JP2014051428A - Carburization raw material and amorphous refractory - Google Patents

Carburization raw material and amorphous refractory Download PDF

Info

Publication number
JP2014051428A
JP2014051428A JP2012210113A JP2012210113A JP2014051428A JP 2014051428 A JP2014051428 A JP 2014051428A JP 2012210113 A JP2012210113 A JP 2012210113A JP 2012210113 A JP2012210113 A JP 2012210113A JP 2014051428 A JP2014051428 A JP 2014051428A
Authority
JP
Japan
Prior art keywords
raw material
carbon
mgo
brick
carburized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012210113A
Other languages
Japanese (ja)
Inventor
Naoyuki Nishimura
尚之 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OSAKA YOGYO FIRE BRICK
Yotai Refractories Co Ltd
Original Assignee
OSAKA YOGYO FIRE BRICK
Yotai Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OSAKA YOGYO FIRE BRICK, Yotai Refractories Co Ltd filed Critical OSAKA YOGYO FIRE BRICK
Priority to JP2012210113A priority Critical patent/JP2014051428A/en
Publication of JP2014051428A publication Critical patent/JP2014051428A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively use used carbon-containing unburned brick.SOLUTION: A new raw material which compares favourably with conventional raw materials, i.e. a carburization raw material is obtained by pulverizing a used carbon-containing unburned brick and firing it under conditions of an oxygen concentration of 5.0 to 9.0% and a temperature of 800 to 1000°C. Further a variety of amorphous refractories are manufactured by using the carburization raw material.

Description

本発明は、製鋼工場などで発生するカーボン含有不焼成廃れんがを原料として製造される浸炭原料及びそれを用いた不定形耐火物に関する。  The present invention relates to a carburized raw material produced using carbon-containing unfired waste brick generated in a steelmaking factory or the like, and an amorphous refractory using the same.

製鋼工場の転炉、AOD炉、RH炉、電気炉、取鍋等の内張り用耐火物として、MgO−Cれんが、Al−MgO−Cれんが、Al−Cれんが等の各種カーボン含有不焼成れんがが使用されている。BOF steelmaking plant, AOD furnace, RH furnace, an electric furnace, a lining refractories ladle etc., MgO-C bricks, Al 2 O 3 -MgO-C bricks, Al 2 O 3 -C various such bricks Carbon-containing unfired brick is used.

以下、カーボン含有不焼成れんがの一例としてのMgO−Cれんがについて述べる。
MgO−Cれんがは、マグネシアのもつ高耐食性と、カーボンのもつスラグに濡れにくい性質、及び高熱伝導性という特長により、優れた耐食性と耐スポール性を兼ね備えており、製鋼用内張り材として広く使用されている。
Hereinafter, MgO—C brick as an example of carbon-containing unfired brick will be described.
MgO-C bricks have excellent corrosion resistance and spall resistance due to the high corrosion resistance of magnesia, the characteristics of carbon that do not easily get wet with slag, and high thermal conductivity, and are widely used as lining materials for steelmaking. ing.

このMgO−Cれんがに使用される原料は、マグネシア源として電融マグネシア、海水マグネシア等が、カーボン源として、鱗状黒鉛、土状黒鉛等が一般的に使用されている。マグネシア原料は、耐食性が求められるため、マグネシア含有量が95質量%以上のものが使用されている。  As raw materials used for this MgO-C brick, electrofused magnesia, seawater magnesia and the like are generally used as a magnesia source, and scaly graphite, earthy graphite and the like are generally used as a carbon source. Since the magnesia raw material is required to have corrosion resistance, the magnesia content is 95% by mass or more.

MgO−Cれんがは、製鋼用内張り炉材として一定期間使用された後、新品に取り替えられる。その際に、多量の使用済みMgO−Cれんがが発生する。使用済みれんがは、操業中に発生する不純物を、主に稼働面側に含んでいるので、そのままMgO−Cれんが用原料として再利用した場合、同等のれんが性能が得られないので、れんがでのリサイクルはあまり進んでいなかった。  The MgO-C brick is used for a certain period of time as a steelmaking lining furnace material, and then replaced with a new one. At that time, a large amount of used MgO-C brick is generated. Used bricks contain impurities generated during operation mainly on the operating surface side, so when reused as raw materials for MgO-C bricks as they are, the equivalent brick performance cannot be obtained. Recycling did not go much.

そのため、使用済みMgO−Cれんがをリサイクルする場合、多くは再粉砕して造滓材に使用したり、整粒して、そのまま不定形補修材として使用されていた。(例えば、特許文献1参照)。多くは処分場で埋設処理されているのが現状である。しかも、埋設処分に多大の費用がかかるので、更なるリサイクル量の拡大が課題となっている。  For this reason, when recycling used MgO-C bricks, many of them have been reground and used for slagging materials, or sized and used as an irregular repair material. (For example, refer to Patent Document 1). Most of them are buried at disposal sites. In addition, since a large amount of money is required for burying disposal, further expansion of the amount of recycling has been an issue.

使用済みMgO−Cれんがを前処理せずに不定形耐火物の原料として配合すると、酸化防止剤として添加されている金属アルミニウムおよびカーボンが原因で、溶湯が沸騰する問題が発生している。  When used MgO-C brick is blended as a raw material for an amorphous refractory without pretreatment, there is a problem that the molten metal boils because of metallic aluminum and carbon added as an antioxidant.

一方、特許文献2では、使用後MgO−Cれんがの稼働面側の変質層を除去し、その残部を粉砕して得たリサイクル原料をMgO−Cれんがに添加する方法が開示されている。  On the other hand, Patent Document 2 discloses a method of adding a recycled raw material obtained by removing an altered layer on the working surface side of MgO-C brick after use and pulverizing the remaining part to MgO-C brick.

特開2011−121798号公報  JP 2011-121798 A 特開平8−319154号公報  JP-A-8-319154

本発明の目的は、カーボン含有不焼成れんがを有効活用することであり、得られた再生原料が従来原料と同等以上の性能を示すことである。さらに、この再生原料を利用した不定形耐火物が、従来品に比べ遜色のない施工性、焼結性、耐食性等の特性を示すことである。  An object of the present invention is to make effective use of carbon-containing unfired bricks, and that the obtained recycled material exhibits performance equal to or higher than that of conventional materials. Furthermore, the amorphous refractory using the recycled material exhibits characteristics such as workability, sinterability and corrosion resistance comparable to conventional products.

即ち、本発明は使用済みMgO−Cれんがを粉砕、整粒、焼成処理の工程により、マグネシアとカーボンを酸化分離させて得られる再生原料(以下、浸炭マグネシア原料)であり、この浸炭マグネシア原料とその他原料を含有してなる不定形耐火物である。  That is, the present invention is a recycled raw material (hereinafter referred to as carburized magnesia raw material) obtained by oxidizing and separating magnesia and carbon by pulverizing, sizing and firing used MgO-C bricks. It is an amorphous refractory containing other raw materials.

本発明者は、上記の課題を解決するために鋭意研究を重ねた結果、使用済みMgO−Cれんがを10mm以下に粉砕し、酸化焼成処理を行うことにより、カーボンとマグネシアを分離し、不純物が少なく、新規で優れた特性を有する浸炭マグネシア原料を得る事ができることを見出した。  As a result of intensive research to solve the above problems, the present inventor separated carbon and magnesia by pulverizing used MgO-C bricks to 10 mm or less and performing an oxidation firing treatment, and impurities were It has been found that a carburized magnesia raw material having few and new excellent properties can be obtained.

前記浸炭マグネシア原料は、使用済みMgO−Cれんがを粗砕し、10mm以下に篩分けしたものを酸化焼成処理することによって得られる。使用済みMgO−Cれんがからカーボンを部分的に分離除去して得られるものである。本発明に基づく処理により、マグネシアにカーボンが0.5〜7.0質量%浸炭した原料が得られる。  The carburized magnesia raw material is obtained by subjecting used MgO-C bricks to coarse crushing and sieving to a size of 10 mm or less. It is obtained by partially separating and removing carbon from used MgO-C brick. By the treatment based on the present invention, a raw material obtained by carburizing 0.5 to 7.0% by mass of carbon in magnesia is obtained.

マグネシアに浸炭したカーボンは、製鋼設備操業中の高温操業にさらされ、マグネシア原料中にカーボンが浸炭したものであって、浸炭量は0.5〜7.0質量%程度の範囲で変動する。浸炭量は再生処理した原料のクリンカー部のみの分析値であり、フリーのカーボンは含まない。  Carbon carburized in magnesia is exposed to high-temperature operation during operation of steelmaking facilities, and carbon is carburized in magnesia raw material. The amount of carburization varies in the range of about 0.5 to 7.0% by mass. The amount of carburization is an analysis value of only the clinker portion of the recycled raw material, and does not include free carbon.

本発明により、使用済みMgO−Cれんがを浸炭マグネシア原料の原料として有効利用することが可能である。よって、リサイクルの幅が広がり、埋設処理量を低減できる。
上記のことは、Al−MgO−Cれんが及びAl−Cれんがについても同様のことが言える。
According to the present invention, it is possible to effectively use used MgO-C brick as a raw material for carburized magnesia raw material. Therefore, the range of recycling can be expanded and the amount of burial processing can be reduced.
The same can be said for Al 2 O 3 —MgO—C brick and Al 2 O 3 —C brick.

使用済みMgO−Cれんが原料の粉砕粒度が10mm以下の場合の、処理温度と浸炭マグネシア原料のカーボン量の関係をロータリーキルン内の酸素濃度をパラメーターとして示したグラフである。It is the graph which showed the oxygen concentration in a rotary kiln as a parameter about the relationship between the processing temperature and the carbon amount of a carburized magnesia raw material when the grind | pulverization particle size of a used MgO-C brick raw material is 10 mm or less. マグネシア原料の微構造を示すSEM写真である。図2(a)は本発明により得た浸炭マグネシア原料、図2(b)は未処理使用済みMgO−Cれんがである。It is a SEM photograph which shows the microstructure of a magnesia raw material. FIG. 2 (a) is a carburized magnesia raw material obtained according to the present invention, and FIG. 2 (b) is an untreated used MgO-C brick.

使用済みMgO−Cれんがをマグネシア源として再使用する場合、粉砕・整粒だけでは、異種原料が混ざった混合状態である。加熱酸化処理により、フリーのカーボン及び不純物を除去し、純度の高い浸炭マグネシア原料を得ることができることに着目した。  When the used MgO-C brick is reused as a magnesia source, it is in a mixed state in which different kinds of raw materials are mixed only by crushing and sizing. We focused on the fact that free carbon and impurities can be removed by heat oxidation treatment to obtain a carburized magnesia raw material with high purity.

まず、使用済みMgO−Cれんがから浸炭マグネシア原料を得る再生工程について述べる。  First, a regeneration process for obtaining a carburized magnesia raw material from used MgO-C brick will be described.

使用済みMgO−Cれんがは、転炉使用後品を入手し使用した。前処理として使用済みMgO−Cれんがの選別作業を行った。入手した使用後MgO−Cれんがの多くは、裏張りに使用されているマグネシアれんがや不定形耐火物などのMgO−Cれんが以外のものが含まれているからである。  Used MgO-C bricks were obtained after using the converter. As a pretreatment, sorting of used MgO-C bricks was performed. This is because most of the obtained post-use MgO-C bricks contain things other than MgO-C bricks such as magnesia bricks and amorphous refractories used for the backing.

使用済みMgO−Cれんがは稼働面側の付着物を除去した後、ジョークラッシャー、ロールクラッシャー等で粗粉砕し、粒度10mm以下に整粒したものを焼成処理する。なお、細かい粒子が含まれていても構わない。粒度が10mm以上である場合、原料内部のカーボンが残留しやすく、酸化焼成処理がうまくゆかない。再生後、MgO−Cれんがに再生使用する観点から、5mm以下で焼成処理するほうがより好ましい。  After the used MgO-C brick is removed of deposits on the working surface side, it is coarsely pulverized with a jaw crusher, a roll crusher or the like, and sized to a particle size of 10 mm or less, and then fired. Fine particles may be included. When the particle size is 10 mm or more, the carbon inside the raw material tends to remain, and the oxidation baking treatment does not work well. From the viewpoint of recycling and using the MgO-C brick after regeneration, it is more preferable to perform a baking treatment at 5 mm or less.

本発明に適用する使用済みMgO−Cれんがは通常、転炉、製鋼用電気炉、取鍋等で使用されたものであれば、特に限定されるものではない。使用済みMgO−Cれんが中のMgO含有量及び炭素含有量が変動しても分別や限定の必要はない。酸素濃度、処理温度、投入量、滞留時間等をコントロールすることにより対処可能だからである。  The used MgO-C brick applied to the present invention is not particularly limited as long as it is usually used in a converter, an electric furnace for steel making, a ladle or the like. Even if the MgO content and the carbon content in the used MgO-C brick vary, there is no need for separation or limitation. This is because it can be dealt with by controlling the oxygen concentration, processing temperature, input amount, residence time, and the like.

焼成過程で使用する設備は、単独窯、シャトルキルン、電気炉、ロータリーキルン等が考えられるが、燃費や焼成過程での酸化工程、大量処理できることを考慮すると、ロータリーキルンを使用することが望ましい。
ロータリーキルンの焼成帯温度は800〜1000℃の範囲である事が望ましい。温度が低すぎると粒度、炉内酸素濃度を調整していても酸化焼成がうまく進まない。温度が高すぎると燃費低下につながり不経済である。
The equipment used in the firing process may be a single kiln, shuttle kiln, electric furnace, rotary kiln, etc. However, it is desirable to use a rotary kiln in consideration of fuel consumption, oxidation process in the firing process, and mass processing.
The firing zone temperature of the rotary kiln is desirably in the range of 800 to 1000 ° C. If the temperature is too low, oxidation firing does not proceed well even if the particle size and oxygen concentration in the furnace are adjusted. If the temperature is too high, fuel consumption will be reduced and it will be uneconomical.

酸化焼成に使用するロータリーキルン設備の運転例を述べる。  An example of operation of a rotary kiln facility used for oxidation firing will be described.

ロータリーキルンは内径1m、全長5m程度のものを用意し、キルンの内径が600mmとなる様、内部に不定形耐火物をライニングするとともにキルン内部に撹拌用リフターを設置する。撹拌用のリフターを取り付ける事により効果的に酸化焼成が進む。  A rotary kiln having an inner diameter of 1 m and a total length of about 5 m is prepared. An amorphous refractory is lined inside the kiln so that the inner diameter of the kiln is 600 mm, and a stirring lifter is installed inside the kiln. Oxidation firing proceeds effectively by attaching a lifter for stirring.

ロータリーキルンの窯尻側には集塵機を設置する。熱風炉で発生した熱を窯尻側に引き、酸化可能な焼成帯温度域800〜1000℃の有効距離を延ばすと同時に、酸化焼成によりカーボン、有機溶材が焼失するため、微粉部分に含まれる不純物であるSiO、Al、CaOなどが優先的に集塵される。A dust collector will be installed on the kiln bottom side of the rotary kiln. Impurities contained in the fine powder part because the heat generated in the hot stove is pulled to the bottom of the kiln, extending the effective distance in the oxidizable calcination zone temperature range 800-1000 ° C, and at the same time carbon and organic melted material are burned out by oxidization SiO 2 , Al 2 O 3 , CaO and the like are preferentially collected.

ロータリーキルン原料排出側に熱風炉を設置し、燃料は再生油を使用した。燃焼時の再生油使用量は20〜40l/hr程度となる。  A hot stove was installed on the rotary kiln feedstock discharge side, and recycled oil was used as the fuel. The amount of recycled oil used during combustion is about 20 to 40 l / hr.

また、ロータリーキルン内の酸素濃度を5.0〜9.0容量%に保つことが必要となる為、エアーの打ち込みを行う。炉内酸素濃度は5容量%より低いと、カーボンと反応する酸素不足により酸化が進まない。酸素濃度が9容量%より高いと、投入するエアーにより温度低下を引き起し800℃が保てず不適となる。エアーの代わりに酸素を打ち込んでも良いが費用がかかり経済的でない。  Further, since it is necessary to maintain the oxygen concentration in the rotary kiln at 5.0 to 9.0% by volume, air is driven. If the oxygen concentration in the furnace is lower than 5% by volume, the oxidation does not proceed due to the lack of oxygen that reacts with carbon. If the oxygen concentration is higher than 9% by volume, the introduced air causes a temperature drop, and 800 ° C. cannot be maintained, which is inappropriate. Oxygen can be used instead of air, but it is expensive and not economical.

キルン内の原料充填率は15容量%以下となるよう原料供給量を調整する。原料充填率が高すぎると、キルン内の酸化反応に必要な酸素量も多く必要となるため、エアー投入量を増やす必要が生じ温度維持が困難となる。エアーの打ち込みはキルン内の焼成温度800〜1000℃を保つ程度に打ち込む必要がある。あまり打ち込み過ぎるとキルン内の温度を低下させてしまい酸化が進まない場合がある。  The raw material supply amount is adjusted so that the raw material filling rate in the kiln is 15% by volume or less. If the raw material filling rate is too high, a large amount of oxygen is required for the oxidation reaction in the kiln, so that it is necessary to increase the amount of air input, and it becomes difficult to maintain the temperature. It is necessary to drive air to such an extent that the firing temperature in the kiln is maintained at 800 to 1000 ° C. If it is driven too much, the temperature in the kiln is lowered and oxidation may not proceed.

キルンの回転速度は3.0rpm以下の範囲で調整する。キルンの回転速度はあまり速過ぎるとカーボンの酸化反応が進みにくくなる。キルン回転速度が速いと酸化可能な焼成帯温度域800〜1000℃での滞留時間を短くしてしまうからである。  The rotation speed of the kiln is adjusted within a range of 3.0 rpm or less. If the rotational speed of the kiln is too high, the oxidation reaction of carbon will not proceed easily. This is because if the kiln rotation speed is high, the residence time in the oxidizable firing zone temperature range 800 to 1000 ° C. is shortened.

上記に述べた内容はロータリーキルンの内径、全長、傾き、回転数および熱風炉の能力により異なり、調整することが出来る。  The contents described above vary depending on the inner diameter, the overall length, the inclination, the rotational speed of the rotary kiln and the capacity of the hot stove and can be adjusted.

以下に本発明を実施例により詳細に説明する。  Hereinafter, the present invention will be described in detail with reference to examples.

実験で得られた使用済みMgO−Cれんがの処理温度とカーボン残量の関係を酸素濃度をパラメータとして図1に示した。  FIG. 1 shows the relationship between the treatment temperature of the used MgO-C brick obtained in the experiment and the remaining amount of carbon with the oxygen concentration as a parameter.

図1に示したグラフのカーボン量は、フリーのカーボン及びマグネシア原料中に浸炭したカーボンの合量である。図1の酸化良範囲のカーボン量はマグネシアに浸炭したカーボン量のみとなる範囲である。  The amount of carbon in the graph shown in FIG. 1 is the total amount of free carbon and carbon carburized in the magnesia raw material. The amount of carbon in the good oxidation range of FIG.

図1に示すように酸化焼成後に原料中に残炭する量は、ロータリーキルンの処理温度及び炉内の酸素濃度によるところが大きい。処理温度が800℃より低いとカーボンの酸化が進まない。1000℃より高いとカーボンの酸化は進むが燃費効率が悪く経済的でない。炉内酸素濃度は5容量%より低いと、カーボンと反応する酸素不足により酸化が進まない。酸素濃度が9容量%より高いと、投入するエアーにより温度低下を引き起し800℃が保てず不適となる。よって、図1の丸で囲んだ範囲がフリーのカーボンが酸化除去され、浸炭マグネシアのみのカーボン量となる領域となる。  As shown in FIG. 1, the amount of carbon remaining in the raw material after oxidation and firing largely depends on the processing temperature of the rotary kiln and the oxygen concentration in the furnace. When the treatment temperature is lower than 800 ° C., the oxidation of carbon does not proceed. If it is higher than 1000 ° C., the oxidation of carbon proceeds, but the fuel efficiency is poor and it is not economical. If the oxygen concentration in the furnace is lower than 5% by volume, the oxidation does not proceed due to the lack of oxygen that reacts with carbon. If the oxygen concentration is higher than 9% by volume, the introduced air causes a temperature drop, and 800 ° C. cannot be maintained, which is inappropriate. Therefore, the area surrounded by a circle in FIG. 1 is an area where free carbon is oxidized and removed, and the amount of carbon is only carburized magnesia.

表1に、使用済みMgO−Cれんが原料を粒度10mm以下として、ロータリーキルンの温度と雰囲気を変えて処理した実施例および比較例を示す。
得られた浸炭マグネシア原料のカーボン量が7質量%以下の場合を良(○)とし、それ以上の場合を不良(×)として評価した。カーボン量が7質量%以上の原料はあきらかに未酸化で残ったカーボンがロータリーキルンより排出されるからである。
Table 1 shows examples and comparative examples in which the used MgO-C brick raw material was treated with a particle size of 10 mm or less and the temperature and atmosphere of the rotary kiln were changed.
The case where the amount of carbon of the obtained carburized magnesia raw material was 7% by mass or less was evaluated as good (◯), and the case where the amount of carbon was more than that was evaluated as defective (×). This is because the unoxidized carbon remaining in the raw material having a carbon amount of 7% by mass or more is discharged from the rotary kiln.

Figure 2014051428
Figure 2014051428

表2に本発明の方法に使用した使用済みMgO−Cれんが及び、本発明の方法により得られた浸炭マグネシア原料の化学成分、物性値を示す。  Table 2 shows the used MgO-C brick used in the method of the present invention and the chemical components and physical properties of the carburized magnesia raw material obtained by the method of the present invention.

浸炭マグネシア原料は5〜1mm、1mm以下に分級することで不純物であるSiO、Al、CaOが1mm以下側に多く含まれる傾向があり、5〜1mmのみをリサイクル耐火物に使用すれば、より耐食性の高い耐火物となる。Carburized magnesia raw material tends to contain impurities SiO 2 , Al 2 O 3 , and CaO on the side of 1 mm or less by classifying them to 5 to 1 mm or 1 mm or less, and only 5 to 1 mm is used for recycled refractories. For example, a refractory with higher corrosion resistance is obtained.

Figure 2014051428
Figure 2014051428

浸炭マグネシア原料と未処理原料の顕微鏡写真を図2に示した。浸炭マグネシア原料は、電融マグネシア結晶中にカーボンが浸炭しており、黒色結晶となっている。未処理原料はカーボン及び不純物であるSiO、Al、CaOが多く含まれている。有機結合剤も残った状態であるため、気孔率は浸炭マグネシア原料と比較すると多い状態である。Photomicrographs of the carburized magnesia raw material and the untreated raw material are shown in FIG. As for the carburized magnesia raw material, carbon is carburized in the electrofused magnesia crystal, and it becomes a black crystal. Untreated raw materials are rich in carbon and impurities such as SiO 2 , Al 2 O 3 , and CaO. Since the organic binder remains, the porosity is higher than that of the carburized magnesia raw material.

次に、実施例1で作製した浸炭原料の評価を行った。  Next, the carburized raw material produced in Example 1 was evaluated.

<電気炉スタンプ材>
表3に、本発明の実施例及び比較例による電気炉スタンプ材の構成と評価結果を示す。
<Electric furnace stamp material>
Table 3 shows the configurations and evaluation results of the electric furnace stamp materials according to the examples and comparative examples of the present invention.

表3で実験No.2−1は、2−3の従来スタンプ材に対して、使用マグネシア原料の一部を本発明の浸炭原料に置換したものである。同様に実験No.2−2は、2−4の従来スタンプ材に対して、使用マグネシア原料の一部を本発明の浸炭原料に置換したものである。  In Table 3, the experiment No. 2-1 is obtained by substituting a part of the used magnesia raw material with the carburized raw material of the present invention for the conventional stamp material of 2-3. Similarly, Experiment No. 2-2 is obtained by substituting a part of the magnesia raw material used for the conventional stamp material of 2-4 with the carburized raw material of the present invention.

表4に示す化学組成と物性の原料を使用して表3の比較実験を行った。浸炭マグネシア原料は前記表2に示したものを使用した。  A comparative experiment shown in Table 3 was conducted using raw materials having chemical compositions and physical properties shown in Table 4. The carburized magnesia raw material shown in Table 2 was used.

Figure 2014051428
Figure 2014051428

各例は、いずれも表に示す配合物にバインダーとして30ボーメの苦汁溶液を外掛けで4wt%添加し、1バッチを50kgとして、ダルトンミキサーで5分間混練した。杯土を300kg/cmm2の圧力のもと、油圧プレスで並型に成型した。110℃×10hr.乾燥後、1500℃×3hr.の加熱を行って物性、浸食試験、スポーリングテスト等の各試験を行った。  In each example, 30 wt. Bitter solution as a binder was externally added to the formulation shown in the table at 4 wt%, and 1 batch was 50 kg and kneaded for 5 minutes with a Dalton mixer. The clay was molded into a normal shape with a hydraulic press under a pressure of 300 kg / cmm2. 110 ° C. × 10 hr. After drying, 1500 ° C. × 3 hr. Each test such as physical properties, erosion test, and spalling test was conducted by heating.

それぞれの試験を下記の如く行った。  Each test was conducted as follows.

見掛気孔率、かさ比重:JISR2205−74によって測定した。
圧縮強さ:JISR−76によって測定した。
線変化率:110℃×10hr.乾燥後を基準とし、シリコニット電気炉で加熱した後の値である。
浸食試験:回転ドラム式浸食試験法により、溶損量と浸食量を測定し指数で表示した。
浸食剤として、鋼80%+電気炉スラグ(CaO/SiO=3.0,totalFe=15%)を使用した。
スポーリングテスト:並型を試片とし、15分加熱、15分空冷のサイクルを10回繰り返し、剥落発生回数で評価した。
表3の実施例と比較例を比較すればわかるように、両者の物性と耐食性はほぼ同等である。
Apparent porosity, bulk specific gravity: Measured according to JIS R2205-74.
Compressive strength: measured by JISR-76.
Linear change rate: 110 ° C. × 10 hr. It is a value after heating in a siliconite electric furnace based on after drying.
Erosion test: The amount of erosion and the amount of erosion were measured by a rotating drum type erosion test method and displayed as an index.
As the erodant, steel 80% + electric furnace slag (CaO / SiO 2 = 3.0, totalFe = 15%) was used.
Spalling test: A normal type was used as a test piece, and a cycle of heating for 15 minutes and air cooling for 15 minutes was repeated 10 times, and the number of peeling occurrences was evaluated.
As can be seen by comparing the Examples and Comparative Examples in Table 3, the physical properties and corrosion resistance of the two are almost the same.

実炉試験:表3の実験No.2−1に示した配合組成の塩基性スタンプ材を実際に100t電気炉に施工して評価を行った。施工性は従来品と同等であった。MgO−Cれんが廃材を生で使用した場合に生起する、湯沸きという問題が無かった。溶鋼温度1650℃、吹錬時間40分の条件で稼働させ従来と同等の10〜15回の耐用であった。  Actual furnace test: Experiment No. The basic stamp material having the composition shown in 2-1, was actually applied to a 100 t electric furnace and evaluated. The workability was equivalent to the conventional product. There was no problem of boiling water that occurred when MgO-C brick was used as raw material. It was operated under the conditions of a molten steel temperature of 1650 ° C. and a blowing time of 40 minutes, and the durability was 10 to 15 times equivalent to the conventional one.

Figure 2014051428
Figure 2014051428

<取鍋吹付材>
本発明の取鍋吹付材について、A製鉄所で試用した実施例および比較例(従来例)を表5に示した。表4は各例で使用した主な耐火原料の化学分析値と物性値である。
<Ladle spray material>
About the ladle spraying material of this invention, the Example and the comparative example (conventional example) which were tried in A steelworks were shown in Table 5. Table 4 shows chemical analysis values and physical property values of main refractory raw materials used in each example.

Figure 2014051428
Figure 2014051428

表5のように本発明の実施例は、吹き付時の脈動が無く、リバウンド・ロスも従来品並みに少なく約10%であった。剥離は従来品同様に無く、発煙も少なかった。焼付き性と付着性も良好であった。  As shown in Table 5, in the examples of the present invention, there was no pulsation at the time of spraying, and the rebound loss was about 10%, which was as low as the conventional product. There was no peeling as in the conventional product, and there was little smoke generation. The seizure and adhesion were also good.

Figure 2014051428
Figure 2014051428

以上のとおり、本発明の浸炭MgO原料を使用した不定形耐火物は従来品に比べて、遜色のない特性と耐用を示した。  As described above, the amorphous refractory using the carburized MgO raw material of the present invention showed inferior characteristics and durability compared to conventional products.

本発明の浸炭原料は、使用済みMgO−Cれんがを適正条件で加熱処理している為、
安定であるから、例示した電気炉スタンプ材、取鍋吹付補修材の他に、電気炉吹付補修材、RH浸漬管吹付補修材、タンディッシュラミング材等の各種不定形耐火物にも適用可能である。
Since the carburized raw material of the present invention is heat-treated with used MgO-C brick under appropriate conditions,
Because it is stable, in addition to the electric furnace stamp material and ladle spray repair material illustrated, it can also be applied to various irregular shaped refractories such as electric furnace spray repair materials, RH dip pipe spray repair materials, tundish ramming materials, etc. is there.

本発明では、使用済みMgO−Cれんがを、より付加価値の高い耐火物の骨材として再生・再利用することができるので、資源の有効利用に有用であるばかりでなく、廃棄物のリサイクルにも顕著に寄与し、その産業上の利用可能性には多大なものがある。  In the present invention, since used MgO-C brick can be recycled and reused as a refractory aggregate with higher added value, it is useful not only for effective use of resources but also for recycling of waste. Also contribute significantly, and its industrial applicability is enormous.

Claims (3)

使用済みカーボン含有不焼成れんがの焼成処理によって製造される浸炭原料。  Carburized raw material produced by firing of used carbon-containing unfired brick. 酸素濃度5.0〜9.0%、温度800〜1000℃の条件で、使用済みカーボン含有不焼成れんがを焼成処理することによって製造される浸炭原料。  A carburized raw material produced by firing a used carbon-containing unfired brick under the conditions of an oxygen concentration of 5.0 to 9.0% and a temperature of 800 to 1000 ° C. 請求項1〜2のいずれかに記載の浸炭原料を含有する不定形耐火物。  An amorphous refractory containing the carburized raw material according to claim 1.
JP2012210113A 2012-09-04 2012-09-04 Carburization raw material and amorphous refractory Pending JP2014051428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012210113A JP2014051428A (en) 2012-09-04 2012-09-04 Carburization raw material and amorphous refractory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012210113A JP2014051428A (en) 2012-09-04 2012-09-04 Carburization raw material and amorphous refractory

Publications (1)

Publication Number Publication Date
JP2014051428A true JP2014051428A (en) 2014-03-20

Family

ID=50610272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012210113A Pending JP2014051428A (en) 2012-09-04 2012-09-04 Carburization raw material and amorphous refractory

Country Status (1)

Country Link
JP (1) JP2014051428A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023026802A1 (en) 2021-08-27 2023-03-02 Jfeスチール株式会社 Recycling method for magnesia carbon bricks

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0375255A (en) * 1989-08-18 1991-03-29 Nippon Steel Corp Extraction of refractory composition from graphite-containing refractory and device therefor
JPH08259311A (en) * 1995-03-28 1996-10-08 Nippon Steel Corp Production of magnesia-carbonaceous refractory brick
JPH08319154A (en) * 1995-05-24 1996-12-03 Daido Steel Co Ltd Magnesia-carbon regenerated refractory brick
JP2012140318A (en) * 2010-12-17 2012-07-26 Jfe Steel Corp Method for reusing used carbon-containing refractory
JP2013249245A (en) * 2012-05-31 2013-12-12 Yotai Refractories Co Ltd Method for recycling used carbon-containing unfired brick

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0375255A (en) * 1989-08-18 1991-03-29 Nippon Steel Corp Extraction of refractory composition from graphite-containing refractory and device therefor
JPH08259311A (en) * 1995-03-28 1996-10-08 Nippon Steel Corp Production of magnesia-carbonaceous refractory brick
JPH08319154A (en) * 1995-05-24 1996-12-03 Daido Steel Co Ltd Magnesia-carbon regenerated refractory brick
JP2012140318A (en) * 2010-12-17 2012-07-26 Jfe Steel Corp Method for reusing used carbon-containing refractory
JP2013249245A (en) * 2012-05-31 2013-12-12 Yotai Refractories Co Ltd Method for recycling used carbon-containing unfired brick

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023026802A1 (en) 2021-08-27 2023-03-02 Jfeスチール株式会社 Recycling method for magnesia carbon bricks
KR20240031377A (en) 2021-08-27 2024-03-07 제이에프이 스틸 가부시키가이샤 How to recycle magnesia carbon bricks

Similar Documents

Publication Publication Date Title
CN101550016B (en) Magnesia chrome carbon coating and preparation method thereof
CN102173840B (en) Unburned MgO-Cr3C2-C brick for steelmaking
CN106966740B (en) Waste incinerator calcium hexaluminate/silicon carbide castable and preparation method thereof
CN1654415A (en) High-calcium low-iron magnesian dry method ramming mass and its production method
CN105777159A (en) Method for producing large-scale copper smelting furnace lining bricks by smelting chromium slag
CN107793166A (en) Zn Rotary Kiln electric smelting is in conjunction with alumina magnesia-chrome fire brick and preparation method thereof
JP4602379B2 (en) Method for producing alumina cement
JP2012140318A (en) Method for reusing used carbon-containing refractory
JP5663121B2 (en) Reusing used carbon-containing unfired brick
CN107244925A (en) A kind of preparation method of glucose combination magnesia carbon brick
CN112225541A (en) Electric furnace gunning material and gunning furnace protection method
JP2014051428A (en) Carburization raw material and amorphous refractory
JP3639635B2 (en) Method for producing magnesia-carbon refractory brick
CN1069612C (en) Refractory Mg-Al-Cr material and its production process
CN107324824A (en) A kind of BOF Hood tar combination magnesia-alumina brick and preparation method thereof
Ju et al. Utilization of industrial wastes in Al2O3‐SiC‐SiO2‐C refractories: Characterization of erosion and corrosion resistance
Rytvin et al. Titanium-Alumina Slag–Semifunctional Technogenic Resource of High-Alumina Composition. Part 2. Use of Ferrotitanium Slag for Producing Refractories in Metallurgy and Other Branches of Industry
CN106977181A (en) A kind of BOF Hood magnesium-aluminum-calcium titanium carbon brick and preparation method thereof
JP6315037B2 (en) Lined refractories for continuous casting tundish
NO164016B (en) PROCEDURE AND PLANT FOR AA Separate C5 + HYDROCARBONES FROM A GAS FLOW.
EP2427710B1 (en) Refractory lining for titanium ore beneficiation
JP4397839B2 (en) Silicon iron nitride powder and refractory
JPH09301766A (en) Porous spinel clinker and its production
JP5822081B2 (en) Mud material for closing blast furnace exit hole
JP2004307287A (en) Regenerated carbon-containing brick, and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160628

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170110