了處置問題,因其包含大量的金屬,這些金屬妨礙了垃圾填埋場傾倒。另外,廢料金屬代表經濟損失。除了粉塵外,工業中還會產生一些含金屬的廢料流,這些廢料流為金屬回收及降低環境衝擊提供了契機。In the steel industry that uses electric arc furnaces, a large amount of metal oxide-containing dust is produced. This dust creates disposal problems because it contains large amounts of metals, which prevent dumping in landfills. In addition, scrap metal represents economic loss. In addition to dust, some metal-containing waste streams are also generated in the industry. These waste streams provide opportunities for metal recycling and reduce environmental impact.

自1970年代起,南非發展了Enviroplas製程,用於處理冶金工業的熔渣及粉塵。典型的製程涉及一個直流電弧爐,該爐中添有不鏽鋼廠粉塵、無菸煤、助熔劑及鹼劑。產物是一種合金,例如含有超過90%的饋料Cr及Ni,以及可處置的熔渣。Since the 1970s, South Africa has developed the Enviroplas process to treat slag and dust in the metallurgical industry. A typical process involves a DC electric arc furnace, which is filled with stainless steel mill dust, anthracite, flux and alkali. The product is an alloy, for example, containing more than 90% of the feedstock Cr and Ni, and disposable slag.

歐洲專利號1 641 946 B揭示了一種在許多後續步驟中生產金屬合金熔體的方法,藉此將粉塵及熔渣循環到製程中以回收Cr及Ni。European Patent No. 1 641 946 B discloses a method of producing metal alloy melt in many subsequent steps, whereby dust and slag are recycled into the process to recover Cr and Ni.

當前,來自不鏽鋼生產及鉻鐵生產的側流分別在各種指定製程中進行處理。金屬回收廠以冷卻的形式處理熔渣;而金屬氧化物廢料,例如袋濾器的粉塵、鏽皮(scale)和汙泥通常在單獨的廢料冶煉廠進行處理或經填埋。側流輸出中始終存在一定量的金屬氧化物,但將這些流再次熔融以提升還原效果通常是無利可圖的。傳統上,藉機械金屬回收設備自熔渣流回收殘渣金屬,且一些金屬在處理後餘留在熔渣中。Currently, the side streams from stainless steel production and ferrochrome production are processed in various designated processes. Metal recycling plants treat molten slag in a cooled form; while metal oxide waste, such as bag filter dust, scale, and sludge, is usually processed in a separate waste smelter or landfilled. There is always a certain amount of metal oxide in the side stream output, but it is usually unprofitable to melt these streams again to improve the reduction effect. Traditionally, mechanical metal recovery equipment is used to recover residual metal from the slag stream, and some metal remains in the slag after processing.

在同一製程單元中,並無最先進的方法處理來自不鏽鋼生產及鉻鐵生產的液態熔渣。 表1:不鏽鋼及鉻鐵廠的粉塵、熔渣及鏽皮的平均化學分析(均以質量%計) 材料 CaO SiO2 Cr2 O3 Fe2 O3 TiO2 Al2 O3 MnO MgO NiO % % % % % % % % EAF-熔渣 30-60 20-30 1-15 0.5-5 0.5-2 1-10 1-5 5-15 0-1 AOD-熔渣 45-60 20-30 0-5 0-4 0.1-1 0-4 0-2 5-15 0-1 LF-熔渣 45-60 20-30 0-5 0-4 0.1-1 0-4 0-2 5-15 0-1 FECR-熔渣 0-4 20-30 4-20 2-7 0-2 20-30 0-2 15-30 0-1 SMS-粉塵 1-25 2-12 5-25 15-75 0-1 0-1 0-6 0-8 0-8 FECR-粉塵 0-2 0-40 5-70 1-30 0-2 5-20 0-2 5-15 0-2 SMS-鏽皮 0-3 2-5 10-18 50-75 0-2 0-1 0-2 0-1 0-6 In the same process unit, there is no state-of-the-art method for processing liquid slag from stainless steel production and ferrochrome production. Table 1: Average chemical analysis of dust, slag and scale in stainless steel and ferrochrome plants (all in mass%) material CaO SiO 2 Cr 2 O 3 Fe 2 O 3 TiO 2 Al 2 O 3 MnO MgO NiO % % % % % % % % EAF-Slag 30-60 20-30 1-15 0.5-5 0.5-2 1-10 1-5 5-15 0-1 AOD-Slag 45-60 20-30 0-5 0-4 0.1-1 0-4 0-2 5-15 0-1 LF-slag 45-60 20-30 0-5 0-4 0.1-1 0-4 0-2 5-15 0-1 FECR-Slag 0-4 20-30 4-20 2-7 0-2 20-30 0-2 15-30 0-1 SMS-Dust 1-25 2-12 5-25 15-75 0-1 0-1 0-6 0-8 0-8 FECR-dust 0-2 0-40 5-70 1-30 0-2 5-20 0-2 5-15 0-2 SMS-rust 0-3 2-5 10-18 50-75 0-2 0-1 0-2 0-1 0-6

