JP6583968B2 - Refractory brick - Google Patents
Refractory brick Download PDFInfo
- Publication number
- JP6583968B2 JP6583968B2 JP2017020982A JP2017020982A JP6583968B2 JP 6583968 B2 JP6583968 B2 JP 6583968B2 JP 2017020982 A JP2017020982 A JP 2017020982A JP 2017020982 A JP2017020982 A JP 2017020982A JP 6583968 B2 JP6583968 B2 JP 6583968B2
- Authority
- JP
- Japan
- Prior art keywords
- raw material
- particle size
- mass
- less
- silica
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000011449 brick Substances 0.000 title claims description 62
- 239000002994 raw material Substances 0.000 claims description 130
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 126
- 239000002245 particle Substances 0.000 claims description 98
- 239000000377 silicon dioxide Substances 0.000 claims description 63
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 56
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 49
- 239000010439 graphite Substances 0.000 claims description 26
- 229910002804 graphite Inorganic materials 0.000 claims description 26
- 238000009826 distribution Methods 0.000 claims description 22
- 239000002184 metal Substances 0.000 claims description 20
- 229910052751 metal Inorganic materials 0.000 claims description 20
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 17
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 17
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 16
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 15
- 229910052799 carbon Inorganic materials 0.000 claims description 15
- 239000000843 powder Substances 0.000 claims description 10
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 8
- 229910052863 mullite Inorganic materials 0.000 claims description 8
- 239000011819 refractory material Substances 0.000 claims description 8
- 238000002156 mixing Methods 0.000 description 17
- 239000002893 slag Substances 0.000 description 14
- 230000003628 erosive effect Effects 0.000 description 13
- 238000000465 moulding Methods 0.000 description 9
- 238000005336 cracking Methods 0.000 description 6
- 238000002844 melting Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 235000010299 hexamethylene tetramine Nutrition 0.000 description 4
- 239000004312 hexamethylene tetramine Substances 0.000 description 4
- VKYKSIONXSXAKP-UHFFFAOYSA-N hexamethylenetetramine Chemical compound C1N(C2)CN3CN1CN2C3 VKYKSIONXSXAKP-UHFFFAOYSA-N 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000005011 phenolic resin Substances 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000000280 densification Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 238000012856 packing Methods 0.000 description 3
- 238000004939 coking Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 239000011451 fired brick Substances 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 238000004901 spalling Methods 0.000 description 2
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 1
- 229910018125 Al-Si Inorganic materials 0.000 description 1
- 229910018520 Al—Si Inorganic materials 0.000 description 1
- 229910003923 SiC 4 Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- -1 for example Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910003465 moissanite Inorganic materials 0.000 description 1
- 239000012768 molten material Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000011044 quartzite Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
Images
Landscapes
- Furnace Housings, Linings, Walls, And Ceilings (AREA)
Description
本発明は、高炉鍋の内張りなどに好適なアルミナ・シリカ・炭化珪素・カーボン質の耐火物煉瓦に関する。 The present invention relates to an alumina, silica, silicon carbide, and carbonaceous refractory brick suitable for lining of a blast furnace pan.
製鉄所において製銑工程や製鋼工程で使用される設備(精錬容器、搬送容器など)は、高温下で長期間の使用に耐えられるように耐火物が内張り施工されている。それらのなかで、溶銑予備処理工程において使用される高炉鍋は、天井に蓋が無く開かれた構造であり、受銑と溶銑払い出しが繰り返されるため、操業中における内張り耐火物の温度変化が大きい。このため高炉鍋のワークれんがには、長期間にわたって加熱と冷却が繰り返されても脆化しにくい等の理由から、アルミナ・ろう石(シリカ)・炭化珪素・カーボン質煉瓦が使用されている。 Equipment (refining containers, transport containers, etc.) used in ironmaking and steelmaking processes at steelworks is lined with refractories so that it can withstand long-term use at high temperatures. Among them, the blast furnace pan used in the hot metal pretreatment process has an open structure without a lid on the ceiling, and since the receiving and hot metal discharge are repeated, the temperature change of the lining refractory during operation is large. . For this reason, alumina bricks, silica, silicon carbide, and carbon bricks are used as work bricks for blast furnace pots because they are not easily brittle even if they are repeatedly heated and cooled over a long period of time.
従来、高炉鍋の熱ロス低減策として、耐火物ライニングの断熱性強化の取り組みがなされており、ワークれんがの低熱伝導化も検討されてきた。しかし、ワークれんがの熱伝導率を低下させると、鉄皮からの放熱を低減できるが、ワークれんがの温度勾配が急激になるため割れ易くなる等の課題もある。そのため、ワークれんがの低熱伝導化においては、耐火物損傷状況を把握し、具備特性を特定して適切な材質を選定することが必要となる。 Conventionally, as a measure for reducing the heat loss of the blast furnace pan, efforts have been made to enhance the heat insulation of the refractory lining, and the reduction of the thermal conductivity of the work brick has been studied. However, when the thermal conductivity of the work brick is lowered, the heat radiation from the iron skin can be reduced. However, there is a problem that the work brick is easily cracked because the temperature gradient of the work brick becomes steep. Therefore, in order to reduce the thermal conductivity of work bricks, it is necessary to grasp the refractory damage status, specify the characteristics of the equipment, and select an appropriate material.
特許文献1には、アルミナ・ろう石(シリカ)・炭化珪素・カーボン質煉瓦の化学成分について、Al2O3量が50〜85質量%、SiO2量が3〜25質量%、C量が3〜20質量%、その他の成分が10質量%以下となるように原料を配合すれば、ろう石が有する低熱間応力を利用することにより、高温下で発生する熱間応力を抑制できるので目地損傷を防止でき、炉寿命を向上できることが記載されている。 Patent Document 1 discloses that the chemical components of alumina, wax, silica, silicon carbide, and carbon brick are 50 to 85% by mass of Al 2 O 3, 3 to 25% by mass of SiO 2 , and C content. If the raw materials are blended so that 3 to 20% by mass and other components are 10% by mass or less, it is possible to suppress the hot stress generated at high temperatures by utilizing the low hot stress of the wax. It is described that damage can be prevented and furnace life can be improved.
また、特許文献2には、Al2O3、SiO2、SiCを含む耐火性原料を60〜99質量%、C質原料を1〜40質量%とし、溶銑予備処理スラグ、高炉スラグ及び灰溶融スラグから選択される少なくとも1種を含むスラグ組成物を外掛けで0.1〜10質量%含有する炭素含有煉瓦は、スラグコーティング層の剥落を防止でき、耐用を改善できることが記載されている。 Patent Document 2 discloses that a refractory raw material containing Al 2 O 3 , SiO 2 , and SiC is 60 to 99% by mass, a C-type raw material is 1 to 40% by mass, hot metal pretreatment slag, blast furnace slag, and ash melting It is described that the carbon-containing brick containing 0.1 to 10% by mass of the slag composition containing at least one selected from slag as an outer shell can prevent the slag coating layer from peeling off and improve the durability.
しかし、本発明者らの試験結果によれば、アルミナ・シリカ・炭化珪素・カーボン質煉瓦の耐用性(耐割れ性、耐溶損性など)を向上させるには、シリカ原料の粒度分布、さらに好ましくはアルミナ原料やカーボン原料の粒度分布を最適化することが重要であることが判った。特許文献1、2に記載の耐火物煉瓦では、そのような原料粒度分布の最適化を行っておらず、このため優れた耐用性は得られない。 However, according to the test results of the present inventors, in order to improve the durability (cracking resistance, erosion resistance, etc.) of alumina / silica / silicon carbide / carbon brick, the particle size distribution of the silica raw material is more preferable. It was found that it is important to optimize the particle size distribution of the alumina raw material and the carbon raw material. In the refractory bricks described in Patent Documents 1 and 2, such raw material particle size distribution is not optimized, so that excellent durability cannot be obtained.
したがって本発明の目的は、以上のような従来技術の課題を解決し、耐割れ性と耐溶損性に優れ、且つ熱伝導率の低いアルミナ・シリカ・炭化珪素・カーボン質の耐火物煉瓦を提供することにある。 Accordingly, the object of the present invention is to solve the above-mentioned problems of the prior art, and provide an alumina, silica, silicon carbide, and carbonaceous refractory brick having excellent crack resistance and melt resistance and low thermal conductivity. There is to do.
上述したように、本発明者らは、アルミナ・シリカ・炭化珪素・カーボン質煉瓦の耐用性(耐割れ性、耐溶損性など)を向上させるには、シリカ原料の粒度分布、さらに好ましくはアルミナ原料やカーボン原料の粒度分布を最適化することが重要であることを見出した。
本発明はこのような知見に基づきなされたもので、以下を要旨とするものである。
As described above, in order to improve the durability (cracking resistance, erosion resistance, etc.) of alumina, silica, silicon carbide, and carbon bricks, the present inventors preferably use a silica particle size distribution, more preferably alumina. We have found that it is important to optimize the particle size distribution of raw materials and carbon raw materials.
The present invention has been made on the basis of such findings and has the following gist.
[1]アルミナ・シリカ・炭化珪素・カーボン質の耐火物からなる煉瓦において、
アルミナ原料を50〜70質量%、シリカ原料を20〜40質量%、鱗状黒鉛を2〜10質量%含有し、
アルミナ原料のAl2O3含有量が70質量%以上、シリカ原料のSiO2含有量が20質量%以上であり、
シリカ原料は、粒径2.8mm以下のろう石及び/又はムライトからなり、且つ粒径1mm超2.8mm以下のシリカ原料(a1)と粒径1mm以下のシリカ原料(a2)の質量比(a1)/(a2)が2:0.5〜2:5であることを特徴とする耐火物煉瓦。
[1] In bricks made of refractories made of alumina, silica, silicon carbide, and carbon,
50 to 70 mass% alumina raw material, 20 to 40 mass% silica raw material, 2 to 10 mass% scaly graphite,
Al 2 O 3 content of alumina raw material is 70% by mass or more, SiO 2 content of silica raw material is 20% by mass or more,
The silica raw material is composed of wax and / or mullite having a particle size of 2.8 mm or less, and the mass ratio of the silica raw material (a1) having a particle size of more than 1 mm and 2.8 mm or less to the silica material (a2) having a particle size of 1 mm or less ( A refractory brick, wherein a1) / (a2) is from 2: 0.5 to 2: 5.
[2]上記[1]の耐火物煉瓦において、アルミナ原料は、粒径2.8mm以下であり、且つ粒径1mm超2.8mm以下のアルミナ原料(b1)と粒径1mm以下のアルミナ原料(b2)の質量比(b1)/(b2)が2:1〜2:3であることを特徴とする耐火物煉瓦。
[3]上記[1]又は[2]の耐火物煉瓦において、鱗状黒鉛は、100メッシュ以下の粒度を有し、且つ粒度が1000メッシュ超100メッシュ以下の鱗状黒鉛(c1)と粒度が1000メッシュ以下の鱗状黒鉛(c2)の質量比(c1)/(c2)が20:1〜20:10であることを特徴とする耐火物煉瓦。
[2] In the refractory brick of the above [1], the alumina raw material has an alumina raw material (b1) having a particle size of 2.8 mm or less and a particle size of more than 1 mm and 2.8 mm or less, and an alumina raw material ( The refractory brick, wherein the mass ratio (b1) / (b2) of b2) is 2: 1 to 2: 3.
[3] In the refractory brick according to [1] or [2] above, the scaly graphite has a particle size of 100 mesh or less, and the scaly graphite (c1) having a particle size of more than 1000 mesh and 100 mesh or less and a particle size of 1000 mesh A refractory brick characterized by having a mass ratio (c1) / (c2) of the following scaly graphites (c2) of 20: 1 to 20:10.
[4]上記[1]〜[3]のいずれかの耐火物煉瓦において、さらに、金属粉末原料を含有することを特徴とする耐火物煉瓦。
[5]上記[1]〜[4]のいずれかの耐火物煉瓦において、全原料の粒度分布係数qが0.6〜1.0であることを特徴とする耐火物煉瓦。
[4] The refractory brick according to any one of [1] to [3], further including a metal powder raw material.
[5] The refractory brick according to any one of the above [1] to [4], wherein the particle size distribution coefficient q of all raw materials is 0.6 to 1.0.
本発明のアルミナ・シリカ・炭化珪素・カーボン質耐火物煉瓦は、優れた耐割れ性と耐溶損性を有するとともに、低熱伝導性を有する。 The alumina / silica / silicon carbide / carbonaceous refractory brick of the present invention has excellent crack resistance and melt resistance, as well as low thermal conductivity.
