JP4511749B2 - Lance pipe for blowing powder and gas - Google Patents

Lance pipe for blowing powder and gas Download PDF

Info

Publication number
JP4511749B2
JP4511749B2 JP2001052805A JP2001052805A JP4511749B2 JP 4511749 B2 JP4511749 B2 JP 4511749B2 JP 2001052805 A JP2001052805 A JP 2001052805A JP 2001052805 A JP2001052805 A JP 2001052805A JP 4511749 B2 JP4511749 B2 JP 4511749B2
Authority
JP
Japan
Prior art keywords
refractory layer
amorphous refractory
metal tube
lance pipe
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001052805A
Other languages
Japanese (ja)
Other versions
JP2002256332A (en
Inventor
貴美子 藤井
陽一 辻
有策 高柳
一彦 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krosaki Harima Corp filed Critical Krosaki Harima Corp
Priority to JP2001052805A priority Critical patent/JP4511749B2/en
Publication of JP2002256332A publication Critical patent/JP2002256332A/en
Application granted granted Critical
Publication of JP4511749B2 publication Critical patent/JP4511749B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、混銑車、溶銑・溶鋼鍋等の溶融金属容器に貯留した溶融金属に対し、粉体及び不活性ガスを吹き込むランスパイプに関する。
【0002】
【従来の技術】
溶融金属の脱珪・脱燐・脱硫・温度調整及び成分調整等の目的のために、容器内の溶融金属にランスパイプをもって粉体及び不活性ガスを吹き込むことが行われている。
【0003】
これに使用されるランスパイプは、粉体及び不活性ガスを通ずる金属管の外周に不定形耐火物層が設けられている。ここで不定形耐火物層の保持手段は、金属管外周面に支持部材としてV字型、Y字型等のスタッドを突設し、牽引支持するのが一般的である。
【0004】
ランスパイプの使用時の状態は、溶融金属容器への浸漬と休止の繰り返し、つまり、加熱・冷却の繰り返しである。まず浸漬時は、溶融金属により加熱され、不定形耐火物層は温度が上昇する。それに対して金属管は、粉体やガスが流れていることにより冷却された状態となっている。次に休止時は溶融金属から取り出し、ガスを停止するため不定形耐火物層は外気によって温度が低下するが、金属管は不定形耐火物層からの熱を受けて温度が上昇し、それに伴い膨張する。
【0005】
一般に、金属と耐火物を比較すると、金属の方が高熱膨張率である。そのため、金属管と不定形耐火物層との間に熱膨張差が生まれ、不定形耐火物層には引張応力が発生し、この引張応力によって亀裂が発生する。また、スタッド自身も熱膨張するため、スタッドを起点として不定形耐火物層に亀裂が発生する。そして、この亀裂はランスパイプの耐用性低下の原因となる。
【0006】
この対策として、不定形耐火物層と金属管がそれぞれ独立して移動可能にすると共に不定形耐火物層の支持部材をこの不定形耐火物層の膨張に合わせて移動可能なものにすることで、不定形耐火物層の亀裂の一因となる支持部材の熱膨張応力を緩和する手段が提案されている。例えば特開2000−34516号公報および特開2000−63925号公報では、不定形耐火物層に内在させた格子状または螺旋状の金属製支持部材を、その上下両端部のみを金属管に遊嵌状態で支持している。
【0007】
【発明が解決しようとする課題】
しかし、上記従来のランスパイプにおいても、不定形耐火物層の亀裂発生の防止には決して十分ではなく、また、熱膨張差以外の何らかの要因で亀裂が発生した場合、その拡大が急速に進行し、ついには金属管への溶融金属の浸入、不定形耐火物層の剥落損傷等を招くことがあった。
【0008】
熱膨張差以外の亀裂発生要因としては、ランスパイプの振動が挙げられる。ランスパイプは粉体及び不活性ガスを吹き込むため、時に激しく横揺れする。これにより不定形耐火物層に引張応力が生じ、この引張応力が集中したところから亀裂が発生する。さらにその亀裂発生部位に応力が集中するため、亀裂の拡大が急速に進行するものと考えられる。
【0009】
本発明は、亀裂の発生の抑制、また、一度亀裂が発生した場合でもその拡大を遅らせることにより、従来構造よりも耐用性に優れたランスパイプを提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明のランスパイプは、金属管の外周に、支持部材を移動可能に内在させた不定形耐火物層を設けてなる粉体・ガス吹込用ランスにおいて、前記した不定形耐火物層の上端部に易破壊性耐火物層を設け、且つこの易破壊性耐火物層の上端面および側面を覆う押えを設けるとともに、この押えの易破壊性耐火物層の上面を覆う部分の前記金属管側の端部を前記金属管に接合したことを特徴とする。
【0011】
不定形耐火物層および支持部材は、ランスパイプの使用中の高温加熱を受けて膨張するが、金属管は、休止時に不定形耐火物層から熱を受けて膨張する。金属管は不定形耐火物層に比べて熱膨張率が高いため、不定形耐火物層には、引張応力が生じる。本発明は、支持部材が金属管に固着されておらず不定形耐火物層の膨張に追随して移動可能であり、金属管と不定形耐火物層がそれぞれ独立して移動することができるため、不定形耐火物層と金属管との間の熱膨張差が原因した不定形耐火物層の亀裂発生が防止される。
【0012】
図1は本発明における易破壊耐火物層の挙動の説明図である。本発明では不定形耐火物層2の上部に易破壊耐火物層6を設け、この易破壊性耐火物層6にその上端面および側面を覆う押え7によって拘束する。不定形耐火物層2は、ランスパイプの使用中の高温加熱を受けてランスパイプの上下方向に熱膨張し、応力が発生する。このとき、上端面の拘束によりその発生応力が、不定形耐火物層自身に圧縮応力として作用する。これにより、粉体やガスの吹き込みによる振動によって発生する引張応力を緩和することができる(図1(a))。
【0013】
また、本発明では不定形耐火物層2と押え7との間に、易破壊性耐火物層6を介在している。この易破壊性耐火物層6は不定形耐火物層2の熱膨張応力を受けて組織が破壊される。
【0014】
ランスパイプ休止時は、金属管1の温度上昇により、金属管1と不定形耐火物層2との間に膨張差が生じる。本発明では、ランスパイプ浸漬時に組織破壊した易破壊性耐火物層6の存在で、この膨張差は易破壊性耐火物層6の破壊個所の拡大により吸収され、不定形耐火物層2への引張応力が緩和される(図1(b))。
【0015】
