JP2011105986A - Refractory-lining structure of vessel for iron-making - Google Patents

Refractory-lining structure of vessel for iron-making Download PDF

Info

Publication number
JP2011105986A
JP2011105986A JP2009261455A JP2009261455A JP2011105986A JP 2011105986 A JP2011105986 A JP 2011105986A JP 2009261455 A JP2009261455 A JP 2009261455A JP 2009261455 A JP2009261455 A JP 2009261455A JP 2011105986 A JP2011105986 A JP 2011105986A
Authority
JP
Japan
Prior art keywords
heat insulating
iron
refractory
insulating material
refractory layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009261455A
Other languages
Japanese (ja)
Other versions
JP5680297B2 (en
Inventor
Yuta Hino
雄太 日野
Kimiharu Yamaguchi
公治 山口
Sadakimi Kiyota
禎公 清田
Yasumasa Fukushima
康雅 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009261455A priority Critical patent/JP5680297B2/en
Publication of JP2011105986A publication Critical patent/JP2011105986A/en
Application granted granted Critical
Publication of JP5680297B2 publication Critical patent/JP5680297B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refractory-lining structure of a vessel for iron-making, which is easy in working, can reduce working man-days and also can exhibit a thermal-insulating effect for a long period of time. <P>SOLUTION: In the refractory-lining structure of the vessel 1 for iron-making, the molten iron received from a blast furnace is held, the held molten iron is conveyed, or the held molten iron is subjected to a refining treatment. The refractory-lining structure comprises an iron-shell 2, a permanent-refractory layer 3 and a working-refractory layer 4 in this order from the outside of the vessel for iron-making, and a thermal-insulating material 5, whose compression strength is more than the ferrostatic pressure generated when holding the molten iron in the vessel for iron-making is arranged between the iron-shell and the permanent-refractory layer. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、溶鉱炉から出湯される溶銑を受銑して保持し、保持した溶銑を搬送する、或いは保持した溶銑に精錬処理を実施するための製鉄用容器の耐火物ライニング構造に関する。   The present invention relates to a refractory lining structure for a steelmaking vessel for receiving and holding hot metal discharged from a blast furnace, transporting the held hot metal, or performing a refining process on the held hot metal.

今日の製鉄プロセスにおいては、溶鉱炉で製造されて溶鉱炉から出湯される溶銑は、トピードカーまたは溶銑鍋に代表される容器で受銑され、次工程の製鋼工程へと輸送される。また、製鋼工程の転炉或いは電気炉で溶製された溶鋼は、取鍋などの容器に出湯され、二次精錬工程や連続鋳造工程などの次工程へと輸送される。これらの製鉄用容器は、一般的には、稼働面(溶湯との接触面)側から順に、ワーク耐火物層、永久耐火物層、鉄皮の3層から形成されるライニング構造である。ワーク耐火物層及び永久耐火物層は、ともに成形煉瓦(定形耐火物)または不定形耐火物で構成され、成形煉瓦で構成されるときには、ワーク煉瓦層及び永久煉瓦層とも呼ばれる。尚、本発明においては、溶銑及び溶鋼を受けるための容器をまとめて製鉄用容器と称する。   In today's iron making process, the hot metal produced in the blast furnace and discharged from the blast furnace is received in a vessel represented by a topped car or hot metal ladle and transported to the next steel making process. Moreover, the molten steel melted in the converter or electric furnace in the steel making process is poured into a container such as a ladle and transported to the next process such as the secondary refining process or the continuous casting process. These iron-making containers generally have a lining structure formed of three layers of a workpiece refractory layer, a permanent refractory layer, and an iron skin in order from the working surface (contact surface with the molten metal) side. Both the workpiece refractory layer and the permanent refractory layer are formed of molded bricks (standard refractory) or amorphous refractories. When the workpiece refractory layers are formed of molded bricks, they are also called workpiece brick layers and permanent brick layers. In the present invention, containers for receiving hot metal and molten steel are collectively referred to as iron-making containers.

溶銑或いは溶鋼を次工程へ輸送する場合、その経過時間(以下、「リードタイム」と記す)が長くなると、溶銑或いは溶鋼の熱が耐火物層を伝達し、鉄皮から外気に放出する熱量が増大し、溶銑或いは溶鋼の温度降下量が増大するという問題が発生する。この温度降下量の増大は転炉におけるフェロシリコンなどの熱源の原単位の増大を招くので、鋼製品製造コストの合理化の観点からも重要な開発課題である。また、リードタイムが長くなると、最外殻である鉄皮の温度が上昇し、鉄皮のクリープ変形や亀裂発生を引き起こす恐れがある。そこで、これらの問題を解決する手段の一つとして、製鉄用容器のライニング構造での断熱化に関する技術が幾つか提案されている。   When the hot metal or molten steel is transported to the next process, if the elapsed time (hereinafter referred to as “lead time”) becomes longer, the heat of the molten iron or molten steel is transferred to the refractory layer and the amount of heat released from the iron skin to the outside air is reduced. The problem arises that the temperature drop of the hot metal or molten steel increases. This increase in temperature drop causes an increase in the basic unit of heat sources such as ferrosilicon in the converter, and is therefore an important development issue from the viewpoint of rationalizing the cost of manufacturing steel products. Further, when the lead time is long, the temperature of the outermost iron shell increases, which may cause creep deformation or cracking of the iron shell. Therefore, as one of means for solving these problems, several techniques relating to heat insulation in the lining structure of the iron making container have been proposed.

例えば、特許文献1には、鉄皮に断熱ボード及びワーク煉瓦層をこの順に施工してなる取鍋において、断熱ボードとワーク煉瓦層との間にロー石煉瓦などの断熱煉瓦を設けた断熱ライニング構造が提案されている。そして、特に、断熱煉瓦層の厚みは60mm以上、ワーク煉瓦層の厚みは30mm以下が望ましいとしている。   For example, in Patent Document 1, in a ladle in which a heat insulation board and a work brick layer are constructed in this order on an iron skin, a heat insulation lining in which a heat insulation brick such as a raw stone brick is provided between the heat insulation board and the work brick layer. A structure has been proposed. In particular, the thickness of the heat insulating brick layer is preferably 60 mm or more, and the thickness of the work brick layer is preferably 30 mm or less.

しかしながら、溶銑を受銑する溶銑鍋に対して、特許文献1に記載されている技術を適用した場合には、断熱煉瓦の厚みが大きく、溶銑鍋の容積が低下するという問題点がある。また、断熱煉瓦の厚みが大きいことから断熱煉瓦内の温度勾配が大きくなり、断熱煉瓦内に亀裂が発生して耐火物寿命が低下する恐れもある。また更に、ワーク煉瓦層の厚みを30mm以下にすると、断熱煉瓦の稼働面側温度が高温になることから、それに応じて熱伝達量が増加し、結果的に断熱性能が低下するという懸念もある。   However, when the technique described in Patent Document 1 is applied to a hot metal ladle that receives hot metal, there is a problem that the thickness of the heat insulating brick is large and the volume of the hot metal pan is reduced. Moreover, since the thickness of the heat insulating brick is large, the temperature gradient in the heat insulating brick is increased, and there is a possibility that a crack occurs in the heat insulating brick and the refractory life is shortened. Furthermore, when the thickness of the work brick layer is set to 30 mm or less, the operating surface side temperature of the heat insulating brick becomes high, and accordingly, there is a concern that the heat transfer amount is increased accordingly and the heat insulating performance is consequently lowered. .

一方、特許文献2及び特許文献3には、熱伝導率の範囲を規定した断熱材を、永久耐火物層と鉄皮との間に配置し、稼働面側から、ワーク耐火物層、永久耐火物層、断熱材、鉄皮からなる4層構造の製鉄用容器のライニング構造が提案されている。そして、特に、断熱材は、厚みを30mm以内とし、3〜100nmの細孔を有するものが望ましいとしている。   On the other hand, in patent document 2 and patent document 3, the heat insulating material which prescribed | regulated the range of thermal conductivity is arrange | positioned between a permanent refractory layer and an iron skin, and a workpiece | work refractory layer, permanent refractory from the working surface side. A lining structure of an iron making container having a four-layer structure composed of a physical layer, a heat insulating material, and an iron skin has been proposed. In particular, it is desirable that the heat insulating material has a thickness of 30 mm or less and has pores of 3 to 100 nm.

特許文献2及び特許文献3に開示される技術は、一見、断熱性の効果が得られるように見える。しかしながら、特許文献2及び特許文献3に開示される技術を溶銑鍋において適用した場合、各部位のライニング厚みによっては断熱材の適用温度範囲を超える可能性もあり、長期間にわたって断熱効果を得るためには十分な技術とはいえない。つまり、断熱材は一般的な耐火物に比較して耐熱性は低く、通常、1000℃程度が断熱材使用の上限温度であり、それ以上の温度では変質し、断熱性能を劣化させる。また更に、細孔を有する断熱材を使用した場合には、強度が低下してしまい、使用時に圧縮されて、断熱性能が損なわれるという問題が生じる。   At first glance, the techniques disclosed in Patent Document 2 and Patent Document 3 seem to obtain a heat insulating effect. However, when the techniques disclosed in Patent Document 2 and Patent Document 3 are applied in a hot metal ladle, depending on the lining thickness of each part, there is a possibility of exceeding the application temperature range of the heat insulating material, in order to obtain a heat insulating effect over a long period of time. Is not enough technology. That is, the heat insulating material is lower in heat resistance than a general refractory, and usually about 1000 ° C. is the upper limit temperature for using the heat insulating material, and the heat insulating material is deteriorated at a temperature higher than that to deteriorate the heat insulating performance. Furthermore, when a heat insulating material having pores is used, the strength is reduced, and the heat insulating performance is impaired due to compression during use.

