JP5594406B2 - Construction method of irregular refractories - Google Patents

Construction method of irregular refractories Download PDF

Info

Publication number
JP5594406B2
JP5594406B2 JP2013145124A JP2013145124A JP5594406B2 JP 5594406 B2 JP5594406 B2 JP 5594406B2 JP 2013145124 A JP2013145124 A JP 2013145124A JP 2013145124 A JP2013145124 A JP 2013145124A JP 5594406 B2 JP5594406 B2 JP 5594406B2
Authority
JP
Japan
Prior art keywords
curing
mass
alumina
resistance
refractory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013145124A
Other languages
Japanese (ja)
Other versions
JP2013231592A (en
Inventor
禎公 清田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2013145124A priority Critical patent/JP5594406B2/en
Publication of JP2013231592A publication Critical patent/JP2013231592A/en
Application granted granted Critical
Publication of JP5594406B2 publication Critical patent/JP5594406B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、不定形耐火物の施工方法に関し、とくに金属溶湯保持容器などの内張り耐火物を流し込み施工によって形成する方法についての提案である。   The present invention relates to a method for constructing an irregular refractory, and particularly to a method for forming a lining refractory such as a molten metal holding container by pouring construction.

従来、取鍋などの溶湯保持容器の内張りに使用する耐火物として、不定形耐火物(流し込み材など)が使用されている。しかし、近年、高級鋼の需要が増大するにしたがって、取鍋の受鋼温度の高温化や、二次精錬処理比率の増大等、取鍋の使用条件が苛酷化しており、公知の不定形耐火物では耐食性と耐スポール性が不十分となっている。   Conventionally, as a refractory used for the lining of a molten metal holding container such as a ladle, an amorphous refractory (such as a casting material) has been used. However, in recent years, as the demand for high-grade steel has increased, the ladle usage conditions have become severe, such as the temperature of the ladle receiving steel increased and the secondary refining treatment ratio increased. The product has insufficient corrosion resistance and spall resistance.

不定形材の耐食性は、一般に耐火物の化学組成に支配される。不定形耐火物として、最も一般に使用されるアルミナ質材料については、マグネシアやクロミアなどを添加することで耐食性が改良されている。例えば、アルミナ質不定形耐火物の微粉にマグネシアスピネルクリンカーを配合することが提案されている(特許文献1)。   The corrosion resistance of the irregular shaped material is generally governed by the chemical composition of the refractory. Corrosion resistance is improved by adding magnesia or chromia to the most commonly used alumina material as the amorphous refractory. For example, it has been proposed to blend magnesia spinel clinker with fine powder of alumina amorphous refractory (Patent Document 1).

これに対し、アルミナ質不定形耐火物の耐スポール性を向上させるために、シリカ(SiO )やクロミア(Cr)などを添加すること、あるいは未安定化ジルコニアを添加することによって、耐スポール性を改善する提案がある(特許文献2)。 On the other hand, in order to improve the spall resistance of the amorphous amorphous refractory, by adding silica ( SiO 2 ) or chromia (Cr 2 O 3 ), or by adding unstabilized zirconia, There is a proposal to improve the spall resistance (Patent Document 2).

その他、特許文献3では、有機ファイバーの添加により焼結を抑制することで、耐スポール性を改善する方法を提案している。   In addition, Patent Document 3 proposes a method for improving the spall resistance by suppressing sintering by adding organic fibers.

さらに、特許文献4では、粗大粒の形成によって、亀裂の進展を抑制し、耐スポール性を改善する提案をしている。   Furthermore, Patent Document 4 proposes to suppress the progress of cracks and improve the spall resistance by forming coarse grains.

しかし、特許文献2に開示の技術は、ジルコニアが高価になるため、経済的には不利である。また、特許文献3の技術については、有機ファイバーの添加が混練時の流動性を低下させるために、添加水の増量を招き、結果として、気孔率を高くして耐食性を損ねる問題がある。さらに、特許文献4については、粗大粒を添加できるケースが、粗大粒に対して施工厚さが十分大きい場合に限定されるという制約がある。   However, the technique disclosed in Patent Document 2 is economically disadvantageous because zirconia is expensive. Further, the technique of Patent Document 3 has a problem in that the addition of organic fibers decreases the fluidity during kneading, leading to an increase in the amount of added water, resulting in an increase in porosity and loss of corrosion resistance. Furthermore, Patent Document 4 has a restriction that a case where coarse grains can be added is limited to a case where the construction thickness is sufficiently large with respect to coarse grains.

いずれにしても、これらの従来技術については、少なくとも耐スポール性を改善するという観点からは、何らかの添加物が必要であり、この点で、材料コストが余計にかかる。
また、これらの従来技術は、耐スポール性の改善はできても、耐食性の方は低下を招く場合があり、必ずしも望ましい不定形耐火物の提案ではなかった。
特開昭64−87577号公報 特開平5−51266号公報 特開平2−225379号公報 特開平8−2975号公報
In any case, these conventional techniques require at least some additives from the viewpoint of improving the spall resistance, and in this respect, the material cost is excessive.
Further, although these conventional techniques can improve the spall resistance, the corrosion resistance may be reduced, and it has not necessarily been a proposal for