本発明の耐火物煉瓦は、アルミナ・シリカ・炭化珪素・カーボン質の耐火物、すなわちアルミナ、シリカ、炭化珪素及びカーボンを主成分とする耐火物からなる煉瓦であって、アルミナ原料を50〜70質量%、シリカ原料を20〜40質量%、鱗状黒鉛を2〜10質量%含有する。また、アルミナ原料は、Al2O3含有量が70質量%以上である。さらに、シリカ原料は、SiO2含有量が20質量%以上であり、粒径2.8mm以下のろう石及び/又はムライトからなり、且つ粒径1mm超2.8mm以下のシリカ原料(a1)と粒径1mm以下のシリカ原料(a2)の質量比(a1)/(a2)が2:0.5〜2:5である。 The refractory brick according to the present invention is a refractory made of alumina, silica, silicon carbide, and carbon, that is, a brick made of refractory mainly composed of alumina, silica, silicon carbide, and carbon. It contains 20 to 40% by mass of silica raw material and 2 to 10% by mass of scaly graphite. The alumina raw material has an Al 2 O 3 content of 70% by mass or more. Further, the silica raw material has a SiO 2 content of 20% by mass or more, is composed of a wax and / or mullite having a particle size of 2.8 mm or less, and has a silica raw material (a1) having a particle size of more than 1 mm and 2.8 mm or less. The mass ratio (a1) / (a2) of the silica raw material (a2) having a particle size of 1 mm or less is 2: 0.5 to 2: 5.
ここで、本発明が規定するアルミナ原料及びシリカ原料の粒径に関して、粒径2.8mm以下の原料とは、篩目2.8mm(呼び径)の篩で篩った篩下の原料を意味する。また、粒径1mm以下の原料とは、篩目1mm(呼び径)の篩で篩った篩下の原料を意味し、粒径1mm超の原料とは、同じく篩上の原料を意味する。また、本発明で規定する含有量や粒度比率などの数値は、小数点以下を四捨五入した数値である。 Here, regarding the particle size of the alumina raw material and the silica raw material defined in the present invention, the raw material having a particle size of 2.8 mm or less means a raw material under a sieve obtained by sieving with a sieve having a mesh size of 2.8 mm (nominal diameter). To do. Moreover, the raw material with a particle size of 1 mm or less means the raw material under the sieve which sifted with the sieve of 1 mm (nominal diameter), and the raw material with a particle size exceeding 1 mm means the raw material on a sieve. Moreover, numerical values, such as content and a particle size ratio prescribed | regulated by this invention, are the numerical values which rounded off the decimal point.
アルミナ原料の含有量(配合量)が50質量%未満では、アルミナ原料による耐溶損効果が十分に得られず、スラグの侵食を抑制できなくなり、耐溶損性が低下する。一方、アルミナ原料の含有量(配合量)が70質量%を超えると、骨材の含有量が多過ぎるため、成形できない恐れがある。このためアルミナ原料の含有量(配合量)は50〜70質量%とする必要がある。
アルミナ原料としては、バン土頁岩、ホワイトアルミナ、ブラウンアルミナなどの1種以上を用いることができる。
If the content (blending amount) of the alumina raw material is less than 50% by mass, the corrosion resistance effect due to the alumina raw material cannot be sufficiently obtained, erosion of the slag cannot be suppressed, and the resistance to melting loss is lowered. On the other hand, if the content (blending amount) of the alumina raw material exceeds 70% by mass, the aggregate content is too high, and there is a possibility that molding cannot be performed. For this reason, the content (blending amount) of the alumina raw material needs to be 50 to 70% by mass.
As an alumina raw material, 1 or more types, such as a van earth shale, white alumina, brown alumina, can be used.
シリカ原料は、ろう石及び/又はムライトからなるが、その含有量(配合量)が20質量%未満では、耐溶損性は維持できるものの、耐割れ性が低下する。ろう石やムライト中の石英(SiO2)が高温下で相転移する際、膨張により微細亀裂を生成させ、これらの微細亀裂が弾性率を低下させ、強度/弾性率比に比例する熱衝撃破壊抵抗が大きくなる。シリカ原料の含有量が20質量%未満では、膨張量が少なく微細亀裂が生成しないため、熱衝撃破壊抵抗も大きくならず、耐割れ性が低下する。一方、シリカ原料の含有量(配合量)が40質量%を超えると耐溶損性が大幅に劣化する。このためシリカ原料の含有量(配合量)は20〜40質量%とする必要がある。 The silica raw material is composed of wax and / or mullite. If the content (blending amount) is less than 20% by mass, the resistance to cracking can be maintained, but the cracking resistance is lowered. When quartzite (SiO 2 ) in wax or mullite undergoes a phase transition at high temperatures, microcracks are generated by expansion, and these microcracks reduce the elastic modulus and thermal shock fracture is proportional to the strength / elastic modulus ratio. Resistance increases. When the content of the silica raw material is less than 20% by mass, the amount of expansion is small and fine cracks are not generated, so that the thermal shock fracture resistance is not increased and the crack resistance is lowered. On the other hand, when the content (blending amount) of the silica raw material exceeds 40% by mass, the melt resistance is greatly deteriorated. For this reason, content (blending amount) of a silica raw material needs to be 20-40 mass%.
鱗状黒鉛は、含有量(配合量)が10質量%以下では熱伝導率が殆ど一定であるが、10質量%を超えると熱伝導率が急激に高まる。一方、鱗状黒鉛の含有量(配合量)が2質量%未満では、耐割れ性が大幅に低下する。このため、低熱伝導化と高耐割れ性を両立させるために、鱗状黒鉛の含有量(配合量)は2〜10質量%とする必要がある。
アルミナ原料のAl2O3含有量(純度)が70質量%未満では、スラグの侵食を抑制できず、耐溶損性が低下する。すなわち、Al2O3は融点が2000℃以上の高融点物質であり、比較的広い組成範囲のスラグに対して優れた耐溶損効果をもたらすことから、アルミナ原料のAl2O3含有量が70質量%未満ではスラグに対する耐溶損効果が適切に得られない。このためアルミナ原料のAl2O3含有量は70質量%以上とする。一方、アルミナ原料の純度が高いほど耐溶損性の向上が期待でき、好適であるが、高純度のアルミナ原料は高価となるため、Al2O3含有量が99.7質量%程度までのアルミナ原料が好適に使用できる。
When the content (blending amount) of the scaly graphite is 10% by mass or less, the thermal conductivity is almost constant, but when it exceeds 10% by mass, the thermal conductivity increases rapidly. On the other hand, if the content (blending amount) of the scaly graphite is less than 2% by mass, the crack resistance is significantly lowered. For this reason, in order to achieve both low thermal conductivity and high cracking resistance, the content (blending amount) of scaly graphite needs to be 2 to 10% by mass.
If the Al 2 O 3 content (purity) of the alumina raw material is less than 70% by mass, erosion of the slag cannot be suppressed, and the erosion resistance decreases. That is, Al 2 O 3 is a high melting point material having a melting point of 2000 ° C. or more, and provides an excellent resistance to melting damage to slag having a relatively wide composition range. Therefore, the content of Al 2 O 3 in the alumina raw material is 70. If it is less than% by mass, the erosion resistance against slag cannot be obtained properly. For this reason, the content of Al 2 O 3 in the alumina raw material is 70% by mass or more. On the other hand, the higher the purity of the alumina raw material, the better the corrosion resistance can be expected, which is preferable. However, since the high-purity alumina raw material is expensive, the alumina having an Al 2 O 3 content of up to about 99.7% by mass is preferable. A raw material can be used conveniently.
シリカ原料のSiO2含有量(純度)が20質量%未満では、耐割れ性が悪化する。このためシリカ原料のSiO2含有量は20質量%以上とする。一方、シリカ原料の純度が高いほど耐割れ性の向上が期待でき、好適であるが、高純度のシリカ原料は高価となるため、SiO2含有量が90質量%程度までのシリカ原料が好適に使用できる。また、シリカ原料は、その粒径を2.8mm以下とすることにより、最適な充填密度を得ることができる。 When the SiO 2 content (purity) of the silica raw material is less than 20% by mass, the crack resistance is deteriorated. Therefore the content of SiO 2 of the silica raw material is 20 mass% or more. On the other hand, the higher the purity of the silica raw material, the better the crack resistance can be expected, which is preferable. However, since the high-purity silica raw material becomes expensive, the silica raw material having a SiO 2 content of up to about 90% by mass is preferable Can be used. Moreover, the optimal packing density can be obtained by making the particle size of the silica raw material 2.8 mm or less.
さらに、このシリカ原料の粒度条件としては、粒径1mm超2.8mm以下の粗粒状のシリカ原料(a1)と粒径1mm以下の細粒状のシリカ原料(a2)の質量比(a1)/(a2)を2:0.5〜2:5とする必要があり、これにより耐溶損性と耐割れ性の向上を図ることができる。すなわち、この粒度条件を満足すれば、スラグが浸透する粒界面積を小さくでき、且つ煉瓦組織内のマトリックス中に粒径1mm以下の骨材が存在することになるため、マトリックス中へのスラグ浸透を抑制でき、耐溶損性を維持できる。また、煉瓦の緻密化が進行し過ぎないため、動弾性率の大幅な上昇を抑制でき、耐割れ性が向上する。すなわち、粗粒状のシリカ原料(a1)に対する細粒状のシリカ原料(a2)の割合が質量比(a1)/(a2)=2:0.5を下回ると、煉瓦組織内のマトリックス中へのスラグの浸透が生じやすくなるため、耐溶損性が低下する。一方、粗粒状のシリカ原料(a1)に対する細粒状のシリカ原料(a2)の割合が質量比(a1)/(a2)=2:5を上回ると、煉瓦が過剰に緻密化して動弾性率が上昇し、耐割れ性が低下する。以上の観点から、より好ましい質量比(a1)/(a2)は2:1〜2:3である。
シリカ原料を以上のような粒度比率に調整するには、例えば、シリカ原料を呼び径2.8mmの篩と呼び径1mmの篩で順次篩分けして、粒径1mm超2.8mm以下のシリカ原料(a1)と、粒径1mm以下のシリカ原料(a2)に分級し、それらを質量比(a1)/(a2)が2:0.5〜2:5となるように配合することで粒度調整する。
Furthermore, as the particle size condition of the silica raw material, the mass ratio (a1) / () of the coarse silica raw material (a1) having a particle size of more than 1 mm and 2.8 mm or less and the fine silica material (a2) having a particle size of 1 mm or less. It is necessary to set a2) to 2: 0.5 to 2: 5, which can improve the resistance to melting and cracking. That is, if this particle size condition is satisfied, the interfacial area through which slag penetrates can be reduced, and aggregates having a particle diameter of 1 mm or less are present in the matrix in the brick structure. Can be suppressed, and the resistance to erosion can be maintained. Moreover, since the densification of the brick does not proceed excessively, it is possible to suppress a significant increase in the dynamic elastic modulus and improve the crack resistance. That is, when the ratio of the fine-granular silica raw material (a2) to the coarse-granular silica raw material (a1) is less than the mass ratio (a1) / (a2) = 2: 0.5, the slag into the matrix in the brick structure Since the penetration of is likely to occur, the melt resistance is reduced. On the other hand, when the ratio of the fine-granular silica raw material (a2) to the coarse-granular silica raw material (a1) exceeds the mass ratio (a1) / (a2) = 2: 5, the brick becomes excessively dense and the dynamic elastic modulus is increased. As a result, the crack resistance decreases. From the above viewpoint, a more preferable mass ratio (a1) / (a2) is 2: 1 to 2: 3.
In order to adjust the silica raw material to the above particle size ratio, for example, the silica raw material is sequentially sieved with a sieve having a nominal diameter of 2.8 mm and a sieve having a nominal diameter of 1 mm, and silica having a particle diameter of more than 1 mm and not more than 2.8 mm. By classifying the raw material (a1) and the silica raw material (a2) having a particle size of 1 mm or less and blending them so that the mass ratio (a1) / (a2) is 2: 0.5 to 2: 5 adjust.
以上の条件を満足することで高耐割れ性と高耐溶損性を両立できるが、さらに耐火物煉瓦の性能を高めるには、以下のような条件を満足することが好ましい。
アルミナ原料は、粒径2.8mm以下であり、且つ粒径1mm超2.8mm以下の粗粒状のアルミナ原料(b1)と粒径1mm以下の細粒状のアルミナ原料(b2)の質量比(b1)/(b2)が2:1〜2:3であることが好ましい。
アルミナ原料は、その粒径を2.8mm以下とすることにより、最適な充填密度を得ることができる。
Satisfying the above conditions makes it possible to achieve both high crack resistance and high melt resistance, but it is preferable to satisfy the following conditions in order to further improve the performance of the refractory brick.
The alumina raw material has a particle diameter of 2.8 mm or less, and a mass ratio (b1) of coarse granular alumina raw material (b1) having a particle diameter of more than 1 mm and 2.8 mm or less and fine granular alumina raw material (b2) having a particle diameter of 1 mm or less. ) / (B2) is preferably 2: 1 to 2: 3.
By setting the particle size of the alumina raw material to 2.8 mm or less, an optimum packing density can be obtained.
また、粗粒状のアルミナ原料(b1)と細粒状のアルミナ原料(b2)の質量比(b1)/(b2)を2:1〜2:3とすることにより、より優れた耐割れ性と耐溶損性を得ることができる。すなわち、さきに述べたシリカ原料の粒度比率の最適化によって得られる作用効果が、アルミナ原料の粒度比率の最適化によってさらに高められるため、耐割れ性と耐溶損性がさらに向上することになる。
アルミナ原料を以上のような粒度比率に調整するには、例えば、アルミナ原料を呼び径2.8mmの篩と呼び径1mmの篩で順次篩分けして、粒径1mm超2.8mm以下のアルミナ原料(b1)と、粒径1mm以下のアルミナ原料(b2)に分級し、それらを質量比(b1)/(b2)が2:1〜2:3となるように配合することで粒度調整する。
Further, by setting the mass ratio (b1) / (b2) of the coarse granular alumina raw material (b1) to the fine granular alumina raw material (b2) to 2: 1 to 2: 3, more excellent crack resistance and dissolution resistance. Damage can be obtained. That is, since the effect obtained by optimizing the particle size ratio of the silica raw material described above is further enhanced by optimizing the particle size ratio of the alumina raw material, the crack resistance and the erosion resistance are further improved.
In order to adjust the alumina raw material to the above particle size ratio, for example, the alumina raw material is sequentially sieved with a sieve having a nominal diameter of 2.8 mm and a sieve having a nominal diameter of 1 mm, and alumina having a particle diameter of more than 1 mm and not more than 2.8 mm. The particle size is adjusted by classifying the raw material (b1) and the alumina raw material (b2) having a particle diameter of 1 mm or less and blending them so that the mass ratio (b1) / (b2) is 2: 1 to 2: 3. .
鱗状黒鉛は、100メッシュ以下の粒度を有し、且つ粒度が1000メッシュ超100メッシュ以下の鱗状黒鉛(c1)と粒度が1000メッシュ以下の鱗状黒鉛(c2)の質量比(c1)/(c2)が20:1〜20:10であることが好ましい。
鱗状黒鉛がこのような粒度比率を満足することにより、成形する際に煉瓦の緻密化が進行し過ぎないため、動弾性率の大幅な上昇を抑制でき、耐割れ性をより高めることができる。
鱗状黒鉛を以上のような粒度比率に調整するには、例えば、鱗状黒鉛を100メッシュ(150μm)の篩と1000メッシュ(13μm)の篩で順次篩分けして、1000メッシュ(13μm)超100メッシュ(150μm)以下の鱗状黒鉛(c1)と、1000メッシュ(13μm)以下の鱗状黒鉛(c2)に分級し、それらを質量比(c1)/(c2)が20:1〜20:10となるように配合することで粒度調整する。
The scaly graphite has a particle size of 100 mesh or less, and the mass ratio (c1) / (c2) of the scaly graphite (c1) having a particle size of more than 1000 mesh and 100 mesh or less and the scaly graphite (c2) having a particle size of 1000 mesh or less. Is preferably 20: 1 to 20:10.
When the scaly graphite satisfies such a particle size ratio, since the densification of the brick does not proceed excessively during molding, a significant increase in the dynamic elastic modulus can be suppressed, and crack resistance can be further improved.
In order to adjust the scaly graphite to the particle size ratio as described above, for example, the scaly graphite is sequentially sieved with a 100 mesh (150 μm) sieve and a 1000 mesh (13 μm) sieve, and then 1000 mesh (13 μm) more than 100 mesh. (150 μm) or less scaly graphite (c1) and 1000 mesh (13 μm) or less scaly graphite (c2) are classified so that the mass ratio (c1) / (c2) is 20: 1 to 20:10. To adjust the particle size.
本発明の耐火物煉瓦において、炭化珪素の含有量(配合量)は特に規定しないが、通常、2〜8質量%程度が好ましい。炭化珪素の含有量(配合量)が2質量%未満では、カーボンの酸化を防止できないおそれがあり、一方、8質量%を超えると、耐火物煉瓦をトータルFe量の高いスラグに対して使用した場合の耐溶損性が低下するおそれがある。
本発明の耐火物煉瓦は、製鉄容器からの放熱量を抑制しながら、耐用性を高くすることを目的として、さらに金属粉末原料を含有(配合)することができる。金属粉末原料としては、例えば、金属Si、金属Al、金属Al−Si、Al4SiC4、B4Cなどが挙げられ、これらの1種以上を含有させることができる。金属粉末原料の含有量(配合量)は特に規定しないが、通常、1〜5質量%程度が好ましい。金属粉末原料の含有量(配合量)が1質量%未満では、金属粉末原料を配合することによる耐用性の向上効果が十分に得られず、一方、5質量%を超えると、強度が高くなりすぎるため、実機で使用した際に亀裂が発生し易くなって煉瓦が割れ易くなり、実機での使用回数が低下するおそれがある。
In the refractory brick of the present invention, the content (blending amount) of silicon carbide is not particularly specified, but usually about 2 to 8% by mass is preferable. If the silicon carbide content (blending amount) is less than 2% by mass, the oxidation of carbon may not be prevented. On the other hand, if it exceeds 8% by mass, refractory bricks are used for slag with a high total Fe content. There is a possibility that the melt resistance in the case may decrease.
The refractory brick of the present invention can further contain (blend) a metal powder raw material for the purpose of enhancing the durability while suppressing the amount of heat released from the steel container. Examples of the metal powder raw material include metal Si, metal Al, metal Al—Si, Al 4 SiC 4 , and B 4 C, and one or more of these can be contained. The content (blending amount) of the metal powder raw material is not particularly specified, but is usually preferably about 1 to 5% by mass. If the content (blending amount) of the metal powder raw material is less than 1% by mass, the effect of improving the durability due to the blending of the metal powder raw material cannot be obtained sufficiently, while if it exceeds 5% by mass, the strength increases. Therefore, when used with an actual machine, cracks are likely to occur and the brick is likely to be broken, and the number of times of use with the actual machine may be reduced.