本發明由獨立項揭示的內容界定。較佳的具體實例在附屬項中闡述。The present invention is defined by the content disclosed in the independent item. Preferred specific examples are described in the appendix.

根據本發明,在電弧爐或轉爐中將諸如濾器粉塵、鏽皮及汙泥的金屬氧化物廢料與來自不鏽鋼及鉻鐵生產的液態熔渣一同熔融。一個重要的特點是以液相形式供應熔渣,從而顯著降低熔融及還原所需能量。According to the present invention, metal oxide scraps such as filter dust, scale, and sludge are melted together with liquid slag from stainless steel and ferrochrome production in an electric arc furnace or converter. An important feature is the supply of slag in liquid phase, which significantly reduces the energy required for melting and reduction.

定義definition

在本發明的上下文中,不鏽鋼熔渣是在廢料熔融、AOD/VOD轉換及鑄杓處理製程在不鏽鋼生產中產生的熔渣。 表2:典型不鏽鋼熔渣成分範圍 Cr2 O3 Fe2 O3 Al2 O3 MgO CaO SiO2 MnO TiO2 % % % % % % % % 1-10% 0.5-7% 2-10% 5-15% 35-65% 20-35% 0.1-2% 0.1-2% In the context of the present invention, stainless steel slag is the slag produced in the production of stainless steel in the process of waste melting, AOD/VOD conversion and ladle treatment. Table 2: Typical stainless steel slag composition range Cr 2 O 3 Fe 2 O 3 Al 2 O 3 MgO CaO SiO 2 MnO TiO 2 % % % % % % % % 1-10% 0.5-7% 2-10% 5-15% 35-65% 20-35% 0.1-2% 0.1-2%

在本發明的上下文中,鉻鐵熔渣是在鉻鐵礦的鉻鐵冶煉操作中產生的熔渣。表2示出鉻鐵熔渣的典型組成範圍。In the context of the present invention, ferrochrome slag is the slag produced in the ferrochrome smelting operation of chromite. Table 2 shows the typical composition range of ferrochrome slag.

來自熔渣流及金屬氧化物廢料流的已處於熔融狀態的金屬氧化物藉高溫冶金還原成金屬以節省能源,從而提升冶煉的利潤率。The molten metal oxides from the slag stream and the metal oxide waste stream are reduced to metal by pyrometallurgy to save energy and improve the profitability of smelting.

與本發明相關的熔渣流是來自不鏽鋼及鉻鐵生產容器(電弧爐、轉爐、鑄杓處理)的所有熔渣,以及來自述及的金屬生產設備的其他含金屬或金屬氧化物的側流,例如二手耐火材料。與此創造相關的含金屬氧化物的側流是來自不鏽鋼及鉻鐵生產(例如,來自冶煉、熔融、研磨、熱軋與冷軋及酸再生設備)的含金屬氧化物、含硫酸鹽或含氫氧化物的氣體清潔粉塵、鏽皮及汙泥。The slag flow related to the present invention is all slag from stainless steel and ferrochrome production vessels (electric arc furnace, converter, ladle treatment), and other metal or metal oxide side streams from the mentioned metal production equipment , Such as second-hand refractory materials. The side streams of metal oxides related to this creation are metal oxides, sulfates, or sulphates from stainless steel and ferrochrome production (for example, from smelting, melting, grinding, hot and cold rolling, and acid regeneration equipment). Hydroxide gas cleans dust, scale and sludge.

本發明製程方法對金屬氧化物廢料與熔渣進料的冶煉進行組合。因此,金屬氧化物廢料流不需要單獨的製程單元。此組合製程不再需要對餘留在熔渣中的金屬進行傳統機械分離。當前製程方法生產作為輸出的純金屬合金及不含金屬的熔渣。The process method of the present invention combines the smelting of metal oxide waste and molten slag feed. Therefore, the metal oxide waste stream does not require a separate process unit. This combined process no longer requires traditional mechanical separation of the metal remaining in the slag. Current process methods produce pure metal alloys and metal-free slag as output.

冶煉(輸入能量以熔融物流並還原金屬氧化物)可在交流電或直流電弧爐中進行。若較佳使用轉爐,則也可使用化學能。Smelting (input energy to melt the stream and reduce metal oxides) can be carried out in AC or DC electric arc furnaces. If a converter is preferred, chemical energy can also be used.

金屬氧化物的還原以還原劑完成。有用的還原劑的實例為煤焦、無菸煤、石墨、甲烷、塑膠及橡膠。也可採用其他碳源。此外,可使用以矽及鋁為主的還原劑。The reduction of metal oxides is accomplished with a reducing agent. Examples of useful reducing agents are coal char, anthracite, graphite, methane, plastic, and rubber. Other carbon sources can also be used. In addition, reducing agents based on silicon and aluminum can be used.

在這種情況下,粉塵也可包括ZnO。用於根據本發明的方法的流可涉及最大尺寸為100mm的廢鋼鐵廠粉塵及顆粒物。In this case, the dust may also include ZnO. The stream used in the method according to the invention may involve scrap steel mill dust and particulate matter with a maximum size of 100 mm.

當使用根據本發明的方法時,作為金屬的鉻、鐵及鎳,其回收率通常超過90%。When using the method according to the present invention, the recovery rate of chromium, iron, and nickel as metals generally exceeds 90%.

根據本發明,藉由混合熔融的不鏽鋼熔渣(用作石灰源)及鉻鐵熔渣獲得用於Cr2 O3 還原的最佳熔渣鹼度。因此,不需要額外的石灰進料及熔體,從而節省了自然資源及能源。According to the present invention, the best slag basicity for Cr 2 O 3 reduction is obtained by mixing molten stainless steel slag (used as a lime source) and ferrochrome slag. Therefore, no additional lime feed and melt are required, thereby saving natural resources and energy.

根據本發明,提供一種用於生產鉻鐵合金的方法,該鉻鐵合金在多個連續且同步的方法步驟中較佳含有Cr、Ni及Mo: ●      在第一個方法步驟中,將熔融的不鏽鋼熔渣及熔融的鉻鐵熔渣自不鏽鋼及鉻鐵生產設備運到熔渣的處理廠。將熔渣送入電弧爐或轉爐,接著將液態不鏽鋼熔渣及鉻鐵熔渣進行自然混合。 ●      在第二個方法步驟中,還原能以電的形式供應給熔體,或在使用轉爐的具體實例中以化學能的形式供應給熔體。由於熔渣在運輸期間會稍微冷卻,因此還需要額外的能量以達到預期的熔體溫度。 ●      在第三個方法步驟中,將金屬氧化物廢料流及還原劑(較佳為無菸煤)引到熔體,並在最佳溫度下還原熔渣中的金屬氧化物。 ●      在第四個方法步驟中,使熔渣中還原的金屬滴沉降到金屬殘渣(heel)中。在金屬還原及沉降之後,從還原爐或容器中敲取出熔渣及金屬。 ●      在第五個方法步驟中,將經敲取出的金屬及熔渣冷卻成骨材形式或造粒成液滴狀顆粒。金屬合金還可立即在不鏽鋼生產設備中用作液體以節省能源。所生產的金屬合金可進一步用於金屬工業,且所生產的熔渣可進一步用於各種熔渣產物應用(主要用於土方工程)。According to the present invention, there is provided a method for producing a ferrochrome alloy, the ferrochrome alloy preferably contains Cr, Ni and Mo in a plurality of continuous and simultaneous method steps: ● In the first method step, the molten stainless steel slag and molten ferrochrome slag are transported from the stainless steel and ferrochrome production equipment to the slag treatment plant. The slag is fed into an electric arc furnace or a converter, and then the liquid stainless steel slag and ferrochrome slag are naturally mixed. ● In the second method step, the reducing energy is supplied to the melt in the form of electricity, or in the form of chemical energy in the specific example of using a converter. Since the slag cools slightly during transportation, additional energy is required to reach the expected melt temperature. ● In the third method step, the metal oxide waste stream and the reducing agent (preferably anthracite) are introduced to the melt, and the metal oxides in the slag are reduced at the optimal temperature. ● In the fourth method step, the metal droplets reduced in the molten slag are allowed to settle into the metal heel. After the metal is reduced and settled, knock out the slag and metal from the reduction furnace or container. ● In the fifth method step, the knocked out metal and molten slag are cooled into aggregate form or granulated into droplet particles. Metal alloys can also be used immediately as liquids in stainless steel production equipment to save energy. The produced metal alloy can be further used in the metal industry, and the produced slag can be further used in various slag product applications (mainly used in earthwork).

圖1示出使用容器將熔渣從金屬生產設備運到冶煉設備的方式。在一階段將液態熔渣送入冶煉爐,該階段等於熔渣生產量。此外,固態熔渣及固態金屬氧化物廢料流透過料槽自料倉送到爐中。電極可提供額外的能量以達到預期的還原溫度(金屬為1,500°C至1,600°C,而熔渣為1,600°C至1,700°C)。添加以碳為主的還原劑將金屬氧化物自熔渣層還原到金屬殘渣中。經還原的金屬滴的沉降速度或其他冶金參數可藉由熔渣添加劑(例如,石英及石灰)進行調整。在還原及沉降所生產的金屬合金之後,對爐輕敲。金屬合金既可在不鏽鋼生產中用作液體,也可製成金屬顆粒以用於金屬工業。冶煉爐生產的熔渣藉由空氣、水或氣體造粒,製成各種用途的熔渣產物。也可使用空氣冷卻生產熔渣骨材。所生產的熔渣不含金屬,且無需進一步金屬分離。Figure 1 shows the manner in which a container is used to transport molten slag from a metal production facility to a smelting facility. The liquid slag is sent to the smelting furnace in a stage, which is equal to the slag production volume. In addition, solid slag and solid metal oxide waste streams are sent from the silo to the furnace through the trough. The electrode can provide additional energy to reach the desired reduction temperature (1,500°C to 1,600°C for metals and 1,600°C to 1,700°C for slag). Adding a carbon-based reducing agent reduces the metal oxide self-melting slag layer to the metal residue. The settling rate of the reduced metal droplets or other metallurgical parameters can be adjusted by slag additives (for example, quartz and lime). After reducing and settling the produced metal alloy, tap the furnace. Metal alloys can be used as liquids in the production of stainless steel, and can also be made into metal particles for use in the metal industry. The molten slag produced by the smelting furnace is granulated by air, water or gas to make various slag products for various purposes. Air cooling can also be used to produce slag aggregates. The produced slag contains no metal and no further metal separation is required.

no

參照附圖更詳細地說明本發明,其中, [圖1]示出對來自不鏽鋼及鉻鐵設備的含金屬及含金屬氧化物的殘渣進行組合處理的原理。The present invention will be explained in more detail with reference to the accompanying drawings, in which, Fig. 1 shows the principle of combined treatment of metal-containing and metal-oxide-containing residues from stainless steel and ferrochrome equipment.

Claims (6)

一種製造鉻鐵合金的方法,其包含以下步驟: -    將熔融的不鏽鋼熔渣及熔融的鉻鐵熔渣饋入電弧爐或轉爐,並使該等熔渣混合, -    向該電弧爐中的熔體供應電能,或向該轉爐中的該熔體供應化學能, -    向該電弧爐或該轉爐中的該熔體供應至少一種包含金屬鹽及至少一種還原劑的顆粒物, -    使金屬氧化物還原、形成金屬合金,並使該金屬合金沉降,及 -    自該電弧爐或該轉爐中回收該金屬合金及該等熔渣。A method of manufacturing ferrochromium alloy, which includes the following steps: -Feed the molten stainless steel slag and molten ferrochrome slag into the electric arc furnace or converter, and mix the slag, -Supply electric energy to the melt in the electric arc furnace, or supply chemical energy to the melt in the converter, -Supplying at least one particulate matter containing metal salt and at least one reducing agent to the melt in the electric arc furnace or the converter, -Reduce metal oxides, form metal alloys, and settle the metal alloys, and -Recover the metal alloy and the slag from the electric arc furnace or the converter. 如請求項1之方法,其中該顆粒物是電弧爐粉塵。The method of claim 1, wherein the particulate matter is electric arc furnace dust. 如請求項1之方法,其中該顆粒物包含至少一種金屬硫酸鹽、硫化物或氫氧化物。The method of claim 1, wherein the particulate matter comprises at least one metal sulfate, sulfide or hydroxide. 如請求項1之方法,其中該顆粒物是來自冶金製程的煙道氣粉塵、鏽皮(scale)、沉澱物或汙泥。The method of claim 1, wherein the particulate matter is flue gas dust, scale, sediment or sludge from a metallurgical process. 如請求項1之方法,其中該至少一種還原劑包含無菸煤。The method of claim 1, wherein the at least one reducing agent comprises anthracite. 如請求項1之方法,其中無添加鹼性材料到該電弧爐或該轉爐。The method of claim 1, wherein no alkaline material is added to the electric arc furnace or the converter.
TW109106471A 2019-03-01 2020-02-27 Combined smelting of molten slags and residuals from stainless steel and ferrochromium works TW202033771A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FI20195153 2019-03-01
FI20195153A FI20195153A1 (en) 2019-03-01 2019-03-01 Combined smelting of molten slags and residuals from stainless steel and ferrochromium works

Publications (1)

Publication Number Publication Date
TW202033771A true TW202033771A (en) 2020-09-16

Family

ID=72337367

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109106471A TW202033771A (en) 2019-03-01 2020-02-27 Combined smelting of molten slags and residuals from stainless steel and ferrochromium works

Country Status (8)

Country Link
JP (1) JP2022523397A (en)
KR (1) KR20210134310A (en)
CN (1) CN113366129A (en)
CA (1) CA3129671A1 (en)
FI (2) FI20195153A1 (en)
SE (1) SE2150998A1 (en)
TW (1) TW202033771A (en)
WO (1) WO2020178480A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113265534B (en) * 2021-04-14 2023-03-31 嘉峪关宏电铁合金有限责任公司 Low-grade ferrochromium slag recycling production process

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA963234B (en) * 1995-05-02 1996-07-29 Holderbank Financ Glarus Process for the production of hydraulic binders and/or alloys such as e g ferrochromium of ferrovanadium
AT405839B (en) * 1996-01-17 1999-11-25 Holderbank Financ Glarus METHOD FOR PRODUCING RAW IRON, COLORED METAL ALLOYS, FECR AND SYNTHETIC BLAST FURNACE SLAGS USING METAL OXIDE CONTAINING WASTE COMBUSTION RESIDUES OR SLAGS
AT407263B (en) * 1999-04-22 2001-02-26 Holderbank Financ Glarus METHOD FOR REPRODUCING STEEL SLAG
JP2001316712A (en) * 2000-05-02 2001-11-16 Nippon Steel Corp Method for recovering chromium from chromium containing slag
AT412349B (en) * 2003-06-25 2005-01-25 Voest Alpine Ind Anlagen METHOD FOR PRODUCING AN ALLOYED METAL MELT AND PRODUCTION PLANT THEREFOR
KR20050109763A (en) * 2004-05-17 2005-11-22 주식회사 포스코 Method for recovery valuable metals from steel-making slag of stainless steel
KR100793591B1 (en) * 2006-12-28 2008-01-14 주식회사 포스코 Method for reduction of metallic chromium from slag containing chromium oxide
CN107058677A (en) * 2017-05-22 2017-08-18 山西太钢不锈钢股份有限公司 A kind of smelting process of utilization stainless steel electroslag
CN108676942A (en) * 2018-05-18 2018-10-19 廖辉明 The materials such as a kind of iron content and/or zinc lead bronze tin cooperate with processing recovery method with molten steel slag

Also Published As

Publication number Publication date
FI20217132A1 (en) 2021-08-26
CA3129671A1 (en) 2020-09-10
JP2022523397A (en) 2022-04-22
WO2020178480A1 (en) 2020-09-10
KR20210134310A (en) 2021-11-09
FI20195153A1 (en) 2020-09-02
SE2150998A1 (en) 2021-08-12
CN113366129A (en) 2021-09-07

Similar Documents

Publication Publication Date Title
CN110004352B (en) Method for preparing copper-chromium-containing wear-resistant cast iron by utilizing reduction of molten depleted copper slag
CN101736161B (en) Method for comprehensively recovering tin smelting secondary raw materials by melting in DC furnace
CN104805250B (en) The process that a kind of high-temperature slag is continuously modified
CN108278901A (en) A kind of industrial furnace and production technology for smelting slag composition adjustment
CN1813073A (en) Method for producing an alloy molten metal and associated production plant
CN109574504A (en) A kind of method that utilization relates to weight dangerous waste slag preparation glass ceramics
CN108285949A (en) A kind of metal aluminium deoxidizer and preparation method thereof
CN103243216A (en) Sintering ore and production method thereof
TW202033771A (en) Combined smelting of molten slags and residuals from stainless steel and ferrochromium works
Hanewald et al. Processing EAF dusts and other nickel-chromium waste materials pyrometallurgically at INMETCO
CN103924089A (en) Method of melting stainless steel dust, slag and Cr-containing sludge
CN103910530A (en) Harmless treatment process for waste RH magnesite-chrome brick
CN105200237A (en) Process method for regenerating and recycling aluminum scrap resources
Schweers et al. A pyrometallurgical process for recycling cadmium containing batteries
CN102851512B (en) Method for producing iron alloy through vanadium extraction tailing reduction smelting
JP6451462B2 (en) Method for recovering chromium from chromium-containing slag
JP4932309B2 (en) Chromium recovery method from chromium-containing slag
JP2001073021A (en) Flux for refining metal and production thereof
CN104178599A (en) Desulfuration residue modifier and desulfuration method of vanadium-titanium molten iron
CN115044349A (en) Non-metal abrasive for jet cleaning and preparation method thereof
CN1063508A (en) Containing chromium titanium nickel and vanadium waste residue and gangue detoxifcation comprehensive utilization
CN105925756A (en) Method for handling waste SCR denitration catalyst and waste oil-refining catalyst
CN107250387A (en) For improving the method on the titanium oxide content in the clinker produced by the electro-smelting of titanomagnetite
CN106039863A (en) Equipment system for treating lead, nitrogen and sulfur with electrolytic manganese anode slag
TWI820222B (en) A method for utilizing metal oxide containing side streams in ferrochrome smelting processes