特許文献2及び特許文献3の問題を解決する対策として、特許文献4では、ワーク耐火物層と永久耐火物層との間に保護板を配置する技術を提案している。しかし、この方法では耐火物施工時に保護板を施工する工程が増えるため、耐火物施工費が増大するという問題がある。また、前記保護板は乾燥及び昇熱時には燃焼、消失の可能性もあり、耐火物乾燥工程において、保護板の燃焼、消失に伴う発煙により、作業環境を悪化させる恐れもある。   As a countermeasure for solving the problems of Patent Document 2 and Patent Document 3, Patent Document 4 proposes a technique of disposing a protective plate between a workpiece refractory layer and a permanent refractory layer. However, this method has a problem that the construction cost of the refractory increases because the number of steps for constructing the protective plate increases during the construction of the refractory. In addition, the protective plate may burn and disappear during drying and heating, and the working environment may be deteriorated due to fuming accompanying the burning and disappearance of the protective plate in the refractory drying process.

特開2004−50256号公報JP 2004-50256 A 特開2000−104110号公報JP 2000-104110 A 特開2000−226611号公報JP 2000-226611 A 特開2003−42667号公報JP 2003-42667 A

溶銑鍋のような製鉄用容器のライニング構造を断熱化して、溶湯温度降下量の低減及び鉄皮変形の抑制などを図るには、断熱材の配置位置、及び、耐火物層の層数、厚み、材質を十分に考慮した上で、しかも、施工工数を抑えることのできる耐火物ライニング構造とする必要がある。これらの観点から上記従来技術を検証すれば、未だ改善すべき点が多々あるのが実情である。   To insulate the lining structure of a steel container such as a hot metal ladle to reduce the molten metal temperature drop and suppress the deformation of the iron skin, the position of the heat insulating material, the number of refractory layers, and the thickness In addition, it is necessary to have a refractory lining structure that can sufficiently reduce the number of construction steps with sufficient consideration of the material. If the above prior art is verified from these viewpoints, there are still many points to be improved.

本発明は上記問題点を解決するためになされたもので、その目的とするところは、溶鉱炉から出湯される溶銑を受銑して保持し、保持した溶銑を搬送する或いは保持した溶銑に精錬処理を実施するための製鉄用容器の耐火物ライニング構造において、施工が容易であって施工工数を抑えることができるとともに、長期間にわたって断熱効果を十分に発揮することのできる、製鉄用容器の耐火物ライニング構造を提供することである。   The present invention has been made to solve the above-mentioned problems, and the object of the present invention is to receive and hold the hot metal discharged from the blast furnace, transport the held hot metal, or refining the held hot metal. In the refractory lining structure of the iron making container for carrying out the refractory of the iron making container that is easy to construct and can reduce the number of construction man-hours and can sufficiently exhibit the heat insulation effect over a long period of time. It is to provide a lining structure.

上記課題を解決するための第1の発明に係る製鉄用容器の耐火物ライニング構造は、溶鉱炉から出湯される溶銑を受銑して保持し、保持した溶銑を搬送する或いは保持した溶銑に精錬処理を実施するための製鉄用容器の耐火物ライニング構造であって、製鉄用容器の外側から、鉄皮、永久耐火物層、ワーク耐火物層をこの順に有し、前記鉄皮と前記永久耐火物層との間に、圧縮強度が製鉄用容器に溶銑を保持したときに生じる静鉄圧値以上の値である断熱材が配置されていることを特徴とする。   The refractory lining structure for a steelmaking container according to the first aspect of the present invention for solving the above problems is to receive and hold hot metal discharged from a blast furnace and transport the held hot metal or refining the held hot metal. A refractory lining structure for an iron making container for carrying out the above, having an iron skin, a permanent refractory layer, and a workpiece refractory layer in this order from the outside of the iron making container, the iron skin and the permanent refractory Between the layers, a heat insulating material having a compressive strength equal to or higher than a static iron pressure value generated when the hot metal is held in the iron making container is characterized.

第2の発明に係る製鉄用容器の耐火物ライニング構造は、第1の発明において、前記製鉄用容器の側壁部及び底部においては、前記永久耐火物層は、厚みが30mm以上65mm以下の成形煉瓦の2層以上の煉瓦層からなることを特徴とする。   The refractory lining structure of the iron making container according to the second invention is the molded brick according to the first invention, wherein the permanent refractory layer has a thickness of 30 mm or more and 65 mm or less at the side wall and bottom of the iron making container. It consists of two or more brick layers.

第3の発明に係る製鉄用容器の耐火物ライニング構造は、第1または第2の発明において、前記永久耐火物層の煉瓦積み構造は、継ぎ目地構造であることを特徴とする。   A refractory lining structure for a steelmaking container according to a third invention is characterized in that, in the first or second invention, the brick structure of the permanent refractory layer is a joint structure.

第4の発明に係る製鉄用容器の耐火物ライニング構造は、第1ないし第3の発明の何れかにおいて、前記ワーク耐火物層は、施工時の厚みが100mm以上であることを特徴とする。   The refractory lining structure for an iron making container according to a fourth aspect of the present invention is the refractory lining structure according to any one of the first to third aspects, wherein the workpiece refractory layer has a construction thickness of 100 mm or more.

第5の発明に係る製鉄用容器の耐火物ライニング構造は、第1ないし第4の発明の何れかにおいて、前記断熱材は、厚みが5mm以下であることを特徴とする。   A refractory lining structure for a steelmaking container according to a fifth invention is any one of the first to fourth inventions, wherein the heat insulating material has a thickness of 5 mm or less.

第6の発明に係る製鉄用容器の耐火物ライニング構造は、第1ないし第5の発明の何れかにおいて、記断熱材は、その熱伝導率が0.15W/(m・K)以下であることを特徴とする。   In the refractory lining structure for a steelmaking container according to the sixth invention, in any one of the first to fifth inventions, the heat insulating material has a thermal conductivity of 0.15 W / (m · K) or less. It is characterized by that.

第7の発明に係る製鉄用容器の耐火物ライニング構造は、第1ないし第6の発明の何れかにおいて、前記ワーク耐火物層は、熱伝導率が35W/(m・K)以下の成形煉瓦または不定形耐火物からなることを特徴とする。   According to a seventh aspect of the present invention, there is provided the refractory lining structure for an iron making container according to any one of the first to sixth aspects, wherein the workpiece refractory layer has a thermal conductivity of 35 W / (m · K) or less. Or it consists of an indefinite shape refractory.

本発明によれば、断熱材の設置位置を最適化するとともに、強度の高い断熱材を使用して溶銑鍋などの製鉄用容器の耐火物ライニング構造を断熱化するので、施工が容易であり、施工工数を増加させることなく、長期間にわたって十分な断熱効果を得ることができる。その結果、溶銑の熱余裕度の創出が長期間にわたって実現でき、転炉におけるフェロシリコンなどの発熱剤原単位の削減などが可能になり、また、熱余裕度の創出により鉄スクラップ使用量の増加が見込めるため、溶鉱炉での還元剤比の低減、即ちCO2の削減が可能になり、環境に配慮した製鉄プロセスが可能になる。更に、鉄皮の温度が低減するので、鉄皮における亀裂や変形が抑制され、製鉄用容器の長寿命化が実現される。 According to the present invention, the installation position of the heat insulating material is optimized and the refractory lining structure of the iron making container such as a hot metal ladle is heat-insulated using a high-strength heat insulating material, so that the construction is easy. A sufficient heat insulating effect can be obtained over a long period of time without increasing the number of construction steps. As a result, it is possible to create a thermal margin for hot metal over a long period of time, reduce the basic unit of heat generating agents such as ferrosilicon in the converter, and increase the amount of iron scrap used by creating a thermal margin. Therefore, it is possible to reduce the reducing agent ratio in the blast furnace, that is, to reduce CO 2 , and an iron-making process considering the environment becomes possible. Furthermore, since the temperature of the iron skin is reduced, cracks and deformations in the iron skin are suppressed, and a long life of the iron making container is realized.

断熱材の圧縮強度と温度との関係の調査結果を示す図である。It is a figure which shows the investigation result of the relationship between the compressive strength of a heat insulating material, and temperature. 耐火物ライニングのモデル構造を示す概略図である。It is the schematic which shows the model structure of a refractory lining. 断熱材の施工位置を変えたときの断熱効果の算出結果を示す図である。It is a figure which shows the calculation result of the heat insulation effect when changing the construction position of a heat insulating material. 断熱材の厚みを変化させたときの断熱材内面側の温度変化の算出結果を示す図である。It is a figure which shows the calculation result of the temperature change by the side surface of a heat insulating material when changing the thickness of a heat insulating material. 断熱効果を確認するための実験装置の概略図である。It is the schematic of the experimental apparatus for confirming the heat insulation effect. 実験装置により得られた熱流束の測定結果を示す図である。It is a figure which shows the measurement result of the heat flux obtained by the experimental apparatus. 本発明に係るライニング構造で施工された溶銑鍋の例を示す概略図である。It is the schematic which shows the example of the hot metal ladle constructed with the lining structure which concerns on this invention.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

溶銑鍋に代表される取鍋型形状の製鉄用容器の場合、その抜熱形態は、(a)耐火物層を通じた鉄皮から外気への放熱、(b)開口部から外気への放熱の2通りが挙げられる。これらの放熱は何れも、放熱面から外気への輻射伝熱及び放熱面からの対流伝熱による2種の伝熱機構で抜熱されると考えられる。   In the case of a ladle-shaped iron-making container represented by a hot metal ladle, the heat removal mode is (a) heat radiation from the iron skin through the refractory layer to the outside air, and (b) heat radiation from the opening to the outside air. There are two ways. Any of these heat radiations is considered to be removed by two types of heat transfer mechanisms by radiation heat transfer from the heat dissipation surface to the outside air and convection heat transfer from the heat dissipation surface.

下記の(1)式に輻射伝熱による放熱量を示す。但し、(1)式において、QRは輻射伝熱による放熱量(J/sec)、σはステファン‐ボルツマン定数(=5.67×10-8J/(m2・sec・K4))、εは輻射率(−)、Snは伝熱面面積(m2)、Tは物体表面温度(K)、T0は外気温度(K)である。 The following equation (1) shows the amount of heat released by radiant heat transfer. However, in (1), Q R is the heat radiation amount by radiation heat transfer (J / sec), sigma is the Stefan - Boltzmann constant (= 5.67 × 10 -8 J / (m 2 · sec · K 4)) , epsilon is emissivity (-), S n is the heat transfer surface area (m 2), T is the object surface temperature (K), T 0 is the ambient air temperature (K).

Figure 2011105986
Figure 2011105986

また、下記の(2)式に対流伝熱による放熱量を示す。但し、(2)式において、QCは対流伝熱による放熱量(J/sec)、hCは自然対流熱伝達係数(J/(m2・sec・K))、Snは伝熱面面積(m2)、Tは物体表面温度(K)、T0は外気温度(K)である。 The following formula (2) shows the amount of heat released by convective heat transfer. However, in (2), Q C is the heat radiation amount by the convective heat transfer (J / sec), h C is the natural convection heat transfer coefficient (J / (m 2 · sec · K)), S n is the heat transfer surface Area (m 2 ), T is the object surface temperature (K), and T 0 is the outside air temperature (K).

Figure 2011105986
Figure 2011105986

本発明者らは、事前検討として、実機溶銑鍋の抜熱量及びその内訳を調査した。その結果を表1に示す。表1に示すように、上記(a)の「鉄皮からの抜熱」が全体の約40%、上記(b)の「開口部からの放熱」が全体の約60%であることが判明した。   The present inventors investigated the amount of heat removal from the hot metal ladle and its breakdown as a preliminary study. The results are shown in Table 1. As shown in Table 1, it was found that “heat removal from the iron skin” in (a) was about 40% of the whole, and “heat radiation from the opening” in (b) was about 60% of the whole. did.

Figure 2011105986
Figure 2011105986

この調査により、鉄皮からの抜熱が4割もあることから、ライニング構造の断熱化による抜熱量低減は十分に可能であることが確認できた。そこで、本発明者らは、溶銑鍋の最適ライニングについて種々検討を行った。   As a result of this investigation, heat removal from the iron skin is 40%, so it was confirmed that the heat removal amount by heat insulation of the lining structure can be sufficiently reduced. Therefore, the present inventors conducted various studies on the optimum lining of the hot metal ladle.

先ず、断熱材の圧縮強度の調査を行った。圧縮試験機を用いて断熱材の応力−歪み曲線を測定すると、歪み量の増加に伴って圧縮強度は単調に増大することが測定結果から分かった。そこで、本発明では、10%の歪み量が負荷されたときの圧縮応力値を断熱材の圧縮強度と定義した。図1に、断熱材A及び断熱材Bの圧縮強度(=10%の歪み量が負荷されたときの圧縮応力値)と温度との関係の調査結果を示す。尚、断熱材A及び断熱材BともにAl23‐SiO2系の材質である。また、図1には、溶銑鍋に溶銑を収容したときの溶銑鍋底部での溶銑の静鉄圧(約0.36MPa)を示す。 First, the compressive strength of the heat insulating material was investigated. It was found from the measurement results that when the stress-strain curve of the heat insulating material was measured using a compression tester, the compressive strength increased monotonously as the amount of strain increased. Therefore, in the present invention, the compressive stress value when a strain amount of 10% is applied is defined as the compressive strength of the heat insulating material. FIG. 1 shows the results of an investigation of the relationship between the compressive strength of the heat insulating material A and the heat insulating material B (= compressive stress value when a strain amount of 10% is applied) and the temperature. The heat insulating material A and the heat insulating material B are both Al 2 O 3 —SiO 2 type materials. Moreover, in FIG. 1, the static iron pressure (about 0.36 MPa) of the hot metal in the hot metal ladle bottom part when hot metal is accommodated in the hot metal hot pot.

図1に示すように、断熱材A及び断熱材Bともに温度の上昇に伴って圧縮強度が増加するが、断熱材Aにおいては800℃以上の高温では逆に断熱材の圧縮強度が低下し、静鉄圧値以下となった。これに対して、断熱材Bでは常に静鉄圧値以上の圧縮強度であり、高温ほど強度が増加する特性を示した。このように、断熱材の材質や種類によってその圧縮強度が異なるのみならず、圧縮強度と温度との関係も異なることが確認できた。   As shown in FIG. 1, both the heat insulating material A and the heat insulating material B increase in compressive strength as the temperature increases, but in the heat insulating material A, the compressive strength of the heat insulating material decreases conversely at a high temperature of 800 ° C. or higher. It became below the static iron pressure value. On the other hand, the heat insulating material B always has a compressive strength equal to or higher than the static iron pressure value, and showed a characteristic that the strength increases as the temperature increases. As described above, it was confirmed that not only the compressive strength differs depending on the material and type of the heat insulating material, but also the relationship between the compressive strength and the temperature differs.

溶銑鍋やトピードカーなど製鉄用容器の形状及び大きさに応じて静鉄圧値は異なるが、断熱材の強度が静鉄圧値よりも不足した場合には、収容した溶鉄の長期間にわたる質量荷重に起因して断熱材の圧縮による厚み低下が発生する。断熱材の厚みが低下すると、断熱材の熱伝導率が上昇し、断熱材による断熱効果を悪化させてしまうので、断熱材は、使用環境下において、少なくとも使用される製鉄用容器での受銑量或いは受鋼量による静鉄圧値よりも高い圧縮強度を有する必要があることが分かった。尚、断熱材の使用環境としては、1000℃を上限とすれば十分である。   The static iron pressure value varies depending on the shape and size of the iron-making vessel such as hot metal ladle and topped car, but if the strength of the insulation is insufficient than the static iron pressure value, the mass load of the contained molten iron over a long period of time Due to this, a decrease in thickness occurs due to compression of the heat insulating material. When the thickness of the heat insulating material is reduced, the heat conductivity of the heat insulating material is increased and the heat insulating effect of the heat insulating material is deteriorated. Therefore, the heat insulating material is received in at least the steel container used in the use environment. It was found that it was necessary to have a compressive strength higher than the static iron pressure value depending on the amount or the amount of steel received. It should be noted that the upper limit of 1000 ° C. is sufficient as the use environment of the heat insulating material.

次いで、断熱材の施工部位について、非定常伝熱計算を用いて総括的に検討した。計算に用いた耐火物ライニングのモデル構造の概略図を図2に示す。ここでは、永久耐火物層3は2層の成形煉瓦を仮定した。断熱材の施工部位を、それぞれ、ワーク耐火物層4と永久耐火物層3との間、永久耐火物層3を構成する2層の成形煉瓦3aと成形煉瓦3bとの間、永久耐火物層3と鉄皮2との間とし、断熱材の厚みを変化させた場合の抜熱量(溶融メタルの温度降下量)を算出した。尚、図2では、永久耐火物層3を構成する2層の成形煉瓦を3a及び3bで表示しており、一方、断熱材は表示していない。また、図2に示す●印は温度分布を表している。   Next, the construction site of the heat insulating material was examined comprehensively using unsteady heat transfer calculation. A schematic diagram of the model structure of the refractory lining used for the calculation is shown in FIG. Here, the permanent refractory layer 3 was assumed to be a two-layered brick. The construction parts of the heat insulating material are respectively located between the workpiece refractory layer 4 and the permanent refractory layer 3, between the two layers of the formed brick 3a and the molded brick 3b constituting the permanent refractory layer 3, and the permanent refractory layer. The amount of heat removal (amount of temperature drop of molten metal) when the thickness of the heat insulating material was changed between 3 and the iron skin 2 was calculated. In FIG. 2, the two-layered bricks constituting the permanent refractory layer 3 are indicated by 3 a and 3 b, while the heat insulating material is not indicated. Further, the mark ● shown in FIG. 2 represents the temperature distribution.

計算結果を図3に示す。図3の縦軸は、断熱材を設置しないときを基準とし、断熱材を配置したときの溶銑温度の上昇を負の数値で表示しており、負の数値が大きくなるほど、断熱効果が大きいことを示している。図3に示すように、断熱材を上記の三箇所の何れかに設置する場合、ワーク耐火物層4と永久耐火物層3との間に断熱材を施工した場合に最も抜熱量が大きく、一方、永久耐火物層3と鉄皮2との間に断熱材を施工した場合に最も抜熱量が抑制されることが分かった。つまり、永久耐火物層3と鉄皮2との間に断熱材を施工した場合に最も断熱効果が高くなることが分かった。また、断熱材厚みが5mmを超える場合には抜熱量の変化割合が小さくなることも分かった。   The calculation results are shown in FIG. The vertical axis in FIG. 3 shows the rise in the hot metal temperature when the heat insulating material is arranged as a reference, when the heat insulating material is not installed as a negative value, and the larger the negative value, the greater the heat insulating effect. Is shown. As shown in FIG. 3, when the heat insulating material is installed in any of the above three locations, the amount of heat removal is greatest when the heat insulating material is constructed between the workpiece refractory layer 4 and the permanent refractory layer 3, On the other hand, it was found that when the heat insulating material was applied between the permanent refractory layer 3 and the iron shell 2, the amount of heat removal was most suppressed. In other words, it was found that the heat insulation effect is the highest when a heat insulating material is applied between the permanent refractory layer 3 and the iron skin 2. It has also been found that when the thickness of the heat insulating material exceeds 5 mm, the rate of change in heat removal becomes small.

また、断熱材を前述したそれぞれの部位に施工した場合において、断熱材の厚みを変化させたときの断熱材の内面側(=稼働面側)の温度変化を算出した結果を図4に示す。図4に示すように、断熱材を永久耐火物層3と鉄皮2との間に施工した、断熱効果が最も高い場合であっても、断熱材の厚みが5mmを超えると、断熱材の内側温度は1000℃を超えることが分かった。また、断熱材の厚みが5mmを超えると断熱材厚みに対する温度変化の割合は低下することが分かった。   Further, FIG. 4 shows the result of calculating the temperature change on the inner surface side (= operating surface side) of the heat insulating material when the thickness of the heat insulating material is changed when the heat insulating material is applied to each of the above-described parts. As shown in FIG. 4, even when the heat insulating effect is the highest when the heat insulating material is applied between the permanent refractory layer 3 and the iron skin 2, the thickness of the heat insulating material exceeds 5 mm. The inner temperature was found to exceed 1000 ° C. Moreover, when the thickness of the heat insulating material exceeded 5 mm, it turned out that the ratio of the temperature change with respect to heat insulating material thickness falls.

図3及び図4の結果から、断熱材厚みを5mmよりも大きくしても、抜熱量の変化は単純には増大せず、抜熱量の変化割合は徐々に停滞することが判明した。尚、市販の断熱材は1000℃を超える高温では、断熱材自身の熱による収縮が起こり、その熱伝導率が増加することが起こり得るため、断熱材の変質を避けるためにも断熱材の温度を1000℃以下に抑えることが好ましい。   From the results of FIGS. 3 and 4, it has been found that even if the thickness of the heat insulating material is larger than 5 mm, the change in the heat removal amount does not simply increase, and the rate of change in the heat removal amount gradually stagnates. In addition, since the heat insulation of the commercially available heat insulating material may shrink due to the heat of the heat insulating material itself and the thermal conductivity may increase at a high temperature exceeding 1000 ° C., the temperature of the heat insulating material may be avoided in order to avoid the quality change of the heat insulating material. Is preferably suppressed to 1000 ° C. or lower.

また、溶銑鍋において、永久耐火物層3の成形煉瓦の層数を、1層の場合、2層の場合、3層の場合と変更したときの永久耐火物層3の背面側、つまり断熱材の内面側の温度を調査したところ、永久耐火物層3を2層以上の成形煉瓦とした場合において、前記温度が低位になることが分かった。これは2枚の成形煉瓦間にモルタルなどの接着面が存在することにより、温度ギャップが生じるためである。モルタルが存在しない、所謂「カラ目地」の場合でも、空気層による温度ギャップが生じることから、永久耐火物層3を2層以上の成形煉瓦とすることは有効である。また、永久耐火物層3を2層以上の成形煉瓦とすることは、煉瓦の加熱による熱応力の吸収代を形成する意味でも有効である。また更に、溶銑鍋を用いて、機械攪拌式脱硫設備で脱硫処理(KR法)などの溶銑予備処理を行う場合、回転攪拌流によって溶銑に遠心力が生じるが、永久耐火物層3を2層以上の成形煉瓦とすることにより、前記遠心力による耐火物及び断熱材への力学的負荷の低減にも有効である。   Further, in the hot metal ladle, the number of layers of the molded brick of the permanent refractory layer 3 is 1, the case of 2 layers, the case of 2 layers, the back side of the permanent refractory layer 3 when changed to the case of 3 layers, that is, the heat insulating material. As a result of investigating the temperature on the inner surface side, it was found that when the permanent refractory layer 3 was formed of two or more molded bricks, the temperature was low. This is because a temperature gap is generated due to the presence of an adhesive surface such as mortar between two molded bricks. Even in the case of so-called “colored joints” where there is no mortar, a temperature gap due to the air layer is generated, so it is effective to use the permanent refractory layer 3 as two or more molded bricks. Moreover, making the permanent refractory layer 3 into two or more shaped bricks is also effective in forming a heat stress absorption margin due to heating of the bricks. Furthermore, when hot metal pretreatment such as desulfurization treatment (KR method) is performed using a hot metal ladle with a mechanical stirring desulfurization facility, centrifugal force is generated in the hot metal by the rotating stirring flow, but two permanent refractory layers 3 are formed. By using the above-described molded brick, it is effective for reducing the mechanical load on the refractory and the heat insulating material due to the centrifugal force.

また更に、永久耐火物層3を構成する2層の成形煉瓦の厚みを変更したときの放熱量、断熱材内面側温度を調査したところ、厚みが30mm以上の場合において、放熱量が低位になることが判明した。よって、十分な断熱性能を得るためには成形煉瓦の厚みは30mm以上確保することが好ましい。一方、上限については、断熱性の観点からは特に上限値は定めないが、容器の容積確保及び施工性の観点から65mm以下とすることが好ましい。尚、永久耐火物層3を構成する成形煉瓦(永久煉瓦ともいう)の材質には、MgO質煉瓦、高アルミナ質煉瓦、ロー石質煉瓦などの各種煉瓦を使用することができる。   Furthermore, when the heat radiation amount when the thickness of the two-layered bricks constituting the permanent refractory layer 3 is changed and the temperature on the inner surface of the heat insulating material are investigated, the heat radiation amount is low when the thickness is 30 mm or more. It has been found. Therefore, in order to obtain a sufficient heat insulating performance, it is preferable to secure a thickness of the formed brick of 30 mm or more. On the other hand, the upper limit is not particularly defined from the viewpoint of heat insulation, but is preferably 65 mm or less from the viewpoint of securing the volume of the container and workability. In addition, various bricks, such as a MgO quality brick, a high alumina quality brick, a rhostone brick, can be used for the material of the forming brick (it is also called a permanent brick) which comprises the permanent refractory layer 3. FIG.

尚、炉底部においては、漏銑防止、更なる保熱性、溶銑による発生応力緩和の観点から永久耐火物層3を3層以上の成形煉瓦とすることが望ましい。この場合でも1層あたりの煉瓦厚みは30mm以上65mm以下とすることが好ましい。   In the furnace bottom, it is desirable that the permanent refractory layer 3 is formed of three or more layers of bricks from the viewpoints of preventing leakage, further heat retention, and mitigating generated stress due to hot metal. Even in this case, the brick thickness per layer is preferably 30 mm or more and 65 mm or less.

また、永久耐火物層3での2層以上の成形煉瓦のライニング構造は、目地構造を「通し目地(2層の永久煉瓦のそれぞれの目地が同一箇所となること)」ではなく、「継ぎ目地(2層の永久煉瓦のそれぞれの目地が異なる箇所となること)」とすることが望ましい。通し目地構造では目地部へ応力が集中してしまい、亀裂発生(機械的スポーリング)を招き、溶銑或いは溶鋼が亀裂部から耐火物内部に浸入した場合、鉄皮まで到達する恐れがある。これに対して、継ぎ目地構造とすることにより、熱応力及び機械攪拌時の溶鉄の遠心力による負荷応力の緩和を図ることができる。また、継ぎ目地構造では、耐火物に亀裂が万一発生して、溶銑或いは溶鋼が亀裂部から耐火物内部に浸入しても、鉄皮までの経路が増加するために、途中で浸入を食い止めることが可能となり、漏鋼、漏銑の抑止にも有効である。また、ワーク耐火物層と永久耐火物層との間の積み構造も同様に継ぎ目地とすることが好ましい。   Moreover, the lining structure of two or more molded bricks in the permanent refractory layer 3 is not “joint joints (where the joints of the two layers of permanent bricks are the same location)”, but “joint joints”. (It is desirable that the joints of the two-layer permanent bricks are different locations). In the through-joint structure, stress concentrates on the joint, causing cracks (mechanical spalling), and when hot metal or molten steel enters the refractory from the crack, there is a risk of reaching the iron skin. On the other hand, by adopting a joint structure, it is possible to alleviate the load stress due to the thermal stress and the centrifugal force of the molten iron during mechanical stirring. In the joint structure, even if cracks occur in the refractory, even if hot metal or molten steel enters the refractory from the crack, the path to the iron shell increases, so the intrusion is stopped halfway. It is possible to prevent steel leakage and leakage. Similarly, the stacked structure between the workpiece refractory layer and the permanent refractory layer is preferably a joint.

本発明者らは、上記の計算結果を実証するために実験室にて実験を行った。実験装置の概略図を図5に示す。電気抵抗加熱炉の側壁部に実機溶銑鍋の耐火物ライニングを模擬したライニング層を設置し、電気抵抗加熱炉の内部温度を熱電対と熱流センサーを用いて一定温度(=1300℃)に保持し、そのときの鉄皮表面の熱流束を測定した。断熱材は、それぞれ、ワーク耐火物層4と永久耐火物層3との間、永久耐火物層3の2層の成形煉瓦3a及び成形煉瓦3bとの間、永久耐火物層3と鉄皮2との間に配置し、断熱材の厚みを、それぞれ、1mm、3mm、5mm、7mm、10mmと変化させた。   The present inventors conducted experiments in a laboratory in order to verify the above calculation results. A schematic diagram of the experimental apparatus is shown in FIG. A lining layer simulating the refractory lining of the actual hot metal ladle is installed on the side wall of the electric resistance heating furnace, and the internal temperature of the electric resistance heating furnace is maintained at a constant temperature (= 1300 ° C) using a thermocouple and heat flow sensor. Then, the heat flux on the surface of the iron skin was measured. The heat insulating materials are between the workpiece refractory layer 4 and the permanent refractory layer 3, between the two formed bricks 3a and 3b of the permanent refractory layer 3, and between the permanent refractory layer 3 and the iron skin 2 respectively. The thickness of the heat insulating material was changed to 1 mm, 3 mm, 5 mm, 7 mm, and 10 mm, respectively.

熱流束の測定結果を図6に示す。断熱材を永久耐火物層3と鉄皮2の間に施工した条件において、最も熱流束が低位となった。また、各条件で断熱材厚みが5mmまでは断熱材厚みが増加するほど熱流束は低位となったが、5mmから10mmへと変化しても熱流束の増加は見られなかった。この実験結果から、上記計算結果の妥当性が確認できた。   The measurement result of the heat flux is shown in FIG. Under the condition that the heat insulating material was applied between the permanent refractory layer 3 and the iron shell 2, the heat flux was the lowest. In each condition, the heat flux became lower as the heat insulation thickness increased up to 5 mm, but no increase in the heat flux was observed even when the thickness changed from 5 mm to 10 mm. From this experimental result, the validity of the calculation result was confirmed.

本発明は上記検討結果に基づきなされたもので、発明に係る製鉄用容器の耐火物ライニング構造は、溶鉱炉から出湯される溶銑を受銑して保持し、保持した溶銑を搬送する或いは保持した溶銑に精錬処理を実施するための製鉄用容器の耐火物ライニング構造であって、製鉄用容器の外側から、鉄皮、永久耐火物層、ワーク耐火物層をこの順に有し、前記鉄皮と前記永久耐火物層との間に、圧縮強度が製鉄用容器に溶銑を保持したときに生じる静鉄圧値以上の値である断熱材が配置されていることを特徴とする。   The present invention was made on the basis of the above examination results, and the refractory lining structure of the iron making container according to the invention receives and holds the hot metal discharged from the blast furnace and conveys or holds the held hot metal. The refractory lining structure of the iron making container for carrying out the refining process, from the outside of the iron making container, having an iron skin, a permanent refractory layer, a workpiece refractory layer in this order, the iron skin and the Between the permanent refractory layer, a heat insulating material having a compressive strength equal to or higher than the static iron pressure value generated when the hot metal is held in the iron making container is characterized.

ワーク耐火物層の厚みに関しては100mm以上確保するのが好ましい。通常、溶銑鍋は長期間使用され、ワーク耐火物層はスポーリングやスラグとの反応により徐々に損傷する。耐火物張替えの日数及びコストを削減するためには、最低でも半年に1回の頻度でのワーク耐火物層の張替えにとどめたい。溶銑鍋の長期間使用によりワーク耐火物層が損傷するが、その厚みが稼働開始から半年間経過後に1/4まで低減した場合でも最低30mmを確保するためには、ワーク耐火物層の厚みは施工時の厚みを100mm以上確保することが好ましい。   Regarding the thickness of the workpiece refractory layer, it is preferable to ensure 100 mm or more. Usually, the hot metal ladle is used for a long time, and the workpiece refractory layer is gradually damaged by reaction with spalling and slag. In order to reduce the number of days and costs for refractory re-covering, we want to limit the work refractory layer re-sending at least once every six months. Although the workpiece refractory layer is damaged by long-term use of the hot metal ladle, the thickness of the workpiece refractory layer is to ensure a minimum of 30 mm even when the thickness is reduced to ¼ after half a year from the start of operation. It is preferable to secure a thickness of 100 mm or more during construction.

また、ワーク耐火物層は成形煉瓦または不定形耐火物の何れでも構わないが、ワーク耐火物層を構成する成形煉瓦または不定形耐火物は、断熱性の観点からはなるべく低熱伝導率のものを使用すべきであり、その熱伝導率の上限値を35W/(m・K)以下とすることが好ましい。熱伝導率が35W/(m・K)を越える耐火物では断熱材内面側の温度が1000℃を超えてしまい、断熱材の性能が劣化する恐れがあるからである。尚、ワーク耐火物層を構成する耐火物の材質としては、MgO‐C煉瓦、Al23‐C系、Al23‐SiC系、Al23‐SiC‐C系煉瓦などの各種煉瓦を使用することができる。 The workpiece refractory layer may be either a molded brick or an irregular refractory, but the molded brick or the irregular refractory constituting the workpiece refractory layer should have a low thermal conductivity as much as possible from the viewpoint of heat insulation. It should be used, and the upper limit of the thermal conductivity is preferably 35 W / (m · K) or less. This is because in a refractory having a thermal conductivity exceeding 35 W / (m · K), the temperature on the inner surface of the heat insulating material exceeds 1000 ° C., and the performance of the heat insulating material may be deteriorated. In addition, as materials of the refractory constituting the workpiece refractory layer, various materials such as MgO-C brick, Al 2 O 3 -C system, Al 2 O 3 -SiC system, Al 2 O 3 -SiC-C system brick, etc. Brick can be used.

本発明で使用する断熱材としては、その材質は、SiO2系、Al23系などの各種材質を使用することができ、特に制限されないが、断熱材の圧縮強度が、その使用時の静鉄圧よりも高いものを使用することが必要である。例えば、炭化珪素(SiC)や、酸化チタンなどが添加された断熱材を用いても構わない。また、ファイバー繊維などを混入させて強度を確保した断熱材を用いてもよい。 As the heat insulating material used in the present invention, the material can be various materials such as SiO 2 and Al 2 O 3 and is not particularly limited. It is necessary to use one higher than the static iron pressure. For example, a heat insulating material to which silicon carbide (SiC), titanium oxide, or the like is added may be used. Moreover, you may use the heat insulating material which mixed the fiber fiber etc. and ensured intensity | strength.

断熱材の熱伝導率は、抜熱量低減の効果を得る観点から、0.15W/(m・K)以下とすることが望ましい。0.15W/(m・K)を超えると、放熱量が増大し、期待される断熱効果が得られない。尚、市販の断熱材は1000℃を超える高温では、断熱材自身の収縮が起こり、熱伝導率の増大が起こり得るため、その使用温度は1000℃以下にすることが好ましい。また、断熱材の施工に関しては、断熱材への水分吸収を避けるような施工方法を採ることが望ましい。   The thermal conductivity of the heat insulating material is desirably 0.15 W / (m · K) or less from the viewpoint of obtaining the effect of reducing the heat removal amount. If it exceeds 0.15 W / (m · K), the amount of heat release increases and the expected heat insulating effect cannot be obtained. In addition, since the heat insulating material itself contracts at a high temperature exceeding 1000 ° C. and the thermal conductivity may increase at a high temperature exceeding 1000 ° C., the use temperature is preferably 1000 ° C. or lower. Regarding the construction of the heat insulating material, it is desirable to adopt a construction method that avoids moisture absorption into the heat insulating material.

このような構成の本発明によれば、断熱材の設置位置を最適化するとともに、強度の高い断熱材を使用して溶銑鍋などの製鉄用容器の耐火物ライニング構造を断熱化するので、施工が容易であり、施工工数を増加させることなく、長期間にわたって十分な断熱効果を得ることができる。特に、断熱材の厚みを5mm以下にした場合には、断熱材は1000℃を超える温度に曝されることがなく、断熱材の変質が防止されて、長期間にわたって高い断熱効果を得ることが可能となる。   According to the present invention having such a configuration, the installation position of the heat insulating material is optimized, and the refractory lining structure of the iron making container such as a hot metal ladle is heat-insulated using a heat insulating material having high strength. It is easy to obtain a sufficient heat insulating effect over a long period of time without increasing the number of construction steps. In particular, when the thickness of the heat insulating material is 5 mm or less, the heat insulating material is not exposed to a temperature exceeding 1000 ° C., and the heat insulating material is prevented from being deteriorated, and a high heat insulating effect can be obtained over a long period of time. It becomes possible.

製鉄用容器として、ヒートサイズが300トンである、図7に示す溶銑鍋を取り上げ、この溶銑鍋の側壁部及び底部に種々の施工方法で、ワーク耐火物層、永久耐火物層及び断熱材を施工した。ここで、ヒートサイズが300トンのときに算出される溶銑鍋底部での静鉄圧は0.4MPaである。本発明例及び比較例の施工条件を表2に示す。尚、図7において、符号1は溶銑鍋、2は鉄皮、3は永久耐火物層、4はワーク耐火物層、5は断熱材であり、図7は、本発明例1の例を示している。   As a steelmaking container, the hot metal ladle shown in FIG. 7 having a heat size of 300 tons is taken up, and a work refractory layer, a permanent refractory layer, and a heat insulating material are attached to the side wall and bottom of the hot metal pan by various construction methods. It was constructed. Here, the static iron pressure at the bottom of the hot metal ladle calculated when the heat size is 300 tons is 0.4 MPa. Table 2 shows the construction conditions of the inventive example and the comparative example. In FIG. 7, reference numeral 1 is a hot metal ladle, 2 is an iron skin, 3 is a permanent refractory layer, 4 is a workpiece refractory layer, 5 is a heat insulating material, and FIG. 7 shows an example of the present invention example 1. ing.

Figure 2011105986
Figure 2011105986

本発明例1では、材質がAl23‐SiO2系で、圧縮強度が、常温及び1000℃においてそれぞれ0.6MPa、1.2MPaで、厚みが3mmの断熱材を使用した。この断熱材を永久耐火物層と鉄皮との間に施工した。断熱材の熱伝導率は0.15W/(m・K)である。永久耐火物層は、成形煉瓦の1層とし、その厚みを60mmとした。ワーク耐火物層は、厚み100mm、1000℃における熱伝導率が35W/(m・K)のものを使用した。 In Example 1 of the present invention, a heat insulating material having a material of Al 2 O 3 —SiO 2 , a compressive strength of 0.6 MPa and 1.2 MPa at room temperature and 1000 ° C., and a thickness of 3 mm was used. This heat insulating material was applied between the permanent refractory layer and the iron skin. The heat conductivity of the heat insulating material is 0.15 W / (m · K). The permanent refractory layer was one layer of molded brick, and its thickness was 60 mm. A work refractory layer having a thickness of 100 mm and a thermal conductivity of 35 W / (m · K) at 1000 ° C. was used.

本発明例2では、材質がAl23‐SiO2‐SiC系で、圧縮強度が、常温及び1000℃においてそれぞれ0.7MPa、1.3MPaで、厚みが3mmの断熱材を使用した。この断熱材を永久耐火物層と鉄皮との間に施工した。断熱材の熱伝導率は0.15W/(m・K)である。永久耐火物層は、成形煉瓦の2層の通し目地構造とし、1層あたりの厚みを30mmとした。ワーク耐火物層は、厚み100mm、1000℃における熱伝導率が35W/(m・K)のものを使用した。 In Inventive Example 2, a heat insulating material having a material of Al 2 O 3 —SiO 2 —SiC system, a compressive strength of 0.7 MPa and 1.3 MPa at room temperature and 1000 ° C., respectively, and a thickness of 3 mm was used. This heat insulating material was applied between the permanent refractory layer and the iron skin. The heat conductivity of the heat insulating material is 0.15 W / (m · K). The permanent refractory layer had a two-layer joint structure of molded bricks, and the thickness per layer was 30 mm. A work refractory layer having a thickness of 100 mm and a thermal conductivity of 35 W / (m · K) at 1000 ° C. was used.

本発明例3では、本発明例2と同一材質、同一強度、同一厚みの断熱材を永久耐火物層と鉄皮との間に施工した。永久耐火物層は、成形煉瓦の2層の継ぎ目地構造とし、1層あたりの厚みを30mmとした。ワーク耐火物層は、厚み100mm、1000℃における熱伝導率が35W/(m・K)のものを使用した。   In Invention Example 3, a heat insulating material having the same material, the same strength, and the same thickness as in Invention Example 2 was applied between the permanent refractory layer and the iron skin. The permanent refractory layer had a two-layer joint structure of molded bricks, and the thickness per layer was 30 mm. A work refractory layer having a thickness of 100 mm and a thermal conductivity of 35 W / (m · K) at 1000 ° C. was used.

本発明例4では、本発明例2と同一材質、同一強度、同一厚みの断熱材を永久耐火物層と鉄皮との間に施工した。永久耐火物層は、成形煉瓦の2層の継ぎ目地構造とし、1層あたりの厚みを30mmとした。ワーク耐火物層は、厚み180mm、1000℃における熱伝導率が15W/(m・K)のものを使用した。   In Invention Example 4, a heat insulating material having the same material, the same strength, and the same thickness as in Invention Example 2 was applied between the permanent refractory layer and the iron skin. The permanent refractory layer had a two-layer joint structure of molded bricks, and the thickness per layer was 30 mm. A work refractory layer having a thickness of 180 mm and a thermal conductivity of 15 W / (m · K) at 1000 ° C. was used.

本発明例5では、本発明例2と同一材質、同一強度で、厚みが5mmの断熱材を永久耐火物層と鉄皮との間に施工した。永久耐火物層は、成形煉瓦の2層の継ぎ目地構造とし、1層あたりの厚みを30mmとした。ワーク耐火物層は、厚み180mm、1000℃における熱伝導率が15W/(m・K)のものを使用した。   In Invention Example 5, a heat insulating material having the same material and strength as in Invention Example 2 and a thickness of 5 mm was applied between the permanent refractory layer and the iron skin. The permanent refractory layer had a two-layer joint structure of molded bricks, and the thickness per layer was 30 mm. A work refractory layer having a thickness of 180 mm and a thermal conductivity of 15 W / (m · K) at 1000 ° C. was used.

本発明例6では、材質がAl23‐SiO2‐SiC系で、圧縮強度が、常温及び1000℃においてそれぞれ0.7MPa、1.3MPaで、厚みが5mmの断熱材を使用した。この断熱材を永久耐火物層と鉄皮との間に施工した。断熱材の熱伝導率は0.02W/(m・K)である。永久耐火物層は、成形煉瓦の2層の継ぎ目地構造とし、1層あたりの厚みを30mmとした。ワーク耐火物層は、厚み180mm、1000℃における熱伝導率が15W/(m・K)のものを使用した。 In Invention Example 6, a heat insulating material having a material of Al 2 O 3 —SiO 2 —SiC, a compressive strength of 0.7 MPa and 1.3 MPa at room temperature and 1000 ° C., and a thickness of 5 mm was used. This heat insulating material was applied between the permanent refractory layer and the iron skin. The heat conductivity of the heat insulating material is 0.02 W / (m · K). The permanent refractory layer had a two-layer joint structure of molded bricks, and the thickness per layer was 30 mm. A work refractory layer having a thickness of 180 mm and a thermal conductivity of 15 W / (m · K) at 1000 ° C. was used.

これに対して、比較例1では、永久耐火物層は1層とし、その厚みを60mmとした。ワーク耐火物層は、厚み100mm、1000℃における熱伝導率が35W/(m・K)のものを使用した。断熱材は施工しなかった。   On the other hand, in the comparative example 1, the permanent refractory layer was 1 layer and the thickness was 60 mm. A work refractory layer having a thickness of 100 mm and a thermal conductivity of 35 W / (m · K) at 1000 ° C. was used. No insulation was constructed.

比較例2では、永久耐火物層は2層の通し目地構造とし、1層あたりの厚みを30mmとした。ワーク耐火物層は、厚み100mm、1000℃における熱伝導率が35W/(m・K)のものを使用した。断熱材は施工しなかった。   In Comparative Example 2, the permanent refractory layer had a two-layer joint structure, and the thickness per layer was 30 mm. A work refractory layer having a thickness of 100 mm and a thermal conductivity of 35 W / (m · K) at 1000 ° C. was used. No insulation was constructed.

比較例3では、材質がAl23‐SiO2系で、圧縮強度が、常温及び1000℃においてそれぞれ0.2MPa、0.35MPaで、厚みが3mmの断熱材を使用した。この断熱材を永久耐火物層と鉄皮との間に施工した。断熱材の熱伝導率は0.15W/(m・K)である。永久耐火物層は2層の継ぎ目地構造とし、1層あたりの厚みを30mmとした。ワーク耐火物層は、厚み100mm、1000℃における熱伝導率が35W/(m・K)のものを使用した。 In Comparative Example 3, a heat insulating material having a material of Al 2 O 3 —SiO 2 , a compressive strength of 0.2 MPa and 0.35 MPa at room temperature and 1000 ° C., and a thickness of 3 mm was used. This heat insulating material was applied between the permanent refractory layer and the iron skin. The heat conductivity of the heat insulating material is 0.15 W / (m · K). The permanent refractory layer had a two-layer joint structure, and the thickness per layer was 30 mm. A work refractory layer having a thickness of 100 mm and a thermal conductivity of 35 W / (m · K) at 1000 ° C. was used.

比較例4では、材質がAl23‐SiO2系で、圧縮強度が、常温及び1000℃においてそれぞれ0.2MPa、0.35MPaで、厚みが3mmの断熱材を使用した。この断熱材を永久耐火物層の2層の永久煉瓦間に施工した。断熱材の熱伝導率は0.15W/(m・K)である。永久耐火物層は2層の継ぎ目地構造とし、1層あたりの厚みを30mmとした。ワーク耐火物層は、厚み100mm、1000℃における熱伝導率が35W/(m・K)のものを使用した。 In Comparative Example 4, a heat insulating material having a material of Al 2 O 3 —SiO 2 , a compressive strength of 0.2 MPa and 0.35 MPa at room temperature and 1000 ° C., and a thickness of 3 mm was used. This heat insulating material was constructed between two permanent bricks of a permanent refractory layer. The heat conductivity of the heat insulating material is 0.15 W / (m · K). The permanent refractory layer had a two-layer joint structure, and the thickness per layer was 30 mm. A work refractory layer having a thickness of 100 mm and a thermal conductivity of 35 W / (m · K) at 1000 ° C. was used.

比較例5では、材質がAl23‐SiO2系で、圧縮強度が、常温及び1000℃においてそれぞれ0.2MPa、0.35MPaで、厚みが3mmの断熱材を使用した。この断熱材をワーク耐火物層と永久耐火物層との間に施工した。断熱材の熱伝導率は0.15W/(m・K)である。永久耐火物層は2層の継ぎ目地構造とし、1層あたりの厚みを30mmとした。ワーク耐火物層は、厚み100mm、1000℃における熱伝導率が35W/(m・K)のものを使用した。 In Comparative Example 5, a heat insulating material having a material of Al 2 O 3 —SiO 2 , a compressive strength of 0.2 MPa and 0.35 MPa at room temperature and 1000 ° C., and a thickness of 3 mm was used. This heat insulating material was applied between the workpiece refractory layer and the permanent refractory layer. The heat conductivity of the heat insulating material is 0.15 W / (m · K). The permanent refractory layer had a two-layer joint structure, and the thickness per layer was 30 mm. A work refractory layer having a thickness of 100 mm and a thermal conductivity of 35 W / (m · K) at 1000 ° C. was used.

本発明例及び比較例の施工条件の溶銑鍋を用いて溶鉱炉から出湯される約300トンの溶銑を受銑し、受銑から溶銑払出しの期間における溶銑温度の降下量(℃)を調査した。また、それぞれ耐火物ライニング構造が異なることから、各溶銑鍋での平均受銑量を調査した。また更に、赤外線温度計を用いて各溶銑鍋の鉄皮温度を測定し、各条件での最高鉄皮温度を比較した。尚、全ての調査において、受銑から溶銑払出までの間は溶銑処理がない条件、つまり、途中で昇温処理工程或いは降温処理工程がない条件で調査を行った。また、これら溶銑鍋の耐火物修理の時に溶銑鍋内を観察し、永久耐火物層の状態を確認するとともに、断熱材を回収して断熱材の厚みを測定した。調査結果を表3に示す。   About 300 tons of hot metal discharged from the blast furnace was received using the hot metal ladle having the construction conditions of the present invention example and the comparative example, and the amount of decrease in hot metal temperature (° C.) during the hot metal discharge period from the receiving iron was investigated. In addition, since the refractory lining structure is different, the average amount of iron received in each hot metal ladle was investigated. Furthermore, the iron skin temperature of each hot metal ladle was measured using an infrared thermometer, and the maximum iron skin temperature in each condition was compared. In all the investigations, the investigation was performed under the condition that there was no hot metal treatment from receiving to hot metal discharge, that is, the condition that there was no temperature rising process or temperature lowering process in the middle. In addition, the inside of the hot metal ladle was observed at the time of repairing the refractory of these hot metal ladle, the state of the permanent refractory layer was confirmed, the heat insulating material was recovered, and the thickness of the heat insulating material was measured. The survey results are shown in Table 3.

Figure 2011105986
Figure 2011105986

本発明の条件を満たす本発明例1〜6は、比較例1〜5の何れと比較しても、最高鉄皮温度及び溶銑温度降下量ともに、低位であり断熱の効果が有効に得られていた。溶銑を払いだした後の空の溶銑鍋での地金付着状況を観察した結果、本発明例1〜6の溶銑鍋では地金付着は観察されなかったが、断熱材を施工していない比較例1〜2では地金付着が観察された。その結果として、平均受銑量も本発明例1〜6のほうが比較例1〜2に比較して増加した。   Invention Examples 1 to 6 that satisfy the conditions of the present invention are low in both the maximum iron skin temperature and the hot metal temperature drop amount compared with any of Comparative Examples 1 to 5, and the effect of heat insulation is effectively obtained. It was. As a result of observing the adhesion state of the metal in the empty hot metal ladle after the hot metal was dispensed, no metal adhesion was observed in the hot metal ladle of Examples 1 to 6 of the present invention, but comparison was not made with a heat insulating material. In Examples 1 and 2, adhesion of the metal was observed. As a result, the average amount of received light also increased in Invention Examples 1 to 6 as compared with Comparative Examples 1 and 2.

また、本発明例1〜6と比較例3とを比較すると、断熱材の圧縮強度が高い本発明例1〜6では、使用後の断熱材の厚み減少が低位であった。これにより、1回の断熱材施工により、断熱材を更新することなく、ワーク耐火物層の複数回の張替え施工にわたって断熱効果が持続されることが明らかになった。   Moreover, when this invention example 1-6 is compared with the comparative example 3, in the invention examples 1-6 with high compressive strength of a heat insulating material, the thickness reduction of the heat insulating material after use was low. Thereby, it became clear by one heat insulation material construction that the heat insulation effect is maintained over the multiple times of reworking work refractory layers without renewing the heat insulation material.

ここで、永久耐火物層の目地構造が異なる本発明例2と本発明例3とを比較すると、継ぎ目地構造である本発明例3の方が、通し目地構造である本発明例2に比較して永久耐火物層の劣化が低位であり、地金の浸入もなかった。これは本発明例3では、永久煉瓦の積み構造が継ぎ目地であるので、耐火物内の負荷応力が緩和され、且つ、地金の鉄皮側への浸入を抑止する効果が得られたためである。   Here, when the present invention example 2 and the present invention example 3 having different joint structures of the permanent refractory layer are compared, the present invention example 3 which is the joint structure is more in comparison with the present invention example 2 which is the through joint structure. As a result, the deterioration of the permanent refractory layer was low, and there was no intrusion of metal. This is because in Example 3 of the present invention, the stacking structure of the permanent bricks is a joint, so that the load stress in the refractory is relaxed and the effect of suppressing the intrusion of the bare metal to the iron skin side is obtained. is there.

更に、本発明例4では、ワーク耐火物層の厚みを増加し、ワーク耐火物層として熱伝導率の低位のものを使用したため、より一層熱ロス低減が向上した。本発明例5では、断熱材厚みが最適条件の最大値であり、本発明例4よりも更に溶銑温度降下量を抑止することができた。また、本発明例6では、断熱材の圧縮強度のみならず熱伝導率を更に有利な条件としたことで、本発明例の中でも最も高い断熱効果を実現した。   Furthermore, in Example 4 of the present invention, the thickness of the work refractory layer was increased, and the work refractory layer having a low thermal conductivity was used, so the heat loss was further reduced. In Invention Example 5, the heat insulating material thickness was the maximum value of the optimum conditions, and the amount of hot metal temperature drop could be further suppressed than in Invention Example 4. In Invention Example 6, not only the compressive strength of the heat insulating material but also the thermal conductivity was set to a more advantageous condition, so that the highest heat insulating effect was realized among the examples of the present invention.

以上の結果から、断熱条件を的確に規定した本発明の優位性が確認できた。   From the above results, it was possible to confirm the superiority of the present invention in which the heat insulation conditions were accurately defined.

1 溶銑鍋
2 鉄皮
3 永久耐火物層
4 ワーク耐火物層
5 断熱材
DESCRIPTION OF SYMBOLS 1 Hot metal ladle 2 Iron skin 3 Permanent refractory layer 4 Work refractory layer 5 Thermal insulation

Claims (7)

溶鉱炉から出湯される溶銑を受銑して保持し、保持した溶銑を搬送する或いは保持した溶銑に精錬処理を実施するための製鉄用容器の耐火物ライニング構造であって、製鉄用容器の外側から、鉄皮、永久耐火物層、ワーク耐火物層をこの順に有し、前記鉄皮と前記永久耐火物層との間に、圧縮強度が製鉄用容器に溶銑を保持したときに生じる静鉄圧値以上の値である断熱材が配置されていることを特徴とする、製鉄用容器の耐火物ライニング構造。   A refractory lining structure for a steelmaking container for receiving and holding hot metal discharged from a blast furnace, carrying the held hot metal, or performing a refining process on the held hot metal, from the outside of the ironmaking container An iron skin, a permanent refractory layer, and a workpiece refractory layer in this order, and a static iron pressure generated when the compressive strength holds hot metal in the iron making container between the iron skin and the permanent refractory layer. A refractory lining structure for a container for iron making, wherein a heat insulating material having a value equal to or greater than the value is arranged. 前記製鉄用容器の側壁部及び底部においては、前記永久耐火物層は、厚みが30mm以上65mm以下の成形煉瓦の2層以上の煉瓦層からなることを特徴とする、請求項1に記載の製鉄用容器の耐火物ライニング構造。   2. The iron making according to claim 1, wherein the permanent refractory layer is formed of two or more brick layers of a formed brick having a thickness of 30 mm or more and 65 mm or less at a side wall portion and a bottom portion of the iron making container. Refractory lining structure for containers. 前記永久耐火物層の煉瓦積み構造は、継ぎ目地構造であることを特徴とする、請求項1または請求項2に記載の製鉄用容器の耐火物ライニング構造。   The refractory lining structure for a steelmaking container according to claim 1 or 2, wherein the brick structure of the permanent refractory layer is a joint structure. 前記ワーク耐火物層は、施工時の厚みが100mm以上であることを特徴とする、請求項1ないし請求項3の何れか1つに記載の製鉄用容器の耐火物ライニング構造。   The refractory lining structure for a steelmaking container according to any one of claims 1 to 3, wherein the workpiece refractory layer has a thickness of 100 mm or more during construction. 前記断熱材は、厚みが5mm以下であることを特徴とする、請求項1ないし請求項4の何れか1つに記載の製鉄用容器の耐火物ライニング構造。   The refractory lining structure for an iron-making container according to any one of claims 1 to 4, wherein the heat insulating material has a thickness of 5 mm or less. 前記断熱材は、その熱伝導率が0.15W/(m・K)以下であることを特徴とする、請求項1ないし請求項5の何れか1つに記載の製鉄用容器の耐火物ライニング構造。   6. The refractory lining of a steelmaking container according to claim 1, wherein the heat insulating material has a thermal conductivity of 0.15 W / (m · K) or less. Construction. 前記ワーク耐火物層は、熱伝導率が35W/(m・K)以下の成形煉瓦または不定形耐火物からなることを特徴とする、請求項1ないし請求項6の何れか1つに記載の製鉄用容器の耐火物ライニング構造。   The work refractory layer is made of a molded brick or an irregular refractory having a thermal conductivity of 35 W / (m · K) or less, according to any one of claims 1 to 6. Refractory lining structure for steel making containers.
JP2009261455A 2009-11-17 2009-11-17 Refractory lining structure for steelmaking containers Active JP5680297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009261455A JP5680297B2 (en) 2009-11-17 2009-11-17 Refractory lining structure for steelmaking containers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009261455A JP5680297B2 (en) 2009-11-17 2009-11-17 Refractory lining structure for steelmaking containers

Publications (2)

Publication Number Publication Date
JP2011105986A true JP2011105986A (en) 2011-06-02
JP5680297B2 JP5680297B2 (en) 2015-03-04

Family

ID=44229794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009261455A Active JP5680297B2 (en) 2009-11-17 2009-11-17 Refractory lining structure for steelmaking containers

Country Status (1)

Country Link
JP (1) JP5680297B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013040722A (en) * 2011-08-17 2013-02-28 Nippon Steel & Sumitomo Metal Corp Lining repair method
WO2013161721A1 (en) * 2012-04-24 2013-10-31 Jfeスチール株式会社 Molten steel container
WO2013180219A1 (en) * 2012-05-30 2013-12-05 Jfeスチール株式会社 Lining structure for molten-metal container
WO2015111394A1 (en) * 2014-01-23 2015-07-30 Jfeスチール株式会社 Process for producing lining structure of vessel for molten metal, and lining structure of vessel for molten metal
JP2016078105A (en) * 2014-10-22 2016-05-16 Jfeスチール株式会社 Molten metal vessel
JP2016179482A (en) * 2015-03-24 2016-10-13 Jfeスチール株式会社 High-temperature container manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62255785A (en) * 1986-04-28 1987-11-07 住友金属工業株式会社 Method of executing back section of mgo-c brick in vacuum degassing device
JPH08260018A (en) * 1995-03-23 1996-10-08 Kurosaki Refract Co Ltd Monolithic refractory lining structure for torpedo ladle car
JP2001033174A (en) * 1999-07-23 2001-02-09 Kurosaki Harima Corp Lining structure of vacuum degassing furnace for melting steel and heat insulating plate therefor
JP2008190728A (en) * 2007-01-31 2008-08-21 Kurosaki Harima Corp Lining structure of industrial kiln or its accessory equipment and precast refractory block for use in it

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62255785A (en) * 1986-04-28 1987-11-07 住友金属工業株式会社 Method of executing back section of mgo-c brick in vacuum degassing device
JPH08260018A (en) * 1995-03-23 1996-10-08 Kurosaki Refract Co Ltd Monolithic refractory lining structure for torpedo ladle car
JP2001033174A (en) * 1999-07-23 2001-02-09 Kurosaki Harima Corp Lining structure of vacuum degassing furnace for melting steel and heat insulating plate therefor
JP2008190728A (en) * 2007-01-31 2008-08-21 Kurosaki Harima Corp Lining structure of industrial kiln or its accessory equipment and precast refractory block for use in it

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6013040683; 耐火材料第148号(2000)、p.48-54 *
JPN6013040684; 工業材料、Vol.31、No.8、p.61-64 *
JPN6013040685; 耐火物技術協会発行、第70回鋳造用耐火物専門委員会本委員会・第58回鋳造用耐火物専門委員会分科会報告 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013040722A (en) * 2011-08-17 2013-02-28 Nippon Steel & Sumitomo Metal Corp Lining repair method
WO2013161721A1 (en) * 2012-04-24 2013-10-31 Jfeスチール株式会社 Molten steel container
CN104245190A (en) * 2012-04-24 2014-12-24 杰富意钢铁株式会社 Molten steel container
JP5800087B2 (en) * 2012-04-24 2015-10-28 Jfeスチール株式会社 Molten steel container
WO2013180219A1 (en) * 2012-05-30 2013-12-05 Jfeスチール株式会社 Lining structure for molten-metal container
JP5494898B1 (en) * 2012-05-30 2014-05-21 Jfeスチール株式会社 Lining structure of molten metal container
CN104334750A (en) * 2012-05-30 2015-02-04 杰富意钢铁株式会社 Lining structure for molten-metal container
WO2015111394A1 (en) * 2014-01-23 2015-07-30 Jfeスチール株式会社 Process for producing lining structure of vessel for molten metal, and lining structure of vessel for molten metal
JP5907312B2 (en) * 2014-01-23 2016-04-26 Jfeスチール株式会社 Method for manufacturing lining structure of molten metal container
JPWO2015111394A1 (en) * 2014-01-23 2017-03-23 Jfeスチール株式会社 Method for manufacturing lining structure of molten metal container
JP2016078105A (en) * 2014-10-22 2016-05-16 Jfeスチール株式会社 Molten metal vessel
JP2016179482A (en) * 2015-03-24 2016-10-13 Jfeスチール株式会社 High-temperature container manufacturing method

Also Published As

Publication number Publication date
JP5680297B2 (en) 2015-03-04

Similar Documents

Publication Publication Date Title
JP5680297B2 (en) Refractory lining structure for steelmaking containers
JP5707917B2 (en) Steel container
JP5659462B2 (en) Refractory lining structure for steelmaking containers
CN104245190B (en) Molten steel container
JP5707918B2 (en) Steel container
JP4731451B2 (en) Judgment method of refractory repair necessity of hot metal pan
JP5900028B2 (en) Topy car refractory lining structure
JP5712888B2 (en) Lined lining structure for steelmaking containers
JP2011099840A (en) Continuous temperature measurement probe for ladle
JP5891777B2 (en) Refractory lining structure for pan-type steel containers
JP4676927B2 (en) Immersion tube for molten metal treatment, manufacturing method thereof, and vacuum degassing method
JP5544743B2 (en) Refractory lining structure for chaotic cars
JP2009263691A (en) Method for brick-working vod pan
JP2014169490A (en) Skid button
JP6428692B2 (en) Refractory structure
JP2018177570A (en) Anchor brick
JP5691199B2 (en) Refractory lining structure for chaotic cars
JP2010264486A (en) Ladle for continuous casting, and continuous casting method
JP2020050933A (en) Converter
JP4511749B2 (en) Lance pipe for blowing powder and gas
JP5439919B2 (en) Refractory lining structure for chaotic cars
JP5920205B2 (en) Refractory lining structure for steelmaking containers
JP2020050932A (en) Converter
JP2012031507A (en) Immersion tube for vacuum degassing apparatus
JP2014055308A (en) Tuyere brick structure for gas blow

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131010

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140213

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140224

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150107

R150 Certificate of patent or registration of utility model

Ref document number: 5680297

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250