本発明の耐火物煉瓦は、全原料の粒度分布係数q(Andreasen式の分布係数q)が0.6〜1.0であることが好ましく、これにより耐割れ性をさらに高めることができる。全原料の粒度分布係数qは、下記(1)式のAndreasenの分布係数qである。
Andreasen式中のDは各粒度区分の最大粒径、Dmaxは全粒子の最大粒径、Wは通過質量百分率(%)を表す。最大粒径Dmaxは全粒子中の最大粒径となる2.8mmとし、通過算質量百分率Wは、原料含有量から(2)式〜(7)式を用いて求める。
下記(1)式において両辺の対数を取ると、左辺はlogW、右辺はq×log(D/Dmax)+log100となる。横軸にlog(D/Dmax)、縦軸にlogWを取り、通過質量百分率の対数logWの偏差の自乗和が最小となるような最小自乗法を用いて累乗近似曲線の傾きqを求める。
In the refractory brick according to the present invention, the particle size distribution coefficient q (Andreasen type distribution coefficient q) of all raw materials is preferably 0.6 to 1.0, whereby the crack resistance can be further improved. The particle size distribution coefficient q of all the raw materials is the Andreasen distribution coefficient q of the following formula (1).
In the Andreasen equation, D is the maximum particle size of each particle size category, Dmax is the maximum particle size of all particles, and W is the percentage by weight (%). The maximum particle size Dmax is 2.8 mm, which is the maximum particle size of all particles, and the passing mass percentage W is determined from the raw material content using equations (2) to (7).
Taking the logarithm of both sides in the following formula (1), the left side is logW, and the right side is q × log (D / Dmax) + log100. Taking the log (D / Dmax) on the horizontal axis and the logW on the vertical axis, the slope q of the power approximation curve is determined using a least square method that minimizes the square sum of the deviation of the logarithm logW of the passing mass percentage.
粒度分布係数qが0.6未満では、成形する際に煉瓦の緻密化が進行し過ぎるため、動弾性率が上昇し、耐割れ性には不利な条件となる。一方、粒度分布係数qが1.0を超えると、成形する際に成形体の充填密度が高くならず、煉瓦組織中の気孔の割合が増加し、成形し難くなる恐れがある。
全原料の粒度分布を以上のような粒度分布係数qの範囲に調整するには、例えば、所定の原料配合で原料を調整後に、各原料のサンプルの粒度分布を求め、これから原料全体の粒度分布を求めた上で、上記(1)式から粒度分布係数qを求める。そして、例えば、qが0.6未満であった場合は、粒径1mm超2.8mm以下のアルミナ原料やシリカ原料を加えて、粒度分布係数qが0.6以上となるように調整する。
When the particle size distribution coefficient q is less than 0.6, the densification of the brick proceeds excessively during molding, so that the dynamic elastic modulus increases, which is a disadvantageous condition for crack resistance. On the other hand, if the particle size distribution coefficient q exceeds 1.0, the packing density of the molded body does not increase during molding, and the proportion of pores in the brick structure increases, which may make molding difficult.
In order to adjust the particle size distribution of all the raw materials to the range of the particle size distribution coefficient q as described above, for example, after adjusting the raw materials with a predetermined raw material composition, the particle size distribution of each raw material sample is obtained, and from this, the particle size distribution of the whole raw materials Then, the particle size distribution coefficient q is obtained from the above equation (1). For example, when q is less than 0.6, an alumina raw material or a silica raw material having a particle size of more than 1 mm and 2.8 mm or less is added to adjust the particle size distribution coefficient q to be 0.6 or more.
以下、本発明の耐火物煉瓦の製造方法について説明する。
本発明の成分条件を満足するように原料を配合し、煉瓦に成形するための耐火物原料とし、これにバインダーを加えて混練し、次いで、煉瓦の形状に成形(プレス成型)した後、通常、キュアリング(乾燥)を施して製品煉瓦(不焼成煉瓦)とする。このキュアリングは還元雰囲気で行ってもよい。また、キュアリング後、さらに還元焼成(コーキング処理)を施して製品煉瓦(焼成煉瓦)としてもよい。通常、キュアリング(乾燥)は200〜230℃で18〜48時間程度行われ、還元焼成(コーキング処理)は1400〜1500℃で3〜5時間程度行われる。
Hereinafter, the manufacturing method of the refractory brick of this invention is demonstrated.
After blending the raw materials so as to satisfy the component conditions of the present invention, to make a refractory raw material for molding into bricks, adding a binder to this, kneading, and then molding into a brick shape (press molding), usually Then, it is cured (dried) to make a product brick (non-fired brick). This curing may be performed in a reducing atmosphere. Further, after curing, reduction baking (coking treatment) may be further performed to form product bricks (fired bricks). Usually, curing (drying) is performed at 200 to 230 ° C. for about 18 to 48 hours, and reduction firing (coking treatment) is performed at 1400 to 1500 ° C. for about 3 to 5 hours.
バインダーとしては、例えば、フェノールレジン(主剤)+ヘキサミン(硬化剤)、カーボンボンド、セラミックボンドなどが用いられる。バインダーの添加量は、例えばフェノールレジン(主剤)+ヘキサミン(硬化剤)の場合では、通常、耐火物原料に対する外掛けでフェノールレジンを3質量%、ヘキサミンを0.3質量%程度とする。
本発明の耐火物煉瓦は、種々の設備や容器の耐火物として使用できるが、なかでも、製鉄所の精錬設備や溶解物(溶銑、スラグ)の搬送容器の内張り耐火物として好適であり、特に、溶銑予備処理に使用される高炉鍋用の内張り耐火物(ワーク煉瓦)として好適である。
As the binder, for example, phenol resin (main agent) + hexamine (curing agent), carbon bond, ceramic bond, and the like are used. For example, in the case of phenol resin (main agent) + hexamine (curing agent), the amount of binder added is usually about 3% by mass of phenol resin and about 0.3% by mass of hexamine as an outer coating on the refractory material.
The refractory brick of the present invention can be used as a refractory for various facilities and containers, and is particularly suitable as a refractory for lining a refining facility for ironworks and a conveyance container for molten material (hot metal, slag). It is suitable as a lining refractory (work brick) for a blast furnace pan used for hot metal pretreatment.
表1に、本実施例で使用した4種類のAl2O3原料の組成を示す。これら4種類のAl2O3原料は、各発明例、比較例の条件に合わせて粒度を調整した。
表2にSiO2原料として使用した3種類のろう石と、2種類のムライトの組成を示す。これら5種類のSiO2原料は、各発明例、比較例の条件に合わせて粒度を調整した。
SiO2原料、Al2O3原料、鱗状黒鉛の各粒度比率、全原料の粒度分布係数qは、さきに述べたようにして調整した。
耐火物原料としてAl2O3原料、SiO2原料、炭化珪素、鱗状黒鉛、金属粉末(金属Si及び金属Al)を表3〜表10に示す割合で配合した耐火物煉瓦を、図1に示す製造プロセスで製造した。耐火物原料を混練・成型するにあたり、バインダーとして、耐火物原料に対する外掛けでフェノールレジンを3質量%、ヘキサミンを0.3質量%配合した。
Table 1 shows the compositions of the four types of Al 2 O 3 raw materials used in this example. These four types of Al 2 O 3 raw materials were adjusted in particle size according to the conditions of each invention example and comparative example.
Table 2 shows the composition of the three types of wax used as the SiO 2 raw material and the two types of mullite. These five types of SiO 2 raw materials were adjusted in particle size in accordance with the conditions of each invention example and comparative example.
The respective particle size ratios of the SiO 2 raw material, the Al 2 O 3 raw material, the scaly graphite, and the particle size distribution coefficient q of all the raw materials were adjusted as described above.
FIG. 1 shows a refractory brick in which Al 2 O 3 raw material, SiO 2 raw material, silicon carbide, scaly graphite, and metal powder (metal Si and metal Al) are blended in proportions shown in Tables 3 to 10 as refractory raw materials. Manufactured in the manufacturing process. In kneading and molding the refractory material, 3% by mass of phenol resin and 0.3% by mass of hexamine were blended as binders on the outer side of the refractory material.
製造された耐火物煉瓦について、熱伝導率を測定するとともに、耐割れ性と耐溶損性を評価した。これらの評価方法は以下の通りである。
耐割れ性については、30×30×100mmの試料の長手方向の動弾性率E0をJIS R1605に示された超音波パルス法に準拠して測定した後、1500℃で10分間の加熱、5分間の水冷、10分間の大気冷却を1サイクルとしたスポーリングを3サイクル繰り返し、スポーリング終了後に再度、動弾性率E3を測定し、試験前後での動弾性率の変化率E3/E0を求め、この変化率E3/E0を指標として評価し、E3/E0≧0.6を合格とした。
About the manufactured refractory brick, while measuring thermal conductivity, crack resistance and erosion resistance were evaluated. These evaluation methods are as follows.
For crack resistance, the kinematic modulus E 0 in the longitudinal direction of a 30 × 30 × 100 mm sample was measured according to the ultrasonic pulse method shown in JIS R1605, heated at 1500 ° C. for 10 minutes, Spalling with water cooling for 10 minutes and air cooling for 10 minutes as one cycle was repeated three times, and after completion of the spalling, the dynamic elastic modulus E 3 was measured again, and the rate of change E 3 / E of the dynamic elastic modulus before and after the test. 0 was determined, and this rate of change E 3 / E 0 was evaluated as an index, and E 3 / E 0 ≧ 0.6 was regarded as acceptable.
耐溶損性については、高周波誘導炉を用いた内張り張り分け法で評価した。試験温度は1500℃とし、表11に示す合成スラグを1時間毎に4回投入した。試験後に溶損量を測定し、表4中の発明例1−1の溶損量を100として溶損指数を求め、120未満を合格とした。
熱伝導率は、10(W/m/K)以下を合格とした。
なお、表3〜表10に記載の原料の粒径・粒度については、「2.8−1」(mm)が粒径2.8mm以下1mm超を、「−1」(mm)が粒径1mm以下を、「−100mesh」が粒度1000メッシュ超100メッシュ以下を、「−1000mesh」が粒度1000メッシュ以下を、「−180mesh」が粒度180メッシュ以下を、「−325mesh」が粒度325メッシュ以下を、それぞれ意味する。
The erosion resistance was evaluated by a lining method using a high frequency induction furnace. The test temperature was 1500 ° C., and the synthetic slag shown in Table 11 was added four times every hour. The amount of erosion was measured after the test, and the erosion index was determined with the erosion amount of Invention Example 1-1 in Table 4 as 100, and less than 120 was regarded as acceptable.
The thermal conductivity was 10 (W / m / K) or less as acceptable.
In addition, about the particle size and particle size of the raw materials described in Tables 3 to 10, “2.8-1” (mm) is a particle size of 2.8 mm or less and more than 1 mm, and “−1” (mm) is a particle size. 1 mm or less, “−100 mesh” has a particle size of more than 1000 mesh and 100 mesh or less, “−1000 mesh” has a particle size of 1000 mesh or less, “−180 mesh” has a particle size of 180 mesh or less, and “−325 mesh” has a particle size of 325 mesh or less. , Meaning each.
Claims (9)
アルミナ原料を50〜70質量%、シリカ原料を20〜40質量%、鱗状黒鉛を2〜10質量%含有し、
アルミナ原料のAl2O3含有量が70質量%以上、シリカ原料のSiO2含有量が20質量%以上であり、
アルミナ原料は、粒径2.8mm以下であり、且つ粒径1mm超2.8mm以下のアルミナ原料(b1)と粒径1mm以下のアルミナ原料(b2)の質量比(b1)/(b2)が2:1〜2:3であり、
シリカ原料は、粒径2.8mm以下のろう石及び/又はムライトからなり、且つ粒径1mm超2.8mm以下のシリカ原料(a1)と粒径1mm以下のシリカ原料(a2)の質量比(a1)/(a2)が2:0.5〜2:5であることを特徴とする耐火物煉瓦。 In bricks made of refractories made of alumina, silica, silicon carbide, and carbon,
50 to 70 mass% alumina raw material, 20 to 40 mass% silica raw material, 2 to 10 mass% scaly graphite,
Al 2 O 3 content of alumina raw material is 70% by mass or more, SiO 2 content of silica raw material is 20% by mass or more,
The alumina raw material has a particle size of 2.8 mm or less, and the mass ratio (b1) / (b2) of the alumina raw material (b1) having a particle size of more than 1 mm and 2.8 mm or less and the alumina material (b2) having a particle size of 1 mm or less is 2: 1 to 2: 3,
The silica raw material is composed of wax and / or mullite having a particle size of 2.8 mm or less, and the mass ratio of the silica raw material (a1) having a particle size of more than 1 mm and 2.8 mm or less to the silica material (a2) having a particle size of 1 mm or less ( A refractory brick, wherein a1) / (a2) is from 2: 0.5 to 2: 5.
アルミナ原料を50〜70質量%、シリカ原料を20〜40質量%、鱗状黒鉛を2〜10質量%含有し、
アルミナ原料のAl2O3含有量が70質量%以上、シリカ原料のSiO2含有量が20質量%以上であり、
シリカ原料は、粒径2.8mm以下のろう石及び/又はムライトからなり、且つ粒径1mm超2.8mm以下のシリカ原料(a1)と粒径1mm以下のシリカ原料(a2)の質量比(a1)/(a2)が2:0.5〜2:5であり、
鱗状黒鉛は、100メッシュ以下の粒度を有し、且つ粒度が1000メッシュ超100メッシュ以下の鱗状黒鉛(c1)と粒度が1000メッシュ以下の鱗状黒鉛(c2)の質量比(c1)/(c2)が20:1〜20:10であることを特徴とする耐火物煉瓦。 In bricks made of refractories made of alumina, silica, silicon carbide, and carbon,
50 to 70 mass% alumina raw material, 20 to 40 mass% silica raw material, 2 to 10 mass% scaly graphite,
Al 2 O 3 content of alumina raw material is 70% by mass or more, SiO 2 content of silica raw material is 20% by mass or more,
The silica raw material is composed of wax and / or mullite having a particle size of 2.8 mm or less, and the mass ratio of the silica raw material (a1) having a particle size of more than 1 mm and 2.8 mm or less to the silica material (a2) having a particle size of 1 mm or less ( a1) / (a2) is from 2: 0.5 to 2: 5 ,
The scaly graphite has a particle size of 100 mesh or less, and the mass ratio (c1) / (c2) of the scaly graphite (c1) having a particle size of more than 1000 mesh and 100 mesh or less and the scaly graphite (c2) having a particle size of 1000 mesh or less. Is a refractory brick characterized by being 20: 1 to 20:10.
アルミナ原料を50〜70質量%、シリカ原料を20〜40質量%、鱗状黒鉛を2〜10質量%含有し、
アルミナ原料のAl2O3含有量が70質量%以上、シリカ原料のSiO2含有量が20質量%以上であり、
シリカ原料は、粒径2.8mm以下のろう石及び/又はムライトからなり、且つ粒径1mm超2.8mm以下のシリカ原料(a1)と粒径1mm以下のシリカ原料(a2)の質量比(a1)/(a2)が2:0.5〜2:5であり、
全原料の粒度分布係数qが0.6〜1.0であることを特徴とする耐火物煉瓦。 In bricks made of refractories made of alumina, silica, silicon carbide, and carbon,
50 to 70 mass% alumina raw material, 20 to 40 mass% silica raw material, 2 to 10 mass% scaly graphite,
Al 2 O 3 content of alumina raw material is 70% by mass or more, SiO 2 content of silica raw material is 20% by mass or more,
The silica raw material is composed of wax and / or mullite having a particle size of 2.8 mm or less, and the mass ratio of the silica raw material (a1) having a particle size of more than 1 mm and 2.8 mm or less to the silica material (a2) having a particle size of 1 mm or less ( a1) / (a2) is from 2: 0.5 to 2: 5 ,
A refractory brick, wherein the particle size distribution coefficient q of all raw materials is 0.6 to 1.0 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017020982A JP6583968B2 (en) | 2017-02-08 | 2017-02-08 | Refractory brick |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017020982A JP6583968B2 (en) | 2017-02-08 | 2017-02-08 | Refractory brick |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018127376A JP2018127376A (en) | 2018-08-16 |
JP6583968B2 true JP6583968B2 (en) | 2019-10-02 |
Family
ID=63172118
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017020982A Active JP6583968B2 (en) | 2017-02-08 | 2017-02-08 | Refractory brick |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6583968B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7377635B2 (en) * | 2019-06-27 | 2023-11-10 | 黒崎播磨株式会社 | Bricks for hot metal ladle and hot metal ladle lined with the bricks |
JP7517320B2 (en) | 2021-12-23 | 2024-07-17 | Jfeスチール株式会社 | Hot metal pretreatment vessel |
-
2017
- 2017-02-08 JP JP2017020982A patent/JP6583968B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018127376A (en) | 2018-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109996772B (en) | Magnesia carbon brick and its making process | |
JP6353284B2 (en) | Magnesia carbon brick | |
JP6583968B2 (en) | Refractory brick | |
JP6621784B2 (en) | Refractory brick and method for producing refractory brick | |
JP7557328B2 (en) | Manufacturing method of mag-carbon bricks for LF pots | |
EP2792656A1 (en) | Method for producing silicon carbide whisker-reinforced refractory composition | |
JP7041523B2 (en) | Magnesia Alumina Carbon Brick | |
JP6154772B2 (en) | Alumina-silicon carbide-carbon brick | |
JP5331077B2 (en) | Carbon-containing refractories | |
JP7377635B2 (en) | Bricks for hot metal ladle and hot metal ladle lined with the bricks | |
JP2015171991A (en) | Iron-making vessel | |
JPH08259311A (en) | Production of magnesia-carbonaceous refractory brick | |
JP6266968B2 (en) | Blast furnace hearth lining structure | |
JP7247172B2 (en) | Refractory batch, method for producing monolithic refractory ceramic product from said batch, monolithic refractory ceramic product obtained by said method | |
JP7130903B2 (en) | Refractory materials for low-melting non-ferrous metals | |
JP7228733B1 (en) | Magnesia carbon brick and its manufacturing method | |
JP6744555B2 (en) | Sliding gate type plate refractory | |
JP7157326B2 (en) | Magnesia/carbon refractories | |
JP2004141899A (en) | Sliding nozzle plate for ladle | |
JPH068223B2 (en) | Casting refractory material for blast furnace tappipe | |
JP4234804B2 (en) | Plate brick for sliding nozzle device | |
JP6923824B2 (en) | Manufacturing method of magnesia carbon refractory | |
JP7100278B2 (en) | Stainless Steel Ladle Magnesia-Spinel-Carbon Brick for Slag Line | |
JP2024010280A (en) | Refractory brick and method for producing the same | |
KR101605758B1 (en) | Refractories for closing tap hole of blast furnace and closer using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180823 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190510 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190604 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190704 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190828 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190830 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6583968 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |