JP5659462B2 - Refractory lining structure for steelmaking containers - Google Patents

Refractory lining structure for steelmaking containers Download PDF

Info

Publication number
JP5659462B2
JP5659462B2 JP2009117111A JP2009117111A JP5659462B2 JP 5659462 B2 JP5659462 B2 JP 5659462B2 JP 2009117111 A JP2009117111 A JP 2009117111A JP 2009117111 A JP2009117111 A JP 2009117111A JP 5659462 B2 JP5659462 B2 JP 5659462B2
Authority
JP
Japan
Prior art keywords
refractory layer
heat insulating
insulating material
thickness
refractory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009117111A
Other languages
Japanese (ja)
Other versions
JP2010266103A (en
Inventor
雄太 日野
雄太 日野
山口 公治
公治 山口
清田 禎公
禎公 清田
康雅 福島
康雅 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009117111A priority Critical patent/JP5659462B2/en
Publication of JP2010266103A publication Critical patent/JP2010266103A/en
Application granted granted Critical
Publication of JP5659462B2 publication Critical patent/JP5659462B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

本発明は、高炉から出湯される溶銑を受銑して保持し、保持した溶銑を搬送する或いは保持した溶銑に精錬処理を実施するための製鉄用容器の耐火物ライニング構造に関するものである。   The present invention relates to a refractory lining structure for a steelmaking container for receiving and holding hot metal discharged from a blast furnace, transporting the held hot metal, or performing a refining process on the held hot metal.

今日、地球環境保全のために、全世界的規模でCO2排出量の削減活動がなされている。製鉄業においても、多量の炭素源を使用することから、特に製銑分野及び製鋼分野においては、CO2排出量削減への取り組みが急務となっており、高炉での還元剤比の低減、熱ロスの低減、熱の有効利用化などの熱余裕度創出技術が研究・開発されている。また、熱余裕度の創出は、転炉におけるフェロシリコンなどの発熱剤原単位の削減が見込めるため、製鉄コスト合理化の面からも技術開発が重要である。 Today, activities for reducing CO 2 emissions are being carried out on a global scale to protect the global environment. In the steel industry, too, a large amount of carbon source is used, so in the steelmaking and steelmaking fields, efforts to reduce CO 2 emissions are urgently needed, reducing the reducing agent ratio in the blast furnace, Research and development of heat margin creation technology such as loss reduction and effective heat utilization. In addition, the creation of thermal margin is expected to reduce the basic unit of heat-generating agent such as ferrosilicon in the converter, so technology development is also important from the viewpoint of rationalizing iron manufacturing costs.

製鉄プロセスにおいては、一般に、高炉で製造されて高炉から出湯される溶銑は、トピードカーまたは溶銑鍋に代表される容器で受銑され、次工程の製鋼工程へと輸送される。また、製鋼工程の転炉或いは電気炉で溶製された溶鋼は、取鍋などの容器に出湯され、二次精錬工程や連続鋳造工程などの次工程へと輸送される。これらの製鉄用容器は、一般的には、稼働面(溶湯との接触面)側から順に、ワーク耐火物層、永久耐火物層、鉄皮の3層から形成されるライニング構造である。ワーク耐火物層及び永久耐火物層は、ともに成形煉瓦(定形耐火物)または不定形耐火物で構成され、成形煉瓦で構成されるときには、ワーク煉瓦層及び永久煉瓦層とも呼ばれる。尚、本発明においては、溶銑及び溶鋼を受けるための容器をまとめて製鉄用容器と称する。   In the iron making process, generally, hot metal produced in a blast furnace and discharged from the blast furnace is received in a container represented by a topped car or a hot metal ladle and transported to the next steel making process. Moreover, the molten steel melted in the converter or electric furnace in the steel making process is poured into a container such as a ladle and transported to the next process such as the secondary refining process or the continuous casting process. These iron-making containers generally have a lining structure formed of three layers of a workpiece refractory layer, a permanent refractory layer, and an iron skin in order from the working surface (contact surface with the molten metal) side. Both the workpiece refractory layer and the permanent refractory layer are formed of molded bricks (standard refractory) or amorphous refractories. When the workpiece refractory layers are formed of molded bricks, they are also called workpiece brick layers and permanent brick layers. In the present invention, containers for receiving hot metal and molten steel are collectively referred to as iron-making containers.

溶銑或いは溶鋼を次工程へ輸送する場合、その経過時間(以下、「リードタイム」と記す)が長くなると、溶銑或いは溶鋼の熱が耐火物層を伝達し、鉄皮から外気に放出する熱量が増大し、溶銑或いは溶鋼の温度降下量が増大するという問題が発生する。また、リードタイムが長くなると、最外殻である鉄皮の温度が上昇し、鉄皮のクリープ変形や亀裂発生を引き起こす恐れがある。そこで、これらの問題を解決する手段の一つとして、製鉄用容器ライニング構造の断熱化に関する技術が幾つか提案されている。   When the hot metal or molten steel is transported to the next process, if the elapsed time (hereinafter referred to as “lead time”) becomes longer, the heat of the molten iron or molten steel is transferred to the refractory layer and the amount of heat released from the iron skin to the outside air is reduced. The problem arises that the temperature drop of the hot metal or molten steel increases. Further, when the lead time is long, the temperature of the outermost iron shell increases, which may cause creep deformation or cracking of the iron shell. Accordingly, as one means for solving these problems, several techniques relating to heat insulation of the steel lining structure are proposed.

例えば、特許文献1には、鉄皮に断熱ボード及びワーク煉瓦をこの順に施工してなる取鍋において、断熱ボードとワーク煉瓦との間にロー石煉瓦などの断熱煉瓦を設けた断熱ライニング構造が提案されている。そして、特に、断熱煉瓦層厚みは60mm以上、ワーク煉瓦層厚みは30mm以下が望ましいとしている。   For example, Patent Document 1 discloses a heat insulation lining structure in which a heat insulation board and a work brick are constructed in this order on a iron shell, and a heat insulation brick such as a raw stone brick is provided between the heat insulation board and the work brick. Proposed. In particular, the heat insulating brick layer thickness is preferably 60 mm or more and the work brick layer thickness is preferably 30 mm or less.

しかしながら、溶銑を受銑する溶銑鍋に対して、特許文献1に記載されている技術を適用した場合には、断熱煉瓦の厚みが大きく、容積が低下するという問題点がある。また、断熱煉瓦の厚みが大きいことから断熱煉瓦内の温度勾配が大きくなり、断熱煉瓦内に亀裂が発生して耐火物寿命が低下する恐れもある。また更に、ワーク煉瓦厚みを30mm以下にすると、断熱煉瓦の稼働面側温度が高温になることから、それに応じて熱伝達量が増加し、結果的に断熱性能が低下するという懸念もある。   However, when the technique described in Patent Document 1 is applied to a hot metal ladle that receives hot metal, there is a problem that the thickness of the heat insulating brick is large and the volume is reduced. Moreover, since the thickness of the heat insulating brick is large, the temperature gradient in the heat insulating brick is increased, and there is a possibility that a crack occurs in the heat insulating brick and the refractory life is shortened. Furthermore, when the work brick thickness is set to 30 mm or less, the operating surface side temperature of the heat insulating brick becomes high, and accordingly, there is a concern that the heat transfer amount is increased accordingly, and the heat insulating performance is consequently lowered.

一方、特許文献2及び特許文献3には、熱伝導率の範囲を規定した断熱材を、永久耐火物と鉄皮との間に配置し、稼働面側から、ワーク耐火物、永久耐火物、断熱材、鉄皮からなる4層構造の製鉄用容器のライニング構造が提案されている。そして、特に、断熱材は、厚みを30mm以内とし、3〜100nmの細孔を有するものが望ましいとしている。   On the other hand, in patent document 2 and patent document 3, the heat insulating material which prescribed | regulated the range of thermal conductivity is arrange | positioned between a permanent refractory and an iron skin, and a work refractory, a permanent refractory, A lining structure of a four-layered steel container made of a heat insulating material and an iron skin has been proposed. In particular, it is desirable that the heat insulating material has a thickness of 30 mm or less and has pores of 3 to 100 nm.

特許文献2及び特許文献3に開示される技術は、一見、断熱性の効果が得られるように見える。しかしながら、特許文献2及び特許文献3に開示される技術を溶銑鍋において適用した場合、各部位のライニング厚みによっては断熱材の適用温度範囲を超える可能性もあり、長期間にわたって断熱効果を得るためには十分な技術とはいえない。断熱材は一般的な耐火物に比較して耐熱性は低く、通常、1000℃程度が断熱材使用の上限温度であり、それ以上の温度では変質し、断熱性能を劣化させる。また更に、細孔を有する断熱材を使用した場合には、耐火物施工時に断熱材と水分とが反応し、その結果、断熱性能が損なわれるという問題が生じる。   At first glance, the techniques disclosed in Patent Document 2 and Patent Document 3 seem to obtain a heat insulating effect. However, when the techniques disclosed in Patent Document 2 and Patent Document 3 are applied in a hot metal ladle, depending on the lining thickness of each part, there is a possibility of exceeding the application temperature range of the heat insulating material, in order to obtain a heat insulating effect over a long period of time. Is not enough technology. The heat insulating material has a lower heat resistance than a general refractory, and usually about 1000 ° C. is the upper limit temperature for using the heat insulating material, and the heat insulating material is deteriorated at a temperature higher than that to deteriorate the heat insulating performance. Furthermore, when a heat insulating material having pores is used, the heat insulating material reacts with moisture during construction of the refractory, resulting in a problem that the heat insulating performance is impaired.

この耐火物施工時での断熱性能の劣化を防止するために、特許文献4では、ワーク耐火物と永久耐火物との間に保護板を配置する技術を提案している。しかし、この方法では耐火物施工時に保護板を施工する工程が増えるため、耐火物施工費が増大するという問題がある。   In order to prevent the deterioration of the heat insulation performance during the construction of the refractory, Patent Document 4 proposes a technique of arranging a protective plate between the workpiece refractory and the permanent refractory. However, this method has a problem that the construction cost of the refractory increases because the number of steps for constructing the protective plate increases during the construction of the refractory.

特開2004−50256号公報JP 2004-50256 A 特開2000−104110号公報JP 2000-104110 A 特開2000−226611号公報JP 2000-226611 A 特開2003−42667号公報JP 2003-42667 A

溶銑鍋のような製鉄用容器のライニング構造を断熱化して、溶湯温度降下量の低減及び鉄皮変形の低減などを図るには、断熱材の配置位置、耐火物層の層数、厚み、材質を十分に考慮した上で、しかも、施工工数を抑えることのできる耐火物ライニング構造とする必要がある。これらの観点から上記従来技術を検証すれば、未だ改善すべき点が多々あるのが実情である。   To insulate the lining structure of a steel container such as a hot metal ladle to reduce the temperature drop of the molten metal and reduce the deformation of the iron skin, the position of the heat insulating material, the number of refractory layers, the thickness, the material Therefore, it is necessary to provide a refractory lining structure capable of reducing the number of construction steps. If the above prior art is verified from these viewpoints, there are still many points to be improved.

本発明は上記問題点を解決するためになされたもので、その目的とするところは、高炉から出湯される溶銑を受銑して保持し、保持した溶銑を搬送する或いは保持した溶銑に精錬処理を実施するための製鉄用容器の耐火物ライニング構造において、施工が容易であって施工工数を抑えることができるとともに、長期間にわたって断熱効果を十分に発揮することのできる、製鉄用容器の耐火物ライニング構造を提供することである。   The present invention has been made to solve the above-described problems, and its object is to receive and hold hot metal discharged from a blast furnace, transport the held hot metal, or refining the held hot metal. In the refractory lining structure of the iron making container for carrying out the refractory of the iron making container that is easy to construct and can reduce the number of construction man-hours and can sufficiently exhibit the heat insulation effect over a long period of time. It is to provide a lining structure.

上記課題を解決するための第1の発明に係る製鉄用容器の耐火物ライニング構造は、高炉から出湯される溶銑を受銑して保持し、保持した溶銑を搬送する或いは保持した溶銑に精錬処理を実施するための製鉄用容器の耐火物ライニング構造であって、製鉄用容器の外側から、鉄皮、永久耐火物層、ワーク耐火物層をこの順に有し、製鉄用容器の側壁部位においては、前記永久耐火物層は、厚みが30mm以上65mm以下の成形煉瓦の2層以上の煉瓦層からなり、且つ、前記鉄皮と前記永久耐火物層との間に、断熱材を有することを特徴とするものである。   The refractory lining structure for a steelmaking container according to the first invention for solving the above-mentioned problem is to receive and hold the hot metal discharged from the blast furnace, transport the held hot metal, or refining the held hot metal. It is a refractory lining structure of a steelmaking container for carrying out, from the outside of the steelmaking container, having an iron skin, a permanent refractory layer, and a workpiece refractory layer in this order. The permanent refractory layer is composed of two or more brick layers of a molded brick having a thickness of 30 mm or more and 65 mm or less, and has a heat insulating material between the iron skin and the permanent refractory layer. It is what.

第2の発明に係る製鉄用容器の耐火物ライニング構造は、第1の発明において、前記製鉄用容器の底部においては、前記永久耐火物層は、厚みが30mm以上65mm以下の成形煉瓦の3層以上の煉瓦層からなり、且つ、前記鉄皮と前記永久耐火物層との間に、断熱材を有することを特徴とするものである。   The refractory lining structure of the iron making container according to the second invention is the first invention, wherein the permanent refractory layer has three layers of molded bricks having a thickness of 30 mm to 65 mm at the bottom of the iron making container. It consists of the above brick layer, and has a heat insulating material between the said iron skin and the said permanent refractory layer, It is characterized by the above-mentioned.

第3の発明に係る製鉄用容器の耐火物ライニング構造は、第1または第2の発明において、前記ワーク耐火物層は、施工時の厚みが120mm以上であることを特徴とするものである。   The refractory lining structure for an iron making container according to the third invention is characterized in that, in the first or second invention, the workpiece refractory layer has a construction thickness of 120 mm or more.

第4の発明に係る製鉄用容器の耐火物ライニング構造は、第1ないし第3の発明の何れかにおいて、前記断熱材は、厚みが5mm以下であることを特徴とするものである。   A refractory lining structure for a steelmaking container according to a fourth invention is characterized in that, in any one of the first to third inventions, the heat insulating material has a thickness of 5 mm or less.

第5の発明に係る製鉄用容器の耐火物ライニング構造は、第1ないし第4の発明の何れかにおいて、前記断熱材は、その熱伝導率が0.1W/m・K以下であることを特徴とするものである。   The refractory lining structure for an iron making container according to a fifth invention is any one of the first to fourth inventions, wherein the heat insulating material has a thermal conductivity of 0.1 W / m · K or less. It is a feature.

第6の発明に係る製鉄用容器の耐火物ライニング構造は、第1ないし第5の発明の何れかにおいて、前記ワーク耐火物層は、熱伝導率が35W/m・K以下の成形煉瓦または不定形耐火物からなることを特徴とするものである。   A refractory lining structure for an iron making container according to a sixth aspect of the present invention is the refractory lining structure according to any one of the first to fifth aspects, wherein the work refractory layer is formed brick or non-conductive with a thermal conductivity of 35 W / m · K or less. It consists of a fixed refractory.

本発明によれば、断熱材の設置位置を最適化するとともに、断熱材よりも稼働面側の永久耐火物層の構成を適正化することによって、溶銑鍋のような製鉄用容器の耐火物ライニング構造を断熱化するので、施工が容易であり、施工工数を増加させることなく、長期間にわたって十分な断熱効果を得ることができる。その結果、溶銑の熱余裕度の創出が実現でき、転炉におけるフェロシリコンなどの発熱剤原単位の削減などが可能になる。また、熱余裕度の創出により鉄スクラップの使用量の増加が見込めるため、高炉での還元剤比の低減、即ちCO2の削減が可能になり、環境に配慮した製鉄プロセスが可能になる。更に、鉄皮の温度が低減するので、鉄皮における亀裂や変形が抑制され、製鉄用容器の長寿命化が実現される。 According to the present invention, by optimizing the installation position of the heat insulating material and optimizing the configuration of the permanent refractory layer on the operating surface side of the heat insulating material, the refractory lining of the iron making container such as a hot metal ladle Since the structure is thermally insulated, construction is easy, and a sufficient thermal insulation effect can be obtained over a long period of time without increasing the number of construction steps. As a result, it is possible to create a thermal margin of the hot metal, and to reduce the basic unit of heat generating agent such as ferrosilicon in the converter. In addition, since the amount of iron scrap used can be increased by creating a thermal margin, it is possible to reduce the reducing agent ratio in the blast furnace, that is, to reduce CO 2 , thereby enabling an iron-making process that is environmentally friendly. Furthermore, since the temperature of the iron skin is reduced, cracks and deformations in the iron skin are suppressed, and a long life of the iron making container is realized.

耐火物ライニングのモデル構造を示す概略図である。It is the schematic which shows the model structure of a refractory lining. 断熱材の施工位置を変えたときの断熱効果の算出結果を示す図である。It is a figure which shows the calculation result of the heat insulation effect when changing the construction position of a heat insulating material. 断熱材の厚みを変化させたときの断熱材内面側の温度変化の算出結果を示す図である。It is a figure which shows the calculation result of the temperature change by the side surface of a heat insulating material when changing the thickness of a heat insulating material. 断熱効果を確認するための実験装置の概略図である。It is the schematic of the experimental apparatus for confirming the heat insulation effect. 実験装置により得られた熱流束の測定結果を示す図である。It is a figure which shows the measurement result of the heat flux obtained by the experimental apparatus. 本発明に係るライニング構造で施工された溶銑鍋の例を示す概略図である。It is the schematic which shows the example of the hot metal ladle constructed with the lining structure which concerns on this invention.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

溶銑鍋に代表される取鍋型形状の製鉄用容器の場合、その抜熱形態は、(a)耐火物層を通じた鉄皮から外気への放熱、(b)開口部から外気への放熱の2通りが挙げられる。これらの放熱は何れも、放熱面から外気への輻射伝熱及び放熱面からの対流伝熱による2種の伝熱機構で抜熱されると考えられる。   In the case of a ladle-shaped iron-making container represented by a hot metal ladle, the heat removal mode is (a) heat radiation from the iron skin through the refractory layer to the outside air, and (b) heat radiation from the opening to the outside air. There are two ways. Any of these heat radiations is considered to be removed by two types of heat transfer mechanisms by radiation heat transfer from the heat dissipation surface to the outside air and convection heat transfer from the heat dissipation surface.

下記の(1)式に輻射伝熱による放熱量を示す。但し、(1)式において、QRは輻射伝熱による放熱量(J/s)、σはステファン−ボルツマン定数(=5.67×10-8J/m2・s・K4)、εは輻射率(−)、Snは伝熱面面積(m2)、Tは物体表面温度(K)、T0は外気温度(K)である。 The following equation (1) shows the amount of heat released by radiant heat transfer. However, in the equation (1), Q R is the amount of heat released by radiant heat transfer (J / s), σ is the Stefan-Boltzmann constant (= 5.67 × 10 −8 J / m 2 · s · K 4 ), ε emissivity (-), S n is the heat transfer surface area (m 2), T is the object surface temperature (K), T 0 is the ambient air temperature (K).

Figure 0005659462
Figure 0005659462

また、下記の(2)式に対流伝熱による放熱量を示す。但し、(2)式において、QCは対流伝熱による放熱量(J/s)、hCは自然対流熱伝達係数(J/m2・s・K)、Snは伝熱面面積(m2)、Tは物体表面温度(K)、T0は外気温度(K)である。 The following formula (2) shows the amount of heat released by convective heat transfer. However, in (2), Q C is the heat radiation amount by the convective heat transfer (J / s), h C natural convection heat transfer coefficient (J / m 2 · s · K), S n is the heat transfer surface area ( m 2 ), T is the object surface temperature (K), and T 0 is the outside air temperature (K).

Figure 0005659462
Figure 0005659462

本発明者らは、事前検討として、実機溶銑鍋の抜熱量とその内訳を調査した。その結果を表1に示す。表1に示すように、上記(a)の「鉄皮からの抜熱」が全体の約40%、上記(b)の「開口部からの放熱」が全体の約60%であることが判明した。   As a preliminary study, the present inventors investigated the amount of heat removed from the hot metal ladle and its breakdown. The results are shown in Table 1. As shown in Table 1, it was found that “heat removal from the iron skin” in (a) was about 40% of the whole, and “heat radiation from the opening” in (b) was about 60% of the whole. did.

Figure 0005659462
Figure 0005659462

開口部からの抜熱を低減することに関しては、取鍋において一般的に適用されている蓋の設置が考えられるが、着脱に大規模な設備を要すること、及び、溶銑予備処理を実施する際の地金付着による着脱不能などの懸念事項が多く、現実的ではない。しかし、今回の調査により、鉄皮からの抜熱が4割もあることから、ライニング構造の断熱化による抜熱量低減は十分に可能であることが分かった。そこで、本発明者らは、溶銑鍋の最適ライニングについて種々検討を行った。   Regarding the reduction of heat removal from the opening, it is conceivable to install a lid that is generally applied in a ladle, but it requires large-scale equipment for attachment and detachment, and when performing hot metal pretreatment There are many concerns such as inability to attach and detach due to adhesion of bullion, which is not realistic. However, this survey showed that heat removal from the iron skin is 40%, so it was found that the amount of heat removal can be sufficiently reduced by heat insulation of the lining structure. Therefore, the present inventors conducted various studies on the optimum lining of the hot metal ladle.

先ず、断熱材の施工部位について、非定常伝熱計算を用いて総括的に検討した。計算に用いた耐火物ライニングのモデル構造の概略図を図1に示す。ここでは、永久耐火物層3は2層の成形煉瓦を仮定した。断熱材の施工部位を、それぞれ、ワーク耐火物層4と永久耐火物層3との間、永久耐火物層3を構成する2層の成形煉瓦3aと成形煉瓦3bとの間、永久耐火物層3と鉄皮2との間とし、断熱材の厚みを変化させた場合の抜熱量(溶融メタルの温度降下量)を算出した。尚、図1では、永久耐火物層3を構成する2層の成形煉瓦を3a及び3bで表示しており、一方、断熱材は表示していない。また、図1に示す●印は温度分布を表している。   First, the construction part of the heat insulating material was examined comprehensively using unsteady heat transfer calculation. A schematic diagram of the model structure of the refractory lining used for the calculation is shown in FIG. Here, the permanent refractory layer 3 was assumed to be a two-layered brick. The construction parts of the heat insulating material are respectively located between the workpiece refractory layer 4 and the permanent refractory layer 3, between the two layers of the formed brick 3a and the molded brick 3b constituting the permanent refractory layer 3, and the permanent refractory layer. The amount of heat removal (amount of temperature drop of molten metal) when the thickness of the heat insulating material was changed between 3 and the iron skin 2 was calculated. In FIG. 1, two layers of bricks constituting the permanent refractory layer 3 are indicated by 3 a and 3 b, while the heat insulating material is not indicated. Moreover, the ● mark shown in FIG. 1 represents the temperature distribution.

計算結果を図2に示す。図2の縦軸は、断熱材を設置しないときを基準とし、断熱材を配置したときの溶銑温度の上昇を負の数値で表示しており、負の数値が大きくなるほど、断熱効果が大きいことを示している。図2に示すように、断熱材を上記の三箇所の何れかに設置した場合、ワーク耐火物層4と永久耐火物層3との間に断熱材を施工した場合に最も抜熱量が大きく、一方、永久耐火物層3と鉄皮2との間に断熱材を施工した場合に最も抜熱量が抑制されることが分かった。つまり、永久耐火物層3と鉄皮2との間に断熱材を施工した場合に最も断熱効果が高くなることが分かった。また、断熱材厚みが5mmを超える場合には抜熱量の変化割合が小さくなることも分かった。   The calculation results are shown in FIG. The vertical axis in FIG. 2 shows the rise in the hot metal temperature when the heat insulating material is arranged as a reference, when the heat insulating material is not installed as a negative value. The larger the negative value, the greater the heat insulating effect. Is shown. As shown in FIG. 2, when the heat insulating material is installed in any of the above three locations, the amount of heat removal is greatest when the heat insulating material is constructed between the workpiece refractory layer 4 and the permanent refractory layer 3, On the other hand, it was found that when the heat insulating material was applied between the permanent refractory layer 3 and the iron shell 2, the amount of heat removal was most suppressed. In other words, it was found that the heat insulation effect is the highest when a heat insulating material is applied between the permanent refractory layer 3 and the iron skin 2. It has also been found that when the thickness of the heat insulating material exceeds 5 mm, the rate of change in heat removal becomes small.

また、断熱材を前述したそれぞれの部位に施工した場合において、断熱材の厚みを変化させたときの断熱材の内面側(=稼動面側)の温度変化を算出した結果を図3に示す。図3に示すように、断熱材を永久耐火物層3と鉄皮2との間に施工した、断熱効果が最も高い場合であっても、断熱材の厚みが5mmを超えると、断熱材の内側温度は1000℃を超えることが分かった。また、断熱材の厚みが5mmを超えると断熱材厚みに対する温度変化の割合は低下することが分かった。   Further, FIG. 3 shows a result of calculating the temperature change on the inner surface side (= operation surface side) of the heat insulating material when the thickness of the heat insulating material is changed when the heat insulating material is applied to each of the above-described portions. As shown in FIG. 3, even when the heat insulating effect is the highest when the heat insulating material is applied between the permanent refractory layer 3 and the iron shell 2, the thickness of the heat insulating material exceeds 5 mm. The inner temperature was found to exceed 1000 ° C. Moreover, when the thickness of the heat insulating material exceeded 5 mm, it turned out that the ratio of the temperature change with respect to heat insulating material thickness falls.

図2及び図3の結果から、断熱材厚みを5mmよりも大きくしても、抜熱量の変化は単純には増大せず、抜熱量の変化割合は徐々に停滞することが判明した。尚、市販の断熱材は1000℃を超える高温では、断熱材自身の熱による収縮が起こり、その熱伝導率が増大することが起こり得るため、断熱材の変質を避けるためにも断熱材の温度を1000℃以下に抑えることが好ましい。   From the results of FIGS. 2 and 3, it was found that even if the thickness of the heat insulating material is larger than 5 mm, the change in the heat removal amount does not simply increase, and the rate of change in the heat removal amount gradually stagnates. In addition, since the heat insulation of the commercially available heat insulating material may shrink due to the heat of the heat insulating material itself and increase its thermal conductivity at a high temperature exceeding 1000 ° C., the temperature of the heat insulating material may be avoided in order to avoid the quality change of the heat insulating material. Is preferably suppressed to 1000 ° C. or lower.

本発明者らは、上記の計算結果を実証するために実験室にて実験を行った。実験装置の概略図を図4に示す。電気抵抗加熱炉の側壁部に実機溶銑鍋の耐火物ライニングを模擬したライニング層を設置し、電気抵抗加熱炉の内部温度を一定温度(=1300℃)に保持し、そのときの鉄皮表面の熱流束を測定した。断熱材は、それぞれ、ワーク耐火物層4と永久耐火物層3との間、永久耐火物層3の2層の成形煉瓦3a及び成形煉瓦3bとの間、永久耐火物層3と鉄皮2との間に配置し、断熱材の厚みを、それぞれ、1mm、3mm、5mm、7mm、10mmと変化させた。   The present inventors conducted experiments in a laboratory in order to verify the above calculation results. A schematic diagram of the experimental apparatus is shown in FIG. A lining layer simulating the refractory lining of the actual hot metal ladle is installed on the side wall of the electric resistance heating furnace, and the internal temperature of the electric resistance heating furnace is maintained at a constant temperature (= 1300 ° C). The heat flux was measured. The heat insulating materials are between the workpiece refractory layer 4 and the permanent refractory layer 3, between the two formed bricks 3a and 3b of the permanent refractory layer 3, and between the permanent refractory layer 3 and the iron skin 2 respectively. The thickness of the heat insulating material was changed to 1 mm, 3 mm, 5 mm, 7 mm, and 10 mm, respectively.

熱流束の測定結果を図5に示す。断熱材を永久耐火物層3と鉄皮2の間に施工した条件において、最も熱流束が低位となった。また、各条件で断熱材厚みが5mmまでは断熱材厚みが増加するほど熱流束は低位となったが、5mmから10mmへと変化しても熱流束の増加は見られなかった。この実験結果から、上記計算結果の妥当性が確認できた。   The measurement result of heat flux is shown in FIG. Under the condition that the heat insulating material was applied between the permanent refractory layer 3 and the iron shell 2, the heat flux was the lowest. In each condition, the heat flux became lower as the heat insulation thickness increased up to 5 mm, but no increase in the heat flux was observed even when the thickness changed from 5 mm to 10 mm. From this experimental result, the validity of the calculation result was confirmed.

更に、溶銑鍋において、永久耐火物層3の成形煉瓦の層数を、1層の場合、2層の場合、3層の場合と変更したときの永久耐火物層3の背面側、つまり断熱材の内面側の温度を調査したところ、永久耐火物層3を2層以上の成形煉瓦とした場合において、前記温度が低位になることが分かった。これは2枚の成形煉瓦間にモルタルなどの接着面が存在することにより、温度ギャップが生じるためである。モルタルが存在しない、所謂「カラ目地」の場合でも、空気層による温度ギャップが生じることから、永久耐火物層3を2層以上の成形煉瓦とすることは有効である。また、永久耐火物層3を2層以上の成形煉瓦とすることは、煉瓦の加熱による熱応力の吸収代を形成する意味でも有効である。   Furthermore, in the hot metal ladle, the back side of the permanent refractory layer 3, that is, the heat insulating material, when the number of bricks of the permanent refractory layer 3 is changed from the case of one layer to the case of two layers to the case of three layers. As a result of investigating the temperature on the inner surface side, it was found that when the permanent refractory layer 3 was formed of two or more molded bricks, the temperature was low. This is because a temperature gap is generated due to the presence of an adhesive surface such as mortar between two molded bricks. Even in the case of so-called “colored joints” where there is no mortar, a temperature gap due to the air layer is generated, so it is effective to use the permanent refractory layer 3 as two or more molded bricks. Moreover, making the permanent refractory layer 3 into two or more shaped bricks is also effective in forming a heat stress absorption margin due to heating of the bricks.

また、永久耐火物層3を構成する、2層の成形煉瓦の厚みを変更したときの放熱量、断熱材内面側温度を調査したところ、厚みが30mm以上の場合において、放熱量が低位になることが判明した。よって、十分な断熱性能を得るためには成形煉瓦の厚みは30mm以上確保することが必要である。一方上限については、断熱性の面からは特に上限値は定めないが、容器の容積確保の面及び施工性の面から65mm以下とすることが必要である。尚、永久耐火物層3を構成する成形煉瓦の材質には、MgO質煉瓦、高アルミナ質煉瓦、ロー石質煉瓦などの各種煉瓦を使用することができる。   Moreover, when the amount of heat radiation when the thickness of the two-layered bricks constituting the permanent refractory layer 3 was changed and the temperature on the inner surface of the heat insulating material were investigated, the heat radiation amount was low when the thickness was 30 mm or more. It has been found. Therefore, in order to obtain sufficient heat insulation performance, it is necessary to secure the thickness of the molded brick 30 mm or more. On the other hand, the upper limit is not particularly defined from the viewpoint of heat insulation, but it is necessary to be 65 mm or less from the viewpoint of securing the volume of the container and the workability. Various bricks such as MgO brick, high alumina brick, rhostone brick, etc. can be used as the material of the formed brick constituting the permanent refractory layer 3.

本発明は上記検討結果に基づきなされたもので、発明に係る製鉄用容器の耐火物ライニング構造は、高炉から出湯される溶銑を受銑して保持し、保持した溶銑を搬送する或いは保持した溶銑に精錬処理を実施するための製鉄用容器の耐火物ライニング構造であって、製鉄用容器の外側から、鉄皮、永久耐火物層、ワーク耐火物層をこの順に有し、製鉄用容器の側壁部位においては、前記永久耐火物層は、厚みが30mm以上65mm以下の成形煉瓦の2層以上の煉瓦層からなり、且つ、前記鉄皮と前記永久耐火物層との間には、断熱材を有することを特徴とする。   The present invention was made on the basis of the above examination results, and the refractory lining structure of the iron making container according to the invention receives and holds the hot metal discharged from the blast furnace, and conveys or holds the held hot metal. A refractory lining structure for an iron making container for carrying out the refining process, and having an iron skin, a permanent refractory layer, and a workpiece refractory layer in this order from the outside of the iron making container, and the side wall of the iron making container In the part, the permanent refractory layer is composed of two or more brick layers of a molded brick having a thickness of 30 mm to 65 mm, and a heat insulating material is provided between the iron skin and the permanent refractory layer. It is characterized by having.

一方、溶銑鍋の炉部においては、漏銑防止、更なる保熱性、溶銑による発生応力緩和の観点から、永久耐火物層3を構成する成形煉瓦の層を3層以上とすることが望ましい。この場合でも1層あたりの煉瓦厚みは、上記の理由から30mm以上65mm以下とする必要がある。   On the other hand, in the furnace part of the hot metal ladle, from the viewpoint of leakage prevention, further heat retention, and relaxation of generated stress due to hot metal, it is desirable that the number of the formed brick layers constituting the permanent refractory layer 3 be three or more. Even in this case, the brick thickness per layer needs to be 30 mm or more and 65 mm or less for the above reason.

ワーク耐火物層の厚みに関しては120mm以上確保するのが好ましい。通常、溶銑鍋は長期間使用され、ワーク耐火物層はスポーリングやスラグとの反応により徐々に損傷する。耐火物張替えの日数及びコストを削減するためには最低でも半年に1回の頻度でのワーク耐火物層の張替えにとどめたい。溶銑鍋の長期間使用によりワーク耐火物層が損傷するが、その厚みが稼働開始から半年間経過後に1/4まで低減した場合でも最低30mmを確保するためには、ワーク耐火物層の厚みは施工時の厚みを120mm以上確保することが好ましい。   Regarding the thickness of the workpiece refractory layer, it is preferable to ensure 120 mm or more. Usually, the hot metal ladle is used for a long time, and the workpiece refractory layer is gradually damaged by reaction with spalling and slag. In order to reduce the number of days and cost of refractory re-covering, we would like to limit the re-working of the work refractory layer at least once every six months. Although the workpiece refractory layer is damaged by long-term use of the hot metal ladle, the thickness of the workpiece refractory layer is to ensure a minimum of 30 mm even when the thickness is reduced to ¼ after half a year from the start of operation. It is preferable to secure a thickness of 120 mm or more during construction.

また、ワーク耐火物層は成形煉瓦または不定形耐火物の何れでも構わないが、ワーク耐火物層を構成する成形煉瓦または不定形耐火物は、断熱性の観点からはなるべく低熱伝導率のものを使用すべきであり、その熱伝導率の上限値を35W/m・K以下とすることが好ましい。熱伝導率が35W/m・Kを越える耐火物では断熱材内面側の温度が1000℃を超えてしまい、断熱材の性能が劣化するからである。尚、ワーク耐火物層を構成する耐火物の材質としては、MgO−C煉瓦、Al23−C系、Al23−SiC系、Al23−SiC−C系煉瓦などの各種煉瓦を使用することができる。 The workpiece refractory layer may be either a molded brick or an irregular refractory, but the molded brick or the irregular refractory constituting the workpiece refractory layer should have a low thermal conductivity as much as possible from the viewpoint of heat insulation. It should be used, and the upper limit of the thermal conductivity is preferably 35 W / m · K or less. This is because in a refractory having a thermal conductivity exceeding 35 W / m · K, the temperature on the inner surface of the heat insulating material exceeds 1000 ° C., and the performance of the heat insulating material deteriorates. The material of the refractory constituting the workpiece refractory layer includes various materials such as MgO—C brick, Al 2 O 3 —C, Al 2 O 3 —SiC, and Al 2 O 3 —SiC—C brick. Brick can be used.

本発明で使用する断熱材としては、その材質は、SiO2系、Al23系などの各種材質を使用することができ、特に制限されない。しかし、断熱材の熱伝導率は、抜熱量低減の効果を得る観点から、0.1W/m・K以下とすることが望ましい。0.1W/m・Kを超えると、放熱量が増大し、期待される断熱効果が得られない。尚、市販の断熱材は1000℃を超える高温では、断熱材自身の収縮が起こり、熱伝導率の増大が起こり得るため、その使用温度は1000℃以下にすることが好ましい。また、断熱材の施工に関しては、断熱材への水分吸収を避けるような施工方法を採ることが望ましい。 As the heat insulating material used in the present invention, various materials such as SiO 2 and Al 2 O 3 can be used, and there is no particular limitation. However, it is desirable that the thermal conductivity of the heat insulating material is 0.1 W / m · K or less from the viewpoint of obtaining the effect of reducing the heat removal amount. If it exceeds 0.1 W / m · K, the amount of heat release increases and the expected heat insulation effect cannot be obtained. In addition, since the heat insulating material itself contracts at a high temperature exceeding 1000 ° C. and the thermal conductivity may increase at a high temperature exceeding 1000 ° C., the use temperature is preferably 1000 ° C. or lower. Regarding the construction of the heat insulating material, it is desirable to adopt a construction method that avoids moisture absorption into the heat insulating material.

このような構成の本発明によれば、断熱材の設置位置を最適化するとともに、断熱材よりも稼働面側の永久耐火物層の構成を適正化することによって、溶銑鍋のような製鉄用容器の耐火物ライニング構造を断熱化するので、施工が容易であり、施工工数を増加させることなく、長期間にわたって十分な断熱効果を得ることができる。特に、断熱材の厚みを5mm以下にした場合には、断熱材は1000℃を超える温度に曝されることがなく、断熱材の変質が防止されて、長期間にわたって高い断熱効果を得ることが可能となる。   According to the present invention having such a configuration, the installation position of the heat insulating material is optimized, and by optimizing the configuration of the permanent refractory layer on the operating surface side of the heat insulating material, for iron making such as a hot metal ladle. Since the refractory lining structure of the container is insulated, the construction is easy, and a sufficient thermal insulation effect can be obtained over a long period of time without increasing the number of construction steps. In particular, when the thickness of the heat insulating material is 5 mm or less, the heat insulating material is not exposed to a temperature exceeding 1000 ° C., and the heat insulating material is prevented from being deteriorated, and a high heat insulating effect can be obtained over a long period of time. It becomes possible.

製鉄用容器として、ヒートサイズが300tである、図6に示す溶銑鍋を取り上げ、この溶銑鍋の側壁部及び底部に種々の施工方法で、ワーク耐火物層、永久耐火物層及び断熱材を施工した。本発明例、参考例及び比較例の施工条件を表2に示す。尚、図6において、符号1は溶銑鍋、2は鉄皮、3は永久耐火物層、4はワーク耐火物層、5は断熱材であり、図6は、参考例の例を示している。 The iron ladle shown in Fig. 6 is used as the iron making container, and the work refractory layer, the permanent refractory layer and the heat insulating material are constructed by various construction methods on the side wall and bottom of the ladle. did. Table 2 shows the construction conditions of the inventive example, the reference example, and the comparative example. In FIG. 6, reference numeral 1 is a hot metal ladle, 2 is an iron skin, 3 is a permanent refractory layer, 4 is a work refractory layer, 5 is a heat insulating material, and FIG. 6 shows an example of a reference example . .

Figure 0005659462
Figure 0005659462

参考例では、永久耐火物層を成形煉瓦の2層とし、1層あたりの厚みを30mmとした。ワーク耐火物層は厚み100mm、1000℃における熱伝導率が35W/m・Kのものを使用した。断熱材は永久耐火物層と鉄皮との間に厚み5mmのものを施工した。使用した断熱材の熱伝導率は0.1W/m・Kである。 In the reference example , the permanent refractory layer was two layers of molded brick, and the thickness per layer was 30 mm. A work refractory layer having a thickness of 100 mm and a thermal conductivity of 35 W / m · K at 1000 ° C. was used. A heat insulating material having a thickness of 5 mm was applied between the permanent refractory layer and the iron skin. The heat conductivity of the used heat insulating material is 0.1 W / m · K.

本発明例2では、永久耐火物層を成形煉瓦の2層とし、1層あたりの厚みを30mmとした。ワーク耐火物層は厚み160mm、1000℃における熱伝導率が15W/m・Kのものを使用した。断熱材は永久耐火物層と鉄皮との間に厚み5mmのものを施工した。使用した断熱材の熱伝導率は0.02W/m・Kである。   In Invention Example 2, the permanent refractory layer was formed of two layers of molded brick, and the thickness per layer was 30 mm. A work refractory layer having a thickness of 160 mm and a thermal conductivity of 15 W / m · K at 1000 ° C. was used. A heat insulating material having a thickness of 5 mm was applied between the permanent refractory layer and the iron skin. The heat conductivity of the used heat insulating material is 0.02 W / m · K.

これに対して、比較例1では、永久耐火物層を成形煉瓦の1層とし、1層あたりの厚みを60mmとした。ワーク耐火物層は厚み100mm、1000℃における熱伝導率が35W/m・Kのものを使用した。断熱材は施工しなかった。比較例2では、永久耐火物層を成形煉瓦の2層とし、1層あたりの厚みを30mmとした。ワーク耐火物層は厚み100mm、1000℃における熱伝導率が35W/m・Kのものを使用した。断熱材は施工しなかった。比較例3では、永久耐火物層を成形煉瓦の1層とし、1層あたりの厚みを60mmとした。ワーク耐火物層は厚み100mm、1000℃における熱伝導率が35W/m・Kのものを使用した。断熱材は永久耐火物層と鉄皮との間に厚み5mmのものを施工した。使用した断熱材の熱伝導率は0.1W/m・Kである。   On the other hand, in Comparative Example 1, the permanent refractory layer was one layer of molded brick, and the thickness per layer was 60 mm. A work refractory layer having a thickness of 100 mm and a thermal conductivity of 35 W / m · K at 1000 ° C. was used. No insulation was constructed. In Comparative Example 2, the permanent refractory layer was two layers of molded brick, and the thickness per layer was 30 mm. A work refractory layer having a thickness of 100 mm and a thermal conductivity of 35 W / m · K at 1000 ° C. was used. No insulation was constructed. In Comparative Example 3, the permanent refractory layer was one layer of molded brick, and the thickness per layer was 60 mm. A work refractory layer having a thickness of 100 mm and a thermal conductivity of 35 W / m · K at 1000 ° C. was used. A heat insulating material having a thickness of 5 mm was applied between the permanent refractory layer and the iron skin. The heat conductivity of the used heat insulating material is 0.1 W / m · K.

また、比較例4では、永久耐火物層を成形煉瓦の2層とし、1層あたりの厚みを30mmとした。ワーク耐火物層は厚み160mm、1000℃における熱伝導率が15W/m・Kのものを使用した。断熱材はワーク耐火物層と永久耐火物層との間に厚み5mmのものを施工した。使用した断熱材の熱伝導率は0.02W/m・Kである。比較例5では、永久耐火物層を成形煉瓦の2層とし、1層あたりの厚みを30mmとした。ワーク耐火物層は厚み160mm、1000℃における熱伝導率が15W/m・Kのものを使用した。断熱材は永久耐火物層を構成する2層の成形煉瓦の間に厚み5mmのものを施工した。使用した断熱材の熱伝導率は0.02W/m・Kである。比較例6では、永久耐火物層を成形煉瓦の2層とし、1層あたりの厚みを70mmとした。ワーク耐火物層は厚み180mm、1000℃における熱伝導率が15W/m・Kのものを使用した。断熱材は永久耐火物層と鉄皮との間に厚み5mmのものを施工した。使用した断熱材の熱伝導率は0.02W/m・Kである。   Moreover, in the comparative example 4, the permanent refractory layer was made into two layers of a molding brick, and the thickness per layer was 30 mm. A work refractory layer having a thickness of 160 mm and a thermal conductivity of 15 W / m · K at 1000 ° C. was used. A heat insulating material having a thickness of 5 mm was applied between the workpiece refractory layer and the permanent refractory layer. The heat conductivity of the used heat insulating material is 0.02 W / m · K. In Comparative Example 5, the permanent refractory layer was two layers of molded brick, and the thickness per layer was 30 mm. A work refractory layer having a thickness of 160 mm and a thermal conductivity of 15 W / m · K at 1000 ° C. was used. A heat insulating material having a thickness of 5 mm was formed between two layers of bricks constituting the permanent refractory layer. The heat conductivity of the used heat insulating material is 0.02 W / m · K. In Comparative Example 6, the permanent refractory layer was two layers of molded brick, and the thickness per layer was 70 mm. A work refractory layer having a thickness of 180 mm and a thermal conductivity of 15 W / m · K at 1000 ° C. was used. A heat insulating material having a thickness of 5 mm was applied between the permanent refractory layer and the iron skin. The heat conductivity of the used heat insulating material is 0.02 W / m · K.

本発明例、参考例及び比較例の施工条件の溶銑鍋を用いて高炉から出湯される約300tの溶銑を受銑し、受銑から溶銑払出しの期間における溶銑温度の降下量(ΔT(℃))を調査した。また、それぞれ耐火物ライニング構造が異なることから、各溶銑鍋での平均受銑量を調査した。また更に、赤外線温度計を用いて鉄皮温度を測定し、各条件での最高鉄皮温度を比較した。尚、全ての調査において、受銑から溶銑払出までの間は溶銑処理がない条件、つまり、途中で昇温処理工程或いは降温処理工程がない条件で調査を行った。調査結果を、表3に示す。 About 300 tons of hot metal discharged from the blast furnace is received using the hot metal ladle under the construction conditions of the present invention example , reference example and comparative example, and the amount of decrease in hot metal temperature (ΔT (° C.) during the hot metal discharge period from the receiving iron )investigated. In addition, since the refractory lining structure is different, the average amount of iron received in each hot metal ladle was investigated. Furthermore, the iron skin temperature was measured using an infrared thermometer, and the maximum iron skin temperature in each condition was compared. In all the investigations, the investigation was performed under the condition that there was no hot metal treatment from receiving to hot metal discharge, that is, the condition that there was no temperature rising process or temperature lowering process in the middle. The survey results are shown in Table 3.

Figure 0005659462
Figure 0005659462

参考例及び本発明の条件を満たす本発明例2では、比較例1〜5の何れと比較しても、最高鉄皮温度及び溶銑温度降下量ともに低位であり、断熱の効果が有効に得られている。 In Reference Examples and Invention Examples 2 satisfying the conditions of the present invention, even when compared with any of Comparative Examples 1-5 are low in both the maximum steel shell temperature and hot metal temperature drop, give the effect of thermal insulation is effective It has been.

特に、ワーク耐火物層及び永久耐火物層の施工条件が同一で、断熱材の有無のみが異なる参考例と比較例2とを比べると、参考例の方が最高鉄皮温度及び溶銑温度降下量ともに低位であった。また、永久耐火物層が1層で断熱材のない比較例1、及び、断熱材は設置されるものの、永久耐火物層が1層である比較例3と参考例とを比べても、参考例の方が断熱性に優位であることが確認できた。 In particular, comparing the comparative example 2 with the reference example in which the construction conditions of the workpiece refractory layer and the permanent refractory layer are the same and only the presence or absence of the heat insulating material is compared, the reference example has the highest iron skin temperature and hot metal temperature drop. Both were low. The permanent refractory layer Comparative Example 1 having no heat insulating material in one layer, and, although the heat insulator is installed, even compared with Comparative Example 3 permanent refractory layer is one layer and a reference example, Reference It was confirmed that the example was superior in heat insulation.

また、ワーク耐火物層及び永久耐火物層の施工条件が同一で、断熱材の施工部位が異なる本発明例2と比較例4及び比較例5とを比べると、永久耐火物層と鉄皮との間に断熱材を施工した本発明例2が最も良好な断熱効果が得られた。   Moreover, when the construction conditions of the workpiece refractory layer and the permanent refractory layer are the same, and the present invention example 2 is different from the construction part of the heat insulating material, the comparative example 4 and the comparative example 5, the permanent refractory layer and the iron skin Inventive Example 2 in which a heat insulating material was applied during the period, the best heat insulating effect was obtained.

また、ワーク耐火物層及び永久耐火物層の厚みが大きい比較例6は、溶銑温度降下については最も優れていたが、内容積が低下し、平均受銑量は他の条件に比べ減少し、溶銑鍋の配置数を増やす必要があり、この点で実操業には不適であった。   Further, Comparative Example 6 in which the thickness of the workpiece refractory layer and the permanent refractory layer is large was the most excellent in terms of hot metal temperature drop, but the internal volume was reduced, and the average amount of iron received decreased compared to other conditions, It was necessary to increase the number of hot metal ladle arrangements, and this was unsuitable for actual operation.

また、溶銑を払いだした後の空の溶銑鍋での地金付着状況を観察した結果、参考例本発明例2の溶銑鍋では地金付着は観察されなかったが、断熱材を施工していない比較例1,2では多量の地金付着が観察された。また、比較例3〜5でも、比較例1,2ほどではないが地金付着が観察された。比較例6では、地金付着は観察されなかった。 In addition, as a result of observing the adhesion state of the metal in the empty hot metal ladle after the hot metal was dispensed, no metal adhesion was observed in the hot metal ladle of Reference Example , Invention Example 2, but a heat insulating material was applied. In Comparative Examples 1 and 2, a large amount of metal adhesion was observed. Further, in Comparative Examples 3 to 5, adhesion of the metal was observed although not as much as Comparative Examples 1 and 2. In Comparative Example 6, no adhesion of metal was observed.

以上の結果から、断熱条件を的確に規定した本発明の優位性が確認できた。   From the above results, it was possible to confirm the superiority of the present invention in which the heat insulation conditions were accurately defined.

1 溶銑鍋
2 鉄皮
3 永久耐火物層
4 ワーク耐火物層
5 断熱材
DESCRIPTION OF SYMBOLS 1 Hot metal ladle 2 Iron skin 3 Permanent refractory layer 4 Work refractory layer 5 Thermal insulation

Claims (5)

高炉から出湯される溶銑を受銑して保持し、保持した溶銑を搬送する或いは保持した溶銑に精錬処理を実施するための製鉄用容器の耐火物ライニング構造であって、
製鉄用容器の外側から、鉄皮、永久耐火物層、ワーク耐火物層をこの順に有し、
製鉄用容器の底部及び側壁部位においては、
前記永久耐火物層は、厚みが30mm以上65mm以下の成形煉瓦の2層以上の煉瓦層からなり、
前記ワーク耐火物層は、施工時の厚みが120mm以上の、熱伝導率が35W/m・K以下である成形煉瓦または不定形耐火物からなり、
且つ、前記鉄皮と前記永久耐火物層との間に、厚みが5mm以下で、熱伝導率が0.02W/m・K以上0.1W/m・K以下である、前記永久耐火物層の上記形態、前記ワーク耐火物層の上記形態、及び、断熱材自体の前記厚みによって1000℃を超える温度に曝されないように構成された断熱材を有することを特徴とする、製鉄用容器の耐火物ライニング構造。
Receiving and holding the hot metal discharged from the blast furnace, transporting the held hot metal, or refractory lining structure of the iron making container for carrying out the refining process on the held hot metal,
From the outside of the steel container, it has an iron skin, a permanent refractory layer, a workpiece refractory layer in this order,
In the bottom and side wall parts of the steelmaking container,
The permanent refractory layer consists of two or more brick layers of molded bricks having a thickness of 30 mm to 65 mm,
The workpiece refractory layer is made of molded brick or amorphous refractory having a thickness of 120 mm or more during construction and a thermal conductivity of 35 W / m · K or less,
The permanent refractory layer having a thickness of 5 mm or less and a thermal conductivity of 0.02 W / m · K or more and 0.1 W / m · K or less between the iron skin and the permanent refractory layer. The above-mentioned form, the above-mentioned form of the work refractory layer, and the heat resistance of the iron-making container, characterized by having a heat insulating material configured not to be exposed to a temperature exceeding 1000 ° C. depending on the thickness of the heat insulating material itself. Material lining structure.
前記製鉄用容器の底部においては、前記永久耐火物層は、成形煉瓦の3層以上の煉瓦層からなることを特徴とする、請求項1に記載の製鉄用容器の耐火物ライニング構造。   2. The refractory lining structure for an iron making container according to claim 1, wherein the permanent refractory layer comprises three or more brick layers of molded bricks at the bottom of the iron making container. 前記永久耐火物層は、カラ目地であることを特徴とする、請求項1または請求項2に記載の製鉄用容器の耐火物ライニング構造。   3. The refractory lining structure for a steelmaking container according to claim 1, wherein the permanent refractory layer is a joint. 前記永久耐火物層は、ロー石質煉瓦からなることを特徴とする、請求項1ないし請求項3の何れか1つに記載の製鉄用容器の耐火物ライニング構造。   The refractory lining structure for a steelmaking container according to any one of claims 1 to 3, wherein the permanent refractory layer is made of rhostone brick. 高炉から出湯される溶銑を受銑して保持し、保持した溶銑を搬送する或いは保持した溶銑に精錬処理を実施するための製鉄用容器の耐火物ライニングの断熱方法であって、
前記製鉄用容器は、その外側から、鉄皮、永久耐火物層、ワーク耐火物層をこの順に有し、
前記製鉄用容器の底部及び側壁部位においては、
前記永久耐火物層を、厚みが30mm以上65mm以下のロー石質煉瓦からなる成形煉瓦の2層以上で施工し、
前記ワーク耐火物層を、熱伝導率が35W/m・K以下の成形煉瓦または不定形耐火物として120mm以上の厚みで施工し、
且つ、前記鉄皮と前記永久耐火物層との間に、厚みが5mm以下で、熱伝導率が0.02W/m・K以上0.1W/m・K以下である断熱材を施工し、
前記製鉄用容器の使用中に、前記断熱材が、前記永久耐火物層の上記形態、前記ワーク耐火物層の上記形態、及び、断熱材自体の前記厚みによって1000℃を超える温度に曝されることがないようにすることを特徴とする、製鉄用容器の耐火物ライニングの断熱方法。
It is a heat insulation method for a refractory lining of a steelmaking container for receiving and holding hot metal discharged from a blast furnace, carrying the held hot metal, or performing a refining treatment on the held hot metal,
The iron container, from the outside, has an iron skin, a permanent refractory layer, a workpiece refractory layer in this order,
In the bottom and side wall portions of the steel container,
The permanent refractory layer is constructed with two or more layers of molded brick made of rholite brick having a thickness of 30 mm to 65 mm,
The work refractory layer is applied with a thickness of 120 mm or more as molded brick or amorphous refractory having a thermal conductivity of 35 W / m · K or less,
And, between the iron skin and the permanent refractory layer, apply a heat insulating material having a thickness of 5 mm or less and a thermal conductivity of 0.02 W / m · K or more and 0.1 W / m · K or less,
During the use of the steel container, the heat insulating material is exposed to a temperature exceeding 1000 ° C. depending on the form of the permanent refractory layer, the form of the work refractory layer, and the thickness of the heat insulating material itself. A heat insulation method for a refractory lining of a steelmaking container, characterized in that it does not occur.
JP2009117111A 2009-05-14 2009-05-14 Refractory lining structure for steelmaking containers Active JP5659462B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009117111A JP5659462B2 (en) 2009-05-14 2009-05-14 Refractory lining structure for steelmaking containers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009117111A JP5659462B2 (en) 2009-05-14 2009-05-14 Refractory lining structure for steelmaking containers

Publications (2)

Publication Number Publication Date
JP2010266103A JP2010266103A (en) 2010-11-25
JP5659462B2 true JP5659462B2 (en) 2015-01-28

Family

ID=43363230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009117111A Active JP5659462B2 (en) 2009-05-14 2009-05-14 Refractory lining structure for steelmaking containers

Country Status (1)

Country Link
JP (1) JP5659462B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5707918B2 (en) * 2009-12-17 2015-04-30 Jfeスチール株式会社 Steel container
JP5707917B2 (en) * 2009-12-17 2015-04-30 Jfeスチール株式会社 Steel container
JP5494467B2 (en) * 2010-12-24 2014-05-14 新日鐵住金株式会社 Furnace wall structure of molten metal container and furnace wall construction method of molten metal container
IN2014KN02370A (en) * 2012-04-24 2015-05-01 Jfe Steel Corp
KR101929640B1 (en) * 2014-01-23 2018-12-14 제이에프이 스틸 가부시키가이샤 Process for producing lining structure of vessel for molten metal, and lining structure of vessel for molten metal

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59158993U (en) * 1983-04-11 1984-10-25 品川白煉瓦株式会社 Gas leak prevention structure of double inclined furnace wall
JP3679443B2 (en) * 1995-03-23 2005-08-03 黒崎播磨株式会社 Unstructured refractory lining structure for chaotic cars
JP4189087B2 (en) * 1999-07-23 2008-12-03 黒崎播磨株式会社 Lined structure of vacuum degassing furnace for molten steel and heat insulating plate used therefor
EP1323980A1 (en) * 2001-12-31 2003-07-02 Von Roll Umwelttechnik AG Cooled crown
JP2004010936A (en) * 2002-06-05 2004-01-15 Jfe Steel Kk Converter lining structure
JP3726778B2 (en) * 2002-06-05 2005-12-14 Jfeスチール株式会社 Hot metal holding container
JP4506607B2 (en) * 2005-07-29 2010-07-21 Jfeスチール株式会社 Molten metal container
JP2008190728A (en) * 2007-01-31 2008-08-21 Kurosaki Harima Corp Lining structure of industrial kiln or its accessory equipment and precast refractory block for use in it

Also Published As

Publication number Publication date
JP2010266103A (en) 2010-11-25

Similar Documents

Publication Publication Date Title
JP5659462B2 (en) Refractory lining structure for steelmaking containers
JP5680297B2 (en) Refractory lining structure for steelmaking containers
TW201100562A (en) Cast products having alumina barrier layer
JP5707917B2 (en) Steel container
CN104245190B (en) Molten steel container
JP5707918B2 (en) Steel container
JPH0225962B2 (en)
JP4731451B2 (en) Judgment method of refractory repair necessity of hot metal pan
JP2011144451A5 (en) Steel container
JP5062637B2 (en) Intermediate Stoke Manufacturing Method
JP2006272448A (en) Intermediate stoke and producing method therefor, and low pressure casting apparatus
JP6162982B2 (en) Skid button
JP6387018B2 (en) Cover flux and method for silicon purification
KR101511334B1 (en) Sliding nozzle plate
JP5691199B2 (en) Refractory lining structure for chaotic cars
JP5439919B2 (en) Refractory lining structure for chaotic cars
JP2003042667A (en) Protective structure of molten metal container
JP5544743B2 (en) Refractory lining structure for chaotic cars
JP2014055308A (en) Tuyere brick structure for gas blow
JP2012031507A (en) Immersion tube for vacuum degassing apparatus
JPH0643167Y2 (en) Immersion pipe for molten steel degassing equipment
JP2010264486A (en) Ladle for continuous casting, and continuous casting method
WO2012126058A1 (en) A refractory brick
JP6428692B2 (en) Refractory structure
JP2727937B2 (en) Cast-in method of Steve cooler for cooling blast furnace body

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141117

R150 Certificate of patent or registration of utility model

Ref document number: 5659462

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250