さらに、易破壊性耐火物層6はその組織破壊で発生した粒子片6aが亀裂6bに噛み込むことで、ランスパイプの再度の使用に際しても不定形耐火物層2に十分な圧縮応力を付加し、振動に伴う引張応力を緩和する(図1(c))。
【0016】
ランスパイプの使用は加熱と冷却の繰り返しである。また、ランスパイプは使用時に激しい横揺れが生じる。本発明によれば、以上のとおりこの加熱、冷却及び振動によって発生する不定形耐火物層の引張応力を緩和することにより、不定形耐火物層の亀裂の発生、また、亀裂が発生した場合でもその拡大を抑制し、ランスパイプの耐用性を格段に向上させることができる。
【0017】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
【0018】
図2は本発明の実施の形態例を示す縦断面図である。CaO、CaCl2等の粉体およびArガス等の不活性ガスを流通させる金属管1の先端部に相当する吐出孔は一般に水平方向に左右に分岐している。金属管1の外周は、この金属管1の耐熱保護のために不定形耐火物層2を設ける。
【0019】
金属管1と不定形耐火物層2との間には、金属管と耐火物がそれぞれ独立して移動可能にするために、例えば特開2000−34516号公報のとおり緩衝材層3を設けることが好ましい。緩衝材層3は金属管1と不定形耐火物層2の熱膨張差を緩衝し、不定形耐火物層2の亀裂発生を抑制する。
【0020】
緩衝材層3の具体的な材質は、紙、布、合成樹脂等の焼失物、あるいはセラミックハイバー類等のクッション材である。厚さは不定形耐火物層2および緩衝材層3を含めた外層厚さ全体の10%以下が好ましい。
【0021】
不定形耐火物層2に内在させる支持部材4は、ここでは金属製の網を使用した。支持部材4を縦に直立させた状態で金属管1に対し周方向に複数本、好ましくは1〜3本設ける。
【0022】
支持部材4の金属管1への取付けは最小限に留める。例えば図のように支持部材4の上下端のみを支持杆5で掛止する。これによって、支持部材4は不定形耐火物層2に追随して移動可能になり、不定形耐火物層2と金属管1との熱膨張差による不定形耐火物層2の亀裂発生が抑制される。
【0023】
支持部材4を移動可能に設ける手段はこの図のものに限定されるものではない。例えば特開2000−34516号公報に示されるように、複数の金属棒を交差させながら螺旋状に包囲設置したものに、金属製リングを金属棒に組み合わせて格子状にしたものに、金属網の使用等がある。また、特開2000−63925号公報とおり、リング状スタッドを金属管に対してランスパイプの長さ方向に移動可能に取付けてもよい。
【0024】
支持部材4は、ランスパイプの長さ方向のほぼ全体にわたって移動可能に設けることが必要であるが、図のようにランスパイプの下端部においては、V字型、Y字型等のスタッドを併設してもよい。これは、吐出孔部の補強のためである。
【0025】
不定形耐火物層2の上端部に設ける易破壊性耐火物層6の材質は、特に限定されない。例えばキャスタブル耐火物、吹付け材、プラスチック耐火物、パッチング材等である。易破壊性耐火物層6に必要な易破壊性は、耐火物組織の緻密度、結合強度等の調整で発現される。
【0026】
易破壊性耐火物層6としては、結合剤としてアルミナセメントを使用しないか又はアルミナセメントの使用量が不定形耐火物層より少いキャスタブル耐火物が好ましい。これは、不定形耐火物層2の熱膨張を受けて易破壊性耐火物層6の組織が破壊された後、アルミナセメントを使用しないか又は使用量が少ないことで耐火骨材粒子が容易に脱離し、前記組織が破壊で生じた亀裂等の空隙にこの耐火骨材粒子が噛み込むことで、ランスパイプの再度の使用に際しても不定形耐火物層に十分な圧縮応力を付加する効果がより顕著である。
【0027】
不定形耐火物層および易破壊性耐火物層において使用される耐火物において、その耐火骨材の種類は特に限定されるものではなく、例えばアルミナ、シリカ、アルミナ−シリカ、マグネシア、アルミナ−マグネシア等を主材とする。必要によってはこれらに揮発シリカ、仮焼アルミナ、炭素、炭化珪素、ジルコン、ジルコニア等を組合わせる。これらの耐火骨材は天然品、合成品のいずれであってもよい。粒度は粗粒、中粒、微粒に適宜調整する。
【0028】
これらの耐火骨材の組み合わせによって、例えばアルミナ−マグネシア質、アルミナ−シリカ質、アルミナ−炭化珪素−炭素質等とする。
【0029】
さらに、分散剤、有機ファイバー、金属ファイバー、増粘剤(粘土、ベントナイト、CMC等)、酸化防止剤、硬化遅延剤、硬化促進剤、Al金属粉、Si金属粉等を添加してもよい。
【0030】
結合剤は、アルミナセメント、ケイ酸塩、リン酸塩、合成樹脂等である。不定形耐火物層についてはこの中でも施工体強度の面からアルミナセメントが好ましい。
【0031】
その施工は、不定形耐火物層にあっては支持部材がこの不定形耐火物層に埋没するように流し込みによって行う。結合剤の適正な添加量は結合剤の種類によっても異なるが、例えばアルミナセメントでは耐火骨材100質量%に対し外掛け1〜10質量%である。
【0032】
易破壊性耐火物層の施工方法は、特に限定されないが、作業性の面から流し込み施工、もしくは突き込み施工が好ましい。易破壊性耐火物層の材質を易破壊性にするためには、耐火骨材の粒径を粗粒子主体にする、結合剤の種類・添加量の調整等、任意の手段で行う。
【0033】
結合剤としてのアルミナセメントの添加量で調整する場合は、このアルミナセメントを添加しないか、あるいは不定形耐火物層におけるアルミナセメントの添加量より少なくする。
【0034】
【実施例】
以下、本発明の実施例およびその比較例を示す。
【0035】
外径120mm、高さ300mmの金属管の外周に厚さ50mmの不定形耐火物層を設け、支持部材は図1に示す金属製の網(金属管の周方向に1本)を使用した溶銑予備処理用のランスパイプについて、本発明実施例およびその比較例を示す。
【0036】
不定形耐火物層は500℃×3h焼成後の圧縮強度が35MPaの流し込み材とし、詳細には、アルミナ87質量%、マグネシア5質量%、シリカフラワー1質量%よりなる耐火骨材100質量%に、結合剤(アルミナセメント)7質量%、ステンレス鋼ファイバー4質量%および分散剤(ポリアクリル酸ソーダー)0.05質量%を添加し、さらに施工水を添加して混練後、型枠を使用し、振動を付与しつつ金属管の外周に流し込み施工した。各例においてこの不定形耐火物層はいずれも同材質とした。
【0037】
実施例1:易破壊性耐火物層として、500℃×3h焼成後の圧縮強度が7MPaの流し込み材とし、不定形耐火物層の上端部に高さ方向の厚さ25mmをもって流し込み施工した。易破壊性耐火物層の上端面および側面は、図2と同様に押えによって拘束した。
【0038】
実施例2:易破壊性耐火物層として、500℃×3h焼成後の圧縮強度が5MPaのパッチング材とし、不定形耐火物層の上端部に高さ方向の厚さ25mmをもって突込み施工した。押えの構造は前記実施例1と同様にした。
【0039】
比較例1:易破壊性耐火物層を設けず、全体を不定形耐火物層で統一した。上端面の押えは設けない。従来構造に相当する。
【0040】
比較例2:不定形耐火物層の上端部に実施例1と同一の易破壊性耐火物層を設け、その上端面の押えは設けなかった。
【0041】
比較例3:易破壊性耐火物層として、500℃×3h焼成後の圧縮強度が50MPaの流し込み材とし、不定形耐火物層の上端部に高さ方向の厚さ25mmをもって流し込み施工した。押えの構造は前記実施例1、2と同様にして設けた。
【0042】
表1は各例の実機試験の結果を示したものである。(質量%)
【表1】

Figure 0004511749
圧縮強さは、不定形耐火物層および易破壊性耐火物層のそれぞれの材質について測定した。供試体は、40×40×160mmの角柱供試体を用い、流し込み材については、2層に分けて振動施工を行い、パッチング材については、突き込み施工を行い、24h養生後、110℃×24h乾燥し、脱枠した。流し込み材の供試体作製方法としては、材料混練終了後、振動開始から15秒間で半分を流し込み、15秒間放置、次の15秒間で残りを流し込み、トータル120秒間振動後、上面をへらで削り取り、平にする。その上にガラス板をのせ、濡れウエスを被せた状態で24時間養生後脱枠し、110℃×24h乾燥した。その後、それぞれの試験片を、実際の状態を想定して、500℃×3h加熱後、JISR2553に準じて圧縮強さの測定を行った。
【0043】
耐亀裂性:実際のランスパイプ構造をもって、試験室において試験した。ランスパイプをの使用状況を想定して、ランスパイプの下方を中心に1400℃×0.5hr加熱後、空冷し、これを5回繰り返した後、亀裂の状況を観察した。
【0044】
実機試験では、使用経過において不定形耐火物層の亀裂発生の程度を観察と、耐用性として使用可能回数を求めた。
【0045】
耐亀裂性は試験室、実機共に、◎…亀裂きわめて小、○…亀裂小、亀裂…大の三段階で評価した。なお、比較例2、3は試験室での耐亀裂性の試験から、その性能の悪さが明らかであり、実機試験するに至らなかった。
【0046】
表1の結果が示すとおり、実施例はいずれも不定形耐火物層の上端部に下部の不定形耐火物層の熱応力によって破壊される易破壊性耐火物層を設けたものであり、亀裂が小さく、耐用性において優れた効果が得られた。
【0047】
比較例1、比較例2共に上端面の拘束がなく、熱膨張による圧縮応力が付加されないためか亀裂発生が大きい。比較例1ではこの亀裂が原因し、耐用性が本発明実施例に比べて大きく劣る。
【0048】
比較例3は易破壊性耐火物層の強度が高く、浸漬時に破壊されなかったために、休止時に亀裂が発生した。
【0049】
【発明の効果】
ランスパイプは、不活性ガスによる冷却と外部からの高温とによる著しい温度勾配によって不定形耐火物層に亀裂発生しやすく、しかも激しい横揺れのためにその亀裂の進展が早い。そして、この亀裂が大きくなると不定形耐火物層の一部が破損し、金属管の変形あるいは溶解でランスパイプはたちまち寿命となる。
【0050】
本発明は、以上のように、ランスパイプの寿命において特に重要な亀裂発生防止進展抑制に優れた効果を発揮する。その結果、実施例の試験結果が示すとおり、ランスパイプの寿命を格段に向上させることができる。
【図面の簡単な説明】
【図1】 本発明における易破壊耐火物層の挙動の説明図である。
【図2】 本発明の実施の形態例を示す縦断面図である。
【符号の説明】
1:金属管
2:不定形耐火物層
3:緩衝材層
4:支持部材
5:支持杆
6:易破壊性耐火物層
6a:粒子片
6b:亀裂
7:押え[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lance pipe that blows powder and an inert gas into a molten metal stored in a molten metal container such as a kneading wheel or a hot metal / molten steel pan.
[0002]
[Prior art]
For the purpose of desiliconization, dephosphorization, desulfurization, temperature adjustment and component adjustment of molten metal, powder and inert gas are blown into the molten metal in a container through a lance pipe.
[0003]
The lance pipe used for this is provided with an amorphous refractory layer on the outer periphery of a metal tube that passes through the powder and the inert gas. Here, the holding means for the amorphous refractory layer is generally provided by pulling and supporting V-shaped, Y-shaped or other studs as supporting members on the outer peripheral surface of the metal tube.
[0004]
The state of the lance pipe in use is repeated immersion and pause in the molten metal container, that is, repeated heating and cooling. First, at the time of immersion, the molten metal is heated and the temperature of the amorphous refractory layer rises. On the other hand, the metal tube is cooled by the flow of powder and gas. Next, when the gas is stopped, the temperature of the amorphous refractory layer drops due to the outside air, but the metal pipe receives the heat from the amorphous refractory layer and rises accordingly. Inflate.
[0005]
Generally, when a metal and a refractory are compared, the metal has a higher coefficient of thermal expansion. Therefore, a thermal expansion difference is generated between the metal tube and the amorphous refractory layer, and a tensile stress is generated in the amorphous refractory layer, and a crack is generated by this tensile stress. Further, since the stud itself also thermally expands, a crack occurs in the amorphous refractory layer starting from the stud. And this crack becomes the cause of the durability fall of a lance pipe.
[0006]
As a countermeasure, the refractory layer and the metal pipe can be moved independently, and the support member for the refractory layer can be moved according to the expansion of the refractory layer. Means have been proposed for alleviating the thermal expansion stress of the support member that contributes to cracks in the amorphous refractory layer. For example, in Japanese Unexamined Patent Publication No. 2000-34516 and Japanese Unexamined Patent Publication No. 2000-63925, a lattice-like or spiral metal support member embedded in an irregular refractory layer is loosely fitted to a metal tube only at both upper and lower ends. Support in the state.
[0007]
[Problems to be solved by the invention]
However, the above-described conventional lance pipes are not sufficient to prevent cracks in the amorphous refractory layer, and when cracks occur due to a factor other than the thermal expansion difference, the expansion proceeds rapidly. Eventually, molten metal permeated into the metal tube, and the amorphous refractory layer peeled off.
[0008]
As a cause of crack generation other than the thermal expansion difference, vibration of the lance pipe can be cited. Lance pipes sometimes violently roll because they blow powder and inert gas. As a result, a tensile stress is generated in the amorphous refractory layer, and a crack is generated from the concentration of the tensile stress. Furthermore, since stress concentrates on the crack generation site, it is considered that the cracks expand rapidly.
[0009]
It is an object of the present invention to provide a lance pipe that is more durable than a conventional structure by suppressing the occurrence of cracks and delaying the expansion of cracks once they occur.
[0010]
[Means for Solving the Problems]
The lance pipe of the present invention is a lance for powder / gas blowing in which an outer periphery of a metal pipe is provided with an amorphous refractory layer in which a supporting member is movably incorporated, and an upper end portion of the above-mentioned amorphous refractory layer. Provided with a fragile refractory layer and a presser covering the upper end surface and the side surface of the fragile refractory layer, and a portion of the presser that covers the upper surface of the fragile refractory layer on the metal tube side. The end is joined to the metal tube.
[0011]
The amorphous refractory layer and the support member expand upon receiving high-temperature heating during use of the lance pipe, while the metal tube expands upon receiving heat from the amorphous refractory layer. Since the metal tube has a higher coefficient of thermal expansion than the amorphous refractory layer, tensile stress is generated in the amorphous refractory layer. In the present invention, the support member is not fixed to the metal tube and can move following the expansion of the amorphous refractory layer, and the metal tube and the amorphous refractory layer can move independently. The occurrence of cracks in the amorphous refractory layer due to the difference in thermal expansion between the amorphous refractory layer and the metal tube is prevented.
[0012]
FIG. 1 is an explanatory view of the behavior of the easily breakable refractory layer in the present invention. In the present invention, an easily destructible refractory layer 6 is provided on the upper part of the amorphous refractory layer 2, and the easily destructible refractory layer 6 is restrained by a presser 7 that covers the upper end surface and side surfaces thereof. The amorphous refractory layer 2 undergoes high-temperature heating during use of the lance pipe, thermally expands in the vertical direction of the lance pipe, and stress is generated. At this time, the generated stress acts as a compressive stress on the amorphous refractory layer itself due to the restriction of the upper end surface. Thereby, the tensile stress which generate | occur | produces by the vibration by blowing powder or gas can be relieved (FIG. 1 (a)).
[0013]
In the present invention, the easily destructible refractory layer 6 is interposed between the amorphous refractory layer 2 and the presser 7. This easily destructible refractory layer 6 receives the thermal expansion stress of the amorphous refractory layer 2 and the structure is destroyed.
[0014]
When the lance pipe is stopped, a difference in expansion occurs between the metal tube 1 and the amorphous refractory layer 2 due to the temperature rise of the metal tube 1. In the present invention, due to the presence of the easily destructible refractory layer 6 that has undergone structural destruction when immersed in the lance pipe, this expansion difference is absorbed by the expansion of the destruction location of the easily destructible refractory layer 6, and The tensile stress is relaxed (FIG. 1 (b)).
[0015]
Further, the easily breakable refractory layer 6 has sufficient compressive stress applied to the amorphous refractory layer 2 even when the lance pipe is used again, because the particle pieces 6a generated by the fracture of the structure bite into the crack 6b. Then, the tensile stress accompanying vibration is relaxed (FIG. 1 (c)).
[0016]
The use of the lance pipe is repeated heating and cooling. In addition, the lance pipe is subject to severe rolls during use. According to the present invention, as described above, by relaxing the tensile stress of the amorphous refractory layer generated by heating, cooling and vibration, the occurrence of cracks in the amorphous refractory layer, and even when cracks occur, The expansion can be suppressed and the durability of the lance pipe can be significantly improved.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0018]
FIG. 2 is a longitudinal sectional view showing an embodiment of the present invention. The discharge hole corresponding to the tip of the metal tube 1 through which a powder such as CaO and CaCl 2 and an inert gas such as Ar gas circulates generally branches left and right in the horizontal direction. An amorphous refractory layer 2 is provided on the outer periphery of the metal tube 1 for heat-resistant protection of the metal tube 1.
[0019]
In order to allow the metal tube and the refractory to move independently between the metal tube 1 and the amorphous refractory layer 2, for example, a buffer material layer 3 is provided as disclosed in JP 2000-34516 A. Is preferred. The buffer material layer 3 buffers the difference in thermal expansion between the metal tube 1 and the amorphous refractory layer 2 and suppresses the occurrence of cracks in the amorphous refractory layer 2.
[0020]
The specific material of the cushioning material layer 3 is paper, cloth, burned-out material such as synthetic resin, or cushioning material such as ceramic hives. The thickness is preferably 10% or less of the entire outer layer thickness including the amorphous refractory layer 2 and the buffer material layer 3.
[0021]
Here, a metal net is used as the support member 4 to be included in the amorphous refractory layer 2. A plurality, preferably 1 to 3, are provided in the circumferential direction with respect to the metal tube 1 in a state where the support member 4 is vertically upright.
[0022]
Attachment of the support member 4 to the metal tube 1 is kept to a minimum. For example, as shown in the figure, only the upper and lower ends of the support member 4 are hooked by the support bar 5. As a result, the support member 4 can move following the amorphous refractory layer 2 and the occurrence of cracks in the amorphous refractory layer 2 due to the difference in thermal expansion between the amorphous refractory layer 2 and the metal tube 1 is suppressed. The
[0023]
The means for movably providing the support member 4 is not limited to that shown in this figure. For example, as disclosed in Japanese Patent Laid-Open No. 2000-34516, a metal mesh is combined with a metal ring in a lattice form by being surrounded and installed in a spiral shape while intersecting a plurality of metal bars, There is use. Further, as disclosed in Japanese Patent Laid-Open No. 2000-63925, the ring-shaped stud may be attached to the metal tube so as to be movable in the length direction of the lance pipe.
[0024]
The support member 4 is required to be movable over almost the entire length of the lance pipe. However, as shown in the figure, a V-shaped or Y-shaped stud is provided at the lower end of the lance pipe. May be. This is for reinforcing the discharge hole.
[0025]
The material of the easily destructible refractory layer 6 provided at the upper end of the amorphous refractory layer 2 is not particularly limited. For example, castable refractories, spray materials, plastic refractories, patching materials, and the like. Easily destructible necessary for the easily destructible refractory layer 6 is expressed by adjusting the density of the refractory structure, the bond strength, and the like.
[0026]
The easily destructible refractory layer 6 is preferably a castable refractory that does not use alumina cement as a binder or uses less alumina cement than the amorphous refractory layer. This is because, after the structure of the easily destructible refractory layer 6 is destroyed due to the thermal expansion of the amorphous refractory layer 2, the refractory aggregate particles can be easily formed by using no alumina cement or using a small amount. The refractory aggregate particles bite into voids such as cracks caused by detachment and destruction of the structure, so that the effect of adding sufficient compressive stress to the amorphous refractory layer is improved even when the lance pipe is used again. It is remarkable.
[0027]
In the refractory used in the amorphous refractory layer and the easily destructible refractory layer, the kind of the refractory aggregate is not particularly limited. For example, alumina, silica, alumina-silica, magnesia, alumina-magnesia, etc. Is the main material. If necessary, these are combined with volatile silica, calcined alumina, carbon, silicon carbide, zircon, zirconia and the like. These refractory aggregates may be natural products or synthetic products. The particle size is appropriately adjusted to coarse particles, medium particles, and fine particles.
[0028]
Depending on the combination of these refractory aggregates, for example, alumina-magnesia, alumina-silica, alumina-silicon carbide-carbonaceous, and the like.
[0029]
Further, a dispersant, organic fiber, metal fiber, thickener (clay, bentonite, CMC, etc.), antioxidant, curing retarder, curing accelerator, Al metal powder, Si metal powder and the like may be added.
[0030]
The binder is alumina cement, silicate, phosphate, synthetic resin or the like. Of these, the alumina cement is preferable for the amorphous refractory layer in view of the strength of the construction body.
[0031]
In the case of the irregular refractory layer, the construction is performed by pouring so that the support member is buried in the irregular refractory layer. The appropriate amount of the binder added varies depending on the type of the binder, but for example, alumina cement is 1 to 10% by mass on the outer side of 100% by mass of the refractory aggregate.
[0032]
The construction method of the easily destructible refractory layer is not particularly limited, but casting construction or indentation construction is preferable from the viewpoint of workability. In order to make the material of the easily destructible refractory layer easily destructible, it is carried out by any means such as adjusting the particle type of the refractory aggregate to coarse particles or adjusting the type and amount of the binder.
[0033]
When adjusting with the addition amount of the alumina cement as a binder, this alumina cement is not added or it is made smaller than the addition amount of the alumina cement in an amorphous refractory layer.
[0034]
【Example】
Examples of the present invention and comparative examples thereof are shown below.
[0035]
A metal refractory layer having a thickness of 50 mm is provided on the outer periphery of a metal tube having an outer diameter of 120 mm and a height of 300 mm, and the supporting member is made of a metal mesh (one in the circumferential direction of the metal tube) shown in FIG. Examples of the present invention and comparative examples of the lance pipe for pretreatment will be described.
[0036]
The amorphous refractory layer is a casting material having a compressive strength of 35 MPa after baking at 500 ° C. for 3 hours. Specifically, the refractory layer is made of 100% by mass of refractory aggregate composed of 87% by mass of alumina, 5% by mass of magnesia, and 1% by mass of silica flour. , 7% by weight of binder (alumina cement), 4% by weight of stainless steel fiber and 0.05% by weight of dispersant (sodium polyacrylate) are added. Then, it was poured into the outer periphery of the metal tube while applying vibration. In each example, the amorphous refractory layer was made of the same material.
[0037]
Example 1: As an easily destructible refractory layer, a cast material having a compressive strength of 7 MPa after baking at 500 ° C. for 3 hours was used, and poured into the upper end portion of the amorphous refractory layer with a thickness of 25 mm. The upper end surface and the side surface of the easily destructible refractory layer were restrained by a presser as in FIG.
[0038]
Example 2: As an easily destructible refractory layer, a patching material having a compressive strength of 5 MPa after baking at 500 ° C. for 3 hours was used, and plunged into the upper end portion of the amorphous refractory layer with a thickness of 25 mm in the height direction. The structure of the presser was the same as in Example 1.
[0039]
Comparative Example 1: An easily destructible refractory layer was not provided, and the whole was unified with an amorphous refractory layer. There is no upper end presser foot. This corresponds to the conventional structure.
[0040]
Comparative Example 2: The same easily destructible refractory layer as in Example 1 was provided at the upper end of the irregular refractory layer, and the upper end surface was not provided with a presser.
[0041]
Comparative Example 3: As an easily destructible refractory layer, a cast material having a compressive strength of 50 MPa after firing at 500 ° C. for 3 hours was used, and the upper end portion of the amorphous refractory layer was cast with a thickness of 25 mm. The structure of the presser was provided in the same manner as in Examples 1 and 2.
[0042]
Table 1 shows the result of the actual machine test of each example. (mass%)
[Table 1]
Figure 0004511749
The compressive strength was measured for each material of the amorphous refractory layer and the easily destructible refractory layer. The test specimen is a 40 × 40 × 160 mm prismatic specimen, the casting material is divided into two layers, and the vibration construction is performed. The patching material is subjected to thrust construction, and after curing for 24 h, 110 ° C. × 24 h Dried and de-framed. As a specimen preparation method of the casting material, after mixing the material, half of the casting is poured for 15 seconds from the start of vibration, left for 15 seconds, the rest is poured for the next 15 seconds, and after vibration for a total of 120 seconds, the upper surface is scraped off with a spatula. Flatten. A glass plate was placed on the substrate, and after being cured for 24 hours in a state of being covered with a wet cloth, the frame was removed and dried at 110 ° C. for 24 hours. Then, each test piece was measured for compressive strength according to JISR2553 after heating at 500 ° C. for 3 hours assuming an actual state.
[0043]
Crack resistance: Tested in a laboratory with an actual lance pipe structure. Assuming the usage situation of the lance pipe, it was heated at 1400 ° C. × 0.5 hr around the bottom of the lance pipe, then air-cooled, and this was repeated 5 times, and then the crack situation was observed.
[0044]
In the actual machine test, the degree of occurrence of cracks in the amorphous refractory layer was observed in the course of use, and the number of usable times was determined as the durability.
[0045]
The crack resistance was evaluated in three stages: ◎ ... very small crack, ○ ... small crack, crack ... large in both the test room and the actual machine. In Comparative Examples 2 and 3, the poor performance was apparent from the crack resistance test in the test room, and the actual machine test was not completed.
[0046]
As shown in the results of Table 1, all the examples are provided with an easily destructible refractory layer that is broken by the thermal stress of the lower amorphous refractory layer at the upper end of the amorphous refractory layer, and cracks. Was small and an excellent effect in durability was obtained.
[0047]
Both Comparative Example 1 and Comparative Example 2 are not constrained at the upper end surface, and cracks are likely to occur because compressive stress due to thermal expansion is not applied. In Comparative Example 1, this crack is caused, and the durability is greatly inferior to that of the Example of the present invention.
[0048]
In Comparative Example 3, the strength of the easily destructible refractory layer was high and was not broken at the time of immersion.
[0049]
【The invention's effect】
The lance pipe is likely to crack in the amorphous refractory layer due to a significant temperature gradient caused by cooling with an inert gas and a high temperature from the outside, and the crack progresses rapidly due to intense roll. And if this crack becomes large, a part of the amorphous refractory layer will be damaged, and the lance pipe will have a lifetime due to deformation or melting of the metal tube.
[0050]
As described above, the present invention exerts an excellent effect on crack generation prevention and progress suppression that is particularly important in the life of the lance pipe. As a result, as the test results of the examples show, the life of the lance pipe can be significantly improved.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of the behavior of an easily breakable refractory layer in the present invention.
FIG. 2 is a longitudinal sectional view showing an embodiment of the present invention.
[Explanation of symbols]
1: Metal tube 2: Amorphous refractory layer 3: Buffer material layer 4: Support member 5: Support rod 6: Easily destructible refractory layer 6a: Particle piece 6b: Crack 7: Presser

Claims (1)

金属管の外周に、支持部材を移動可能に内在させた不定形耐火物層を設けてなる粉体・ガス吹込用ランスにおいて、前記した不定形耐火物層の上端部に、この不定形耐火物層からの熱応力によって破壊される易破壊性耐火物層を設け、且つこの易破壊性耐火物層の上面および側面を覆う押えを設けると共に、この押えの易破壊性耐火物層の上面を覆う部分の前記金属管側の端部を前記金属管に接合したことを特徴とする粉体・ガス吹き込み用ランスパイプ。In a powder / gas blowing lance provided with a non-standard refractory layer in which a support member is movably provided on the outer periphery of a metal tube, the non-standard refractory is formed at the upper end of the non-standard refractory layer. A refractory refractory layer that is destroyed by thermal stress from the layer is provided, and a presser that covers the upper surface and side surfaces of the fragile refractory layer is provided, and the upper surface of the fragile refractory layer of the presser is covered. A lance pipe for blowing powder / gas, wherein an end of the portion on the metal tube side is joined to the metal tube.
JP2001052805A 2001-02-27 2001-02-27 Lance pipe for blowing powder and gas Expired - Fee Related JP4511749B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001052805A JP4511749B2 (en) 2001-02-27 2001-02-27 Lance pipe for blowing powder and gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001052805A JP4511749B2 (en) 2001-02-27 2001-02-27 Lance pipe for blowing powder and gas

Publications (2)

Publication Number Publication Date
JP2002256332A JP2002256332A (en) 2002-09-11
JP4511749B2 true JP4511749B2 (en) 2010-07-28

Family

ID=18913380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001052805A Expired - Fee Related JP4511749B2 (en) 2001-02-27 2001-02-27 Lance pipe for blowing powder and gas

Country Status (1)

Country Link
JP (1) JP4511749B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100453943C (en) * 2004-03-09 2009-01-21 徐向成 Composite secondary and triple lance of charcoal rotary kiln and making method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5583744U (en) * 1978-12-06 1980-06-09
JPS5951055U (en) * 1982-09-28 1984-04-04 日本鋼管株式会社 Blow lance pipe for molten metal processing
JPS61198255U (en) * 1985-05-27 1986-12-11
JPH09296212A (en) * 1996-04-30 1997-11-18 Harima Ceramic Co Ltd Lance for blowing gas
JP2000034516A (en) * 1998-07-15 2000-02-02 Kurosaki Refract Co Ltd Refractory-coated holding structure of lance pipe for blowing powdery material and gas
JP2000063925A (en) * 1998-08-21 2000-02-29 Toshiba Ceramics Co Ltd Immersion lance

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5583744U (en) * 1978-12-06 1980-06-09
JPS5951055U (en) * 1982-09-28 1984-04-04 日本鋼管株式会社 Blow lance pipe for molten metal processing
JPS61198255U (en) * 1985-05-27 1986-12-11
JPH09296212A (en) * 1996-04-30 1997-11-18 Harima Ceramic Co Ltd Lance for blowing gas
JP2000034516A (en) * 1998-07-15 2000-02-02 Kurosaki Refract Co Ltd Refractory-coated holding structure of lance pipe for blowing powdery material and gas
JP2000063925A (en) * 1998-08-21 2000-02-29 Toshiba Ceramics Co Ltd Immersion lance

Also Published As

Publication number Publication date
JP2002256332A (en) 2002-09-11

Similar Documents

Publication Publication Date Title
JP5842573B2 (en) Skid post
JP6576193B2 (en) Electrocast refractory tax tone and melting kiln
JP5680297B2 (en) Refractory lining structure for steelmaking containers
JP5110539B2 (en) FeO resistant coating material
JP4511749B2 (en) Lance pipe for blowing powder and gas
JP2013234092A (en) Cast refractory
JP4945257B2 (en) Refractory
JPH09192822A (en) Tundish cover
JP6441684B2 (en) Castable refractories for lids of molten metal containers
Vance et al. Steelplant refractories containing alphabond hydratable alumina binders
JP5180504B2 (en) Method for manufacturing precast block for metal melting furnace ceiling and precast block for metal melting furnace ceiling
JPH08219659A (en) Construction method for induction furnace lining refractory
US11150022B2 (en) Use of a heat insulating molded body for isolation of molten metal against the atmosphere or against a metallurgical vessel
JP6775462B2 (en) Anchor brick
US7882620B2 (en) Composite ceramic device for measuring the temperature of liquids
JP6974801B2 (en) Graphite-containing refractory
JP2003042667A (en) Protective structure of molten metal container
JP2006225195A (en) Monolithic refractory
JP3580212B2 (en) Method of manufacturing stave cooler
JP6957544B2 (en) Method for manufacturing graphite-containing refractory
JPH10101441A (en) Composition for castable refractory and formation of furnace wall using the same composition
JP4022661B2 (en) Fiber reinforced composite heat-resistant molded body
JP4087474B2 (en) Porous plug and manufacturing method thereof
JP2005042967A (en) Heat insulating structure having ceramic fiber and constructing method thereof
JP2023166933A (en) Manufacturing method of refractory containing graphite

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100409

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100507

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4511749

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees