JP2004011970A - Pig iron retainer - Google Patents

Pig iron retainer Download PDF

Info

Publication number
JP2004011970A
JP2004011970A JP2002163809A JP2002163809A JP2004011970A JP 2004011970 A JP2004011970 A JP 2004011970A JP 2002163809 A JP2002163809 A JP 2002163809A JP 2002163809 A JP2002163809 A JP 2002163809A JP 2004011970 A JP2004011970 A JP 2004011970A
Authority
JP
Japan
Prior art keywords
hot metal
brick
magnesia
bricks
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002163809A
Other languages
Japanese (ja)
Other versions
JP3726778B2 (en
Inventor
Hisaki Kato
加藤 久樹
Makoto Kato
加藤 誠
Manabu Tano
田野 学
Haruyoshi Tanabe
田辺 治良
Shinichi Yamamoto
山本 慎一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002163809A priority Critical patent/JP3726778B2/en
Publication of JP2004011970A publication Critical patent/JP2004011970A/en
Application granted granted Critical
Publication of JP3726778B2 publication Critical patent/JP3726778B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pig iron retainer thoroughly exhibiting characteristics of alumina, magnesia, and carbonaceous refractory, when a series of pig iron pretreatments for desulfurization and dephosphorization are performed in a same pig iron retainer, and elongating the life of the pig iron retainer. <P>SOLUTION: This pig iron retainer for performing the pig iron pretreatments of both of the desulfurization and the dephosphorization for the stored pig iron is formed by using alumina-magnesia-carbon material bricks containing carbon of 3-20 mass%, magnesia of 1-20 mass%, and alumina of 60-96 mass% for lining bricks 4, and agalmatolite bricks or chamotte bricks for permanent set bricks 5. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、高炉等から出銑される溶銑を収容し、収容した溶銑の脱硫処理及び脱燐処理の両方が行われる溶銑保持容器に関するものである。
【0002】
【従来の技術】
高炉−転炉による銑鋼一貫型の製鉄所においては、高炉から出銑された溶銑に対して、転炉で精錬される前に溶銑予備処理と呼ばれる脱硫処理、脱珪処理及び脱燐処理が施されている。当初、これらの溶銑予備処理は、鋼材の品質面から低燐化や低硫化が要求される品種について実施されていたが、近年では、転炉におけるスラグ発生量の削減、Mn鉱石還元によるコスト削減、及び転炉生産性向上等により、品質面からの要求のみならず、製鋼工程のトータルコストを削減する手段として、ほぼ全ての溶銑に対して溶銑予備処理が施されるようになった。
【0003】
溶銑予備処理は、高炉から出銑される溶銑を受銑し、この溶銑を転炉まで搬送する溶銑鍋(「高炉鍋」とも呼ぶ)やトーピードカー等の溶銑保持容器内で行われ、しかも、精錬剤としてソーダ灰や融剤の蛍石を加えた生石灰等を用いて行われる。これらの精錬剤は耐火物に対する強力な浸食性を有し、そのため、溶銑保持容器の内張り耐火物は激しい浸食作用を受けるようになった。
【0004】
更に、脱硫処理後及び脱燐処理後には、復燐防止及び復硫防止のためにそれぞれ添加した精錬剤を排出する必要があり、この場合、溶銑保持容器を傾斜させ、精錬剤の排出し易い状態にして排出作業を行うため、その度に溶銑から露出される溶銑保持容器側壁面の内張り煉瓦は温度昇降を繰り返し、激しい熱衝撃を受けるようになった。
【0005】
このような内張り煉瓦の受ける浸食作用及び熱衝撃は、特に同一の溶銑保持容器内でこれら一連の溶銑予備処理を行う場合に極めて激しくなる。これは、精錬剤との接触回数並びに排滓作業回数が共に増加するためである。
【0006】
そのため、溶銑保持容器の内張り煉瓦として耐浸食性並びに耐スポーリング性に優れた耐火材料が種々提案され、広く用いられるようになった。そのうちの1つとして、アルミナ−マグネシア−炭素質耐火物が、例えば特開平3−205355号公報等に提案されている。この耐火物は、使用中の受熱によりアルミナとマグネシアとでスピネル(MgO・Al)をマトリックス部に形成させ、耐浸食性を向上させると同時に、炭素添加により耐スポーリング性を向上させた耐火物である。
【0007】
【発明が解決しようとする課題】
しかしながら、脱硫処理及び脱燐処理の一連の溶銑予備処理を同一の溶銑保持容器内で行う場合には、アルミナ−マグネシア−炭素質耐火物を溶銑保持容器の内張り煉瓦として使用しても、期待したほどの延命化が達成されていないのが現状である。
【0008】
本発明は上記事情に鑑みなされたもので、その目的とするところは、脱硫処理及び脱燐処理の一連の溶銑予備処理を同一の溶銑保持容器内で行う場合に、アルミナ−マグネシア−炭素質耐火物の有する特性を如何なく発揮させ、溶銑保持容器の延命化を達成することの可能な構造の溶銑保持容器を提供することである。
【0009】
【課題を解決するための手段】
本発明者らは、上記課題を解決すべく鋭意検討を重ねた。以下に検討結果を説明する。
【0010】
アルミナ−マグネシア−炭素質煉瓦が内張りされた溶銑鍋から使用済みのアルミナ−マグネシア−炭素質煉瓦を回収し、回収した煉瓦のX線回折及びミクロ組織を調査した。その結果、溶銑と接触する稼働面ではアルミナとマグネシアとによりスピネル(MgO・Al)が形成されていたが、稼働面から数mm以上離れた位置ではスピネルは形成されていなかった。
【0011】
一方、溶鋼を収容する取鍋に設置されたアルミナ−マグネシア−炭素質煉瓦及びアルミナ−マグネシア煉瓦を回収してX線回折及びミクロ組織を調査した場合には、稼働面のみならず、稼働面から数十mmの範囲にわたってスピネルが形成されていることが確認できた。
【0012】
そこで、溶銑を収容する溶銑鍋と溶鋼を収容する取鍋とでこのような差が生ずる理由を検討した。
【0013】
煉瓦中のアルミナとマグネシアとを反応させてスピネルを生成させるには、当該煉瓦を高温状態に保持する必要がある。溶鋼を収容する取鍋の場合、1600℃以上、高い場合には1650℃以上の温度の溶鋼が転炉等製鋼炉から取鍋内に出湯されるため、この溶鋼と接触する内張り煉瓦は1600℃以上の高温域まで加熱されることになる。そして、凝固相が析出しない範囲の温度、具体的にはおよそ1550℃以上の状態のままで溶鋼を保持するので、内張り煉瓦の稼働面から離れた位置でも相当の高温域に曝されることが分かる。
【0014】
一方、高炉から出銑される溶銑の温度は溶鋼に比べて格段に低く、且つ、高炉鋳床に設置された長さ20m以上にも及ぶ樋を流れてから溶銑鍋に受銑されるため、高くとも1400℃程度で通常は1350℃以下である。
【0015】
即ち、溶鋼を収容する取鍋と溶銑を収容する溶銑鍋とでは、使用中の収容物による加熱温度に200℃以上の差があり、このため、溶銑鍋では温度の高い稼働面近傍ではスピネルが形成されるものの、稼働面から離れた位置では温度が低く、アルミナとマグネシアとの反応によるスピネルが形成され難いことが分かった。従って、溶銑の有する熱を有効に利用して溶銑鍋の内張り煉瓦を高温域に保持すれば、温度の低い溶銑を保持する溶銑鍋でもスピネル生成反応が起こり、耐火物の延命化が達成されるとの知見が得られた。
【0016】
本発明は、上記検討結果に基づきなされたもので、第1の発明に係る溶銑保持容器は、収容した溶銑に対して脱硫処理及び脱燐処理の両方の溶銑予備処理を行う溶銑保持容器であって、炭素を3〜20mass%、マグネシアを1〜20mass%、アルミナを60〜96mass%含有するアルミナ−マグネシア−炭素質煉瓦を内張り煉瓦とし、ロウ石煉瓦若しくはシャモット煉瓦を永久張り煉瓦としたことを特徴とするものである。
【0017】
第2の発明に係る溶銑保持容器は、第1の発明において、前記アルミナ−マグネシア−炭素質煉瓦は、更に15mass%以下の炭化珪素を含有することを特徴とし、又、第3の発明に係る溶銑保持容器は、第1の発明又は第2の発明において、前記内張り煉瓦と溶銑保持容器鉄皮との間に更に断熱材が設置されていることを特徴とするものである。
【0018】
本発明では、耐火物のなかでも特に熱伝導性の低いロウ石煉瓦若しくはシャモット煉瓦をアルミナ−マグネシア−炭素質煉瓦の裏側に設置するので、溶銑保持容器の鉄皮側に伝達される熱エネルギーが抑制され、溶銑の有する熱はアルミナ−マグネシア−炭素質煉瓦に効率良く蓄積され、当該煉瓦を高温域に保持することが可能となる。その結果、アルミナとマグネシアとのスピネル生成反応が促進され、内張り煉瓦の延命化が達成される。
【0019】
【発明の実施の形態】
以下、添付図面を参照して本発明の実施の形態を説明する。図1及び図2は、本発明の実施形態の1例を示す図であって、図1は本発明に係る溶銑鍋を側面から見た部分断面図、図2は、図1におけるA部の詳細図である。
【0020】
図において、溶銑鍋1は、溶銑保持容器として高炉から出銑された溶銑を受銑し、受銑した溶銑を転炉まで搬送するものである。そして、転炉までの搬送途中で収容した溶銑に対して脱硫処理及び脱燐処理が施される。この溶銑鍋1は、その外側を鉄皮2で覆われ、その内側に、永久張り煉瓦5としてロウ石煉瓦若しくはシャモット煉瓦が設けられている。永久張り煉瓦5は溶銑鍋1の耐火物張り替えの際には繰り返し再使用されるものであり、図において、永久張り煉瓦5は2層設置されているが、2層に限るわけではなく、1層若しくは2層以上としても良い。又、配置される部位でその形状が異なるが、全て永久張り煉瓦5と称す。
【0021】
そして、溶銑鍋1の永久張り煉瓦5の内面側には、アルミナ−マグネシア−炭素質煉瓦が内張り煉瓦4として設けられている。内張り煉瓦4は、溶銑や精錬剤及び溶融スラグと直接接触してこれらを保持するものでワーク煉瓦とも呼ばれる。この内張り煉瓦4の上側には1段の押え煉瓦7が設けられ、溶銑鍋1の内周壁が形成されている。押え煉瓦7は、鉄皮2の上端円周方向に設けた鉄皮フランジ3により、モルタル8を介して押さえ付けられており、このようにして内張り煉瓦4が押え煉瓦7により押え付けられている。
【0022】
又、2層にわたる永久張り煉瓦5の外側と内側との間には、セラミックシート、キャスタブル耐火物及びセラミックファイバー等からなる断熱材6が設けられている。断熱材6の設置により鉄皮2側への熱伝達量が抑制され、内張り煉瓦4の温度を上昇させることができるので、本発明においては断熱材6を設置することが好ましい。図では断熱材6が2層にわたる永久張り煉瓦5の外側と内側との間に設置されているが、鉄皮2と永久張り煉瓦5との間に設置しても、又、内張り煉瓦4と永久張り煉瓦5との間に設置しても良く、更に、これらの二箇所以上に設置しても良い。
【0023】
そして、内張り煉瓦4を、炭素含有量が3〜20mass%、マグネシア含有量が1〜20mass%、アルミナ含有量が60〜96mass%からなるアルミナ−マグネシア−炭素質煉瓦とする。
【0024】
本発明で用いるアルミナ−マグネシア−炭素質煉瓦において、炭素含有量が3mass%未満では耐スポーリング性を付与することが困難であり、一方、20mass%を越える場合には煉瓦の稼働面における脱炭が激しくなり、スラグに対する耐浸食性が低下する。それ故、炭素含有量は3〜20mass%の範囲内にする必要があり、望ましくは10〜15mass%の範囲内とする。炭素は、鱗状黒鉛や土状黒鉛等の黒鉛を用いることが好ましい。
【0025】
マグネシア含有量が1mass%未満ではスピネル生成量が少なく、スピネル生成による耐浸食性の向上を期待できず、一方、20mass%を越えるとスピネル生成による膨張量が多くなり、この膨張により煉瓦組織が破壊され、煉瓦寿命を低下させる。それ故、マグネシア含有量は1〜20mass%の範囲にする必要があり、望ましくは5〜8mas%の範囲内とする。
【0026】
炭化珪素は耐火物の低膨張化による耐スポーリング性の向上と耐火物中炭素の酸化抑制に効果があり、従って、上記成分に加えて更に炭化珪素を配合させることが好ましい。炭化珪素の配合量としては15mass%以下、望ましくは3mass%以下とする。15mass%を越えるとマトリックス部の耐浸食性に低下を来すため好ましくない。アルミナ含有量は、これらの残部とする。
【0027】
このようにして構成される溶銑鍋1を用いて高炉から出銑される溶銑を受銑し、そして、転炉までの搬送途中で収容した溶銑に対して脱硫処理及び脱燐処理を施す。この場合、脱燐処理に先立ち脱珪処理を行うこともある。脱硫処理及び脱燐処理の順序は特に限定する必要はなく、各製鉄所のレイアウト等により適宜定められるものである。又、脱硫処理及び脱燐処理は通常の処理方法、即ち生石灰やソーダ灰等を精錬剤として用いた方法で実施する。
【0028】
溶銑鍋1は上記のように構成されているので、収容された溶銑からの熱が内張り煉瓦4に蓄積され、内張り煉瓦4中のアルミナとマグネシアとが溶銑鍋1の使用中に反応して内張り煉瓦4のマトリックス部にスピネルが生成され、内張り煉瓦4の耐浸食性が向上する。又、内張り煉瓦4には耐スポーリング性向上のために炭素が含有されており、その結果、内張り煉瓦4は頻繁に行われる脱硫処理及び脱燐処理にも拘わらず損耗量が抑制され、長期間安定して使用することが可能となる。
【0029】
尚、上記説明は、溶銑保持容器として溶銑鍋1の例を説明したが、トーピードカーであっても上記に沿って本発明を適用することができる。又、本発明は上記説明に限る訳でなく種々の変更が可能である。例えば、押え煉瓦7は1段に限るわけではなく、溶銑鍋1の寸法や溶銑の収納量等から、最上段から下方に2〜3段或いは4〜5段と適宜設けることができ、又、キャスタブル耐火物の適用も可能である。
【0030】
【発明の効果】
本発明によれば、脱硫処理及び脱燐処理の両方の溶銑予備処理を行う溶銑保持容器において、アルミナ−マグネシア−炭素質煉瓦を内張り煉瓦とし、ロウ石煉瓦若しくはシャモット煉瓦を永久張り煉瓦としたので、内張り煉瓦であるアルミナ−マグネシア−炭素質煉瓦のスピネル化が促進され、内張り煉瓦の耐浸食性を大幅に向上させることが可能となる。その結果、炭素配合による耐スポーリング性の向上と相まって、溶銑保持容器の延命化を達成することが可能となり、耐火物原単価の大幅な削減等の工業上有益な効果がもたらされる。
【図面の簡単な説明】
【図1】本発明の実施形態の1例を示す図であって、本発明に係る溶銑鍋を側面から見た部分断面図である。
【図2】図1におけるA部の詳細図である。
【符号の説明】
1 溶銑鍋
2 鉄皮
3 鉄皮フランジ
4 内張り煉瓦
5 永久張り煉瓦
6 断熱材
7 押え煉瓦
8 モルタル
[0001]
TECHNICAL FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hot metal holding container that stores hot metal that is tapped from a blast furnace or the like and that performs both desulfurization processing and dephosphorization processing of the stored hot metal.
[0002]
[Prior art]
In a blast furnace-converter pig steel integrated steelworks, hot metal discharged from the blast furnace is subjected to desulfurization, desiliconization, and dephosphorization, which are called hot metal pretreatment before being refined in the converter. It has been subjected. Initially, these hot metal pretreatments were carried out for varieties that required low phosphorus and low sulphidation in terms of steel quality, but in recent years, reduction of slag generation in converters and cost reduction by reducing Mn ore As a means of reducing not only quality requirements but also the total cost of the steelmaking process due to improvements in converter productivity, etc., almost all hot metal has been subjected to hot metal pretreatment.
[0003]
Hot metal pretreatment is carried out in a hot metal holding vessel such as a hot metal pot (also called "blast furnace pot") or a torpedo car that receives hot metal from a blast furnace and transports the hot metal to a converter. As an agent, soda ash or quick lime to which a fluorite as a flux is added is used. These refining agents have a strong erosion property against refractories, and as a result, the refractory lining of the hot metal holding vessel has been subjected to severe erosion.
[0004]
Furthermore, after the desulfurization treatment and after the dephosphorization treatment, it is necessary to discharge the refining agent added to prevent the rephosphorization and the resulfurization, and in this case, the molten metal holding container is inclined to easily discharge the refining agent. In order to perform the discharging operation in this state, the lining brick on the side wall of the hot metal holding container exposed from the hot metal repeatedly rises and falls in temperature, and is subjected to severe thermal shock.
[0005]
Such erosion and thermal shock to the lining brick become extremely severe especially when performing a series of hot metal pretreatments in the same hot metal holding vessel. This is because both the number of times of contact with the refining agent and the number of times of waste work increase.
[0006]
Therefore, various refractory materials having excellent erosion resistance and spalling resistance have been proposed and widely used as lining bricks of a hot metal holding container. As one of them, an alumina-magnesia-carbonaceous refractory has been proposed in, for example, JP-A-3-205355. In this refractory, spinel (MgO.Al 2 O 3 ) is formed in a matrix portion of alumina and magnesia by heat reception during use, thereby improving erosion resistance and, at the same time, improving spalling resistance by adding carbon. Refractory.
[0007]
[Problems to be solved by the invention]
However, when performing a series of hot metal pretreatments of desulfurization treatment and dephosphorization treatment in the same hot metal holding vessel, it was expected to use alumina-magnesia-carbonaceous refractory as the lining brick of the hot metal holding vessel. At present, the life extension has not been achieved as much.
[0008]
The present invention has been made in view of the above circumstances, and it is an object of the present invention to perform a series of hot metal pretreatments of desulfurization treatment and dephosphorization treatment in the same hot metal holding vessel, so that alumina-magnesia-carbonaceous refractory. An object of the present invention is to provide a hot metal holding container having a structure capable of fully exhibiting the properties of a material and achieving a prolonged life of the hot metal holding container.
[0009]
[Means for Solving the Problems]
The present inventors have intensively studied to solve the above-mentioned problems. The results of the study are described below.
[0010]
Used alumina-magnesia-carbonaceous bricks were recovered from a hot metal pot lined with alumina-magnesia-carbonaceous bricks, and the recovered bricks were examined for X-ray diffraction and microstructure. As a result, a spinel (MgO.Al 2 O 3 ) was formed by alumina and magnesia on the operating surface in contact with the hot metal, but no spinel was formed at a position separated from the operating surface by several mm or more.
[0011]
On the other hand, when the alumina-magnesia-carbonaceous brick and the alumina-magnesia brick placed on the ladle containing the molten steel are collected and examined for X-ray diffraction and microstructure, not only from the working surface, but also from the working surface It was confirmed that spinel was formed over a range of several tens of mm.
[0012]
Then, the reason why such a difference occurs between the hot metal ladle storing the hot metal and the ladle storing the molten steel was examined.
[0013]
In order to generate spinel by reacting alumina and magnesia in a brick, it is necessary to keep the brick at a high temperature. In the case of a ladle for storing molten steel, molten steel having a temperature of 1600 ° C. or higher, and 1650 ° C. or higher in the case of high temperature is discharged from a steelmaking furnace such as a converter into the ladle. It will be heated to the above high temperature range. And, since the molten steel is kept at a temperature in a range where the solidification phase does not precipitate, specifically, at a temperature of about 1550 ° C. or more, it can be exposed to a considerably high temperature region even at a position away from the operating surface of the lining brick. I understand.
[0014]
On the other hand, the temperature of the hot metal that is tapped from the blast furnace is much lower than that of the molten steel, and since it flows through a gutter extending over 20 m in length installed in the blast furnace cast floor, it is received by the hot metal pot, It is at most about 1400 ° C. and usually 1350 ° C. or less.
[0015]
That is, there is a difference of 200 ° C or more in the heating temperature of the ladle containing molten steel and the ladle containing hot metal due to the contents being used. Although formed, the temperature was low at a position distant from the operating surface, and it was found that spinel due to the reaction between alumina and magnesia was difficult to form. Therefore, if the lining brick of the hot metal pot is held in a high temperature range by effectively utilizing the heat of the hot metal, a spinel formation reaction occurs even in the hot metal pot holding the hot metal having a low temperature, and the life extension of the refractory is achieved. Was obtained.
[0016]
The present invention has been made based on the above-described examination results, and the hot metal holding vessel according to the first invention is a hot metal holding vessel for performing both hot metal pretreatments, that is, desulfurization processing and dephosphorization processing, on the stored hot metal. Alumina-magnesia-carbonaceous brick containing 3 to 20 mass% of carbon, 1 to 20 mass% of magnesia, and 60 to 96 mass% of alumina was used as a lining brick, and a wax brick or a chamotte brick was used as a permanent brick. It is a feature.
[0017]
A hot metal holding container according to a second invention is characterized in that, in the first invention, the alumina-magnesia-carbonaceous brick further contains 15 mass% or less of silicon carbide, and further relates to the third invention. The hot metal holding container according to the first or second aspect of the present invention is further characterized in that a heat insulating material is further provided between the lining brick and the hot metal holding container.
[0018]
In the present invention, among the refractories, particularly low-thermal-conductivity wax stone bricks or chamotte bricks are installed on the back side of the alumina-magnesia-carbonaceous brick, so that the thermal energy transmitted to the steel shell side of the hot metal holding vessel is reduced. The heat of the hot metal is suppressed, and the heat of the hot metal is efficiently accumulated in the alumina-magnesia-carbonaceous brick, and the brick can be maintained in a high temperature range. As a result, the spinel formation reaction between alumina and magnesia is promoted, and the life of the lining brick is extended.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. 1 and 2 are views showing an example of an embodiment of the present invention. FIG. 1 is a partial cross-sectional view of a hot metal pot according to the present invention as viewed from a side, and FIG. FIG.
[0020]
In the figure, a hot metal ladle 1 receives hot metal from a blast furnace as a hot metal holding vessel and transports the hot metal received to a converter. Then, desulfurization treatment and dephosphorization treatment are performed on the hot metal accommodated in the middle of the transportation to the converter. The hot metal pot 1 is covered on its outer side with a steel shell 2, and on the inner side thereof, a wax brick or a chamotte brick is provided as a permanent brick 5. The permanent brick 5 is repeatedly reused when the refractory of the hot metal ladle 1 is replaced. In the figure, two layers of the permanent brick 5 are installed. However, the number of the permanent brick 5 is not limited to two. It may be a layer or two or more layers. Moreover, although the shape differs depending on the portion where it is arranged, all of them are referred to as permanent bricks 5.
[0021]
Alumina-magnesia-carbonaceous brick is provided as an inner brick 4 on the inner surface side of the permanent brick 5 of the hot metal pot 1. The lining brick 4 directly contacts and holds the hot metal, the refining agent and the molten slag, and is also called a work brick. Above the lining brick 4, a one-stage holding brick 7 is provided, and the inner peripheral wall of the hot metal ladle 1 is formed. The holding brick 7 is pressed via the mortar 8 by the steel flange 3 provided in the circumferential direction of the upper end of the steel shell 2, and the lining brick 4 is pressed by the holding brick 7 in this manner. .
[0022]
A heat insulating material 6 made of a ceramic sheet, a castable refractory, a ceramic fiber, or the like is provided between the outside and the inside of the two-layer permanent brick 5. In the present invention, it is preferable to install the heat insulating material 6 since the heat transfer to the steel shell 2 is suppressed by the installation of the heat insulating material 6 and the temperature of the lining brick 4 can be increased. In the figure, the heat insulating material 6 is installed between the outside and the inside of the permanent brick 5 over two layers. However, even if it is installed between the steel shell 2 and the permanent brick 5, It may be installed between the permanent upholstered bricks 5 and may be installed at two or more of these places.
[0023]
The lining brick 4 is an alumina-magnesia-carbonaceous brick having a carbon content of 3 to 20 mass%, a magnesia content of 1 to 20 mass%, and an alumina content of 60 to 96 mass%.
[0024]
In the alumina-magnesia-carbonaceous brick used in the present invention, if the carbon content is less than 3 mass%, it is difficult to impart spalling resistance. On the other hand, if it exceeds 20 mass%, decarburization on the working surface of the brick is difficult. And the erosion resistance to slag decreases. Therefore, the carbon content needs to be in the range of 3 to 20 mass%, and preferably in the range of 10 to 15 mass%. As the carbon, it is preferable to use graphite such as flaky graphite and earthy graphite.
[0025]
When the magnesia content is less than 1 mass%, the amount of spinel formation is small, and improvement in erosion resistance due to spinel formation cannot be expected. On the other hand, when the magnesia content exceeds 20 mass%, the expansion amount due to spinel formation increases, and the brick structure is destroyed by this expansion. And reduce brick life. Therefore, the magnesia content needs to be in the range of 1 to 20 mass%, and preferably in the range of 5 to 8 mass%.
[0026]
Silicon carbide has an effect of improving the spalling resistance due to the low expansion of the refractory and suppressing the oxidation of carbon in the refractory. Therefore, it is preferable to mix silicon carbide in addition to the above components. The content of silicon carbide is set to 15% by mass or less, preferably 3% by mass or less. If it exceeds 15 mass%, the erosion resistance of the matrix portion is undesirably reduced. The alumina content is the balance of these.
[0027]
The hot metal from the blast furnace is received using the hot metal ladle 1 thus configured, and the hot metal accommodated in the middle of the transportation to the converter is subjected to desulfurization and dephosphorization. In this case, a desiliconization treatment may be performed before the dephosphorization treatment. The order of the desulfurization treatment and the dephosphorization treatment does not need to be particularly limited, and is appropriately determined according to the layout of each steelworks. The desulfurization treatment and the dephosphorization treatment are carried out by a usual treatment method, that is, a method using quicklime or soda ash as a refining agent.
[0028]
Since the hot metal pot 1 is configured as described above, heat from the stored hot metal is accumulated in the lining brick 4, and the alumina and magnesia in the lining brick 4 react during use of the hot metal pot 1 to line the lining. Spinel is generated in the matrix portion of the brick 4, and the erosion resistance of the lining brick 4 is improved. In addition, the lining brick 4 contains carbon for improving the spalling resistance. As a result, the lining brick 4 has a reduced amount of wear despite the frequent desulfurization and dephosphorization treatments, It can be used for a stable period.
[0029]
In the above description, the example of the hot metal ladle 1 is described as the hot metal holding container. However, the present invention can be applied to a torpedo car in accordance with the above description. Further, the present invention is not limited to the above description, and various changes can be made. For example, the holding brick 7 is not limited to one stage, and can be provided as appropriate in two to three stages or four to five stages below the top stage, depending on the dimensions of the hot metal ladle 1 and the amount of hot metal stored therein, Application of castable refractories is also possible.
[0030]
【The invention's effect】
According to the present invention, in a hot metal holding vessel for performing hot metal pretreatment of both desulfurization treatment and dephosphorization treatment, alumina-magnesia-carbonaceous bricks are used as lining bricks, and wax stone bricks or chamotte bricks are used as permanent bricks. In addition, the alumina-magnesia-carbonaceous brick as the lining brick is promoted into spinel, and the erosion resistance of the lining brick can be greatly improved. As a result, in combination with the improvement in spalling resistance due to the carbon blending, the life of the hot metal holding container can be prolonged, and industrially beneficial effects such as a significant reduction in the refractory raw material unit price can be brought about.
[Brief description of the drawings]
FIG. 1 is a view showing an example of an embodiment of the present invention, and is a partial cross-sectional view of a hot metal pot according to the present invention as viewed from a side.
FIG. 2 is a detailed view of a portion A in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Hot metal pot 2 Iron shell 3 Iron flange 4 Lining brick 5 Permanent brick 6 Insulation material 7 Holding brick 8 Mortar

Claims (3)

収容した溶銑に対して脱硫処理及び脱燐処理の両方の溶銑予備処理を行う溶銑保持容器であって、炭素を3〜20mass%、マグネシアを1〜20mass%、アルミナを60〜96mass%含有するアルミナ−マグネシア−炭素質煉瓦を内張り煉瓦とし、ロウ石煉瓦若しくはシャモット煉瓦を永久張り煉瓦としたことを特徴とする溶銑保持容器。A hot metal holding container for performing a hot metal pretreatment of both a desulfurization treatment and a dephosphorization treatment on a contained hot metal, comprising 3-20 mass% of carbon, 1-20 mass% of magnesia, and 60-96 mass% of alumina. -Magnesia-A hot metal holding container characterized in that carbonaceous bricks are used as lining bricks and wax stone bricks or chamotte bricks are used as permanent bricks. 前記アルミナ−マグネシア−炭素質煉瓦は、更に15mass%以下の炭化珪素を含有することを特徴とする請求項1に記載の溶銑保持容器。2. The hot metal holding container according to claim 1, wherein the alumina-magnesia-carbonaceous brick further contains 15 mass% or less of silicon carbide. 前記内張り煉瓦と溶銑保持容器鉄皮との間に更に断熱材が設置されていることを特徴とする請求項1又は請求項2に記載の溶銑保持容器。The hot metal holding container according to claim 1 or 2, wherein a heat insulating material is further provided between the lining brick and the hot metal holding container iron shell.
JP2002163809A 2002-06-05 2002-06-05 Hot metal holding container Expired - Fee Related JP3726778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002163809A JP3726778B2 (en) 2002-06-05 2002-06-05 Hot metal holding container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002163809A JP3726778B2 (en) 2002-06-05 2002-06-05 Hot metal holding container

Publications (2)

Publication Number Publication Date
JP2004011970A true JP2004011970A (en) 2004-01-15
JP3726778B2 JP3726778B2 (en) 2005-12-14

Family

ID=30432134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002163809A Expired - Fee Related JP3726778B2 (en) 2002-06-05 2002-06-05 Hot metal holding container

Country Status (1)

Country Link
JP (1) JP3726778B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010101620A (en) * 2009-11-19 2010-05-06 Nippon Steel Engineering Co Ltd Refractory material structure of waste melting furnace
JP2010266103A (en) * 2009-05-14 2010-11-25 Jfe Steel Corp Refractory lining structure for container for iron manufacturing
JP2012136723A (en) * 2010-12-24 2012-07-19 Nippon Steel Corp Furnace wall structure of molten metal container and furnace wall construction method of molten metal container
JP2013152069A (en) * 2011-12-26 2013-08-08 Jfe Steel Corp Refractory lining structure for iron manufacturing container
WO2015111394A1 (en) * 2014-01-23 2015-07-30 Jfeスチール株式会社 Process for producing lining structure of vessel for molten metal, and lining structure of vessel for molten metal
KR20160063520A (en) * 2014-11-26 2016-06-07 주식회사 포스코 Dephosporization method for chromium containing hot metal and method of manufacturing stainless steel

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010266103A (en) * 2009-05-14 2010-11-25 Jfe Steel Corp Refractory lining structure for container for iron manufacturing
JP2010101620A (en) * 2009-11-19 2010-05-06 Nippon Steel Engineering Co Ltd Refractory material structure of waste melting furnace
JP2012136723A (en) * 2010-12-24 2012-07-19 Nippon Steel Corp Furnace wall structure of molten metal container and furnace wall construction method of molten metal container
JP2013152069A (en) * 2011-12-26 2013-08-08 Jfe Steel Corp Refractory lining structure for iron manufacturing container
WO2015111394A1 (en) * 2014-01-23 2015-07-30 Jfeスチール株式会社 Process for producing lining structure of vessel for molten metal, and lining structure of vessel for molten metal
JP5907312B2 (en) * 2014-01-23 2016-04-26 Jfeスチール株式会社 Method for manufacturing lining structure of molten metal container
JPWO2015111394A1 (en) * 2014-01-23 2017-03-23 Jfeスチール株式会社 Method for manufacturing lining structure of molten metal container
KR101929640B1 (en) * 2014-01-23 2018-12-14 제이에프이 스틸 가부시키가이샤 Process for producing lining structure of vessel for molten metal, and lining structure of vessel for molten metal
KR20160063520A (en) * 2014-11-26 2016-06-07 주식회사 포스코 Dephosporization method for chromium containing hot metal and method of manufacturing stainless steel
KR101647206B1 (en) * 2014-11-26 2016-08-10 주식회사 포스코 Dephosporization method for chromium containing hot metal and method of manufacturing stainless steel

Also Published As

Publication number Publication date
JP3726778B2 (en) 2005-12-14

Similar Documents

Publication Publication Date Title
JP5418733B2 (en) Hot metal refining method
JP2004011970A (en) Pig iron retainer
RU2645170C1 (en) Method of steel making in arc-type electric steel making furnace
CA2310431C (en) Refractory batch, in particular for the production of a shaped body, and process for producing the shaped body
JP3845160B2 (en) Slag coating method
JP3598843B2 (en) Method for reducing unslagged CaO and MgO in slag
JP3704267B2 (en) Method for refining molten steel
RU2164952C1 (en) Method of steel melting in converter
US499248A (en) Basic lining
RU2353662C2 (en) Method of steel smelting in converter
JP2002371311A (en) Method for dephosphorizing molten metal, dephosphorizing agent with low-temperature slag forming property therefor, and manufacturing method therefor
JP3697587B2 (en) Molten metal container
GB1596819A (en) Method of prolonging durable life of aod furnace refractory linings
JP3433298B2 (en) Blow-up coating method in smelting furnace
KR100840264B1 (en) Magnesia-carbon coating material for the iron making vessel
JP2004285441A (en) Brick-laid structure at furnace bottom of converter having bottom-blowing tuyere
JPH08165507A (en) Slag-coating method for high chromium steel refining furnace
JPS5842432Y2 (en) converter
JP2516187B2 (en) Refractory for molten steel container
US389545A (en) Process of manufacturing wrought-i ron
JP2004244681A (en) Method for reducing sulfur in molten iron in blast furnace
JPH02203189A (en) Sprue part of fixed type electric furnace for low-carbon ferrochrome
KR810002042B1 (en) Method of prolonging durable life of aod furnace refractory linings
SU821501A1 (en) Method of steel production
JPH10317035A (en) Desulphurization method of ferrous molten alloy, and desulphurizing agent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050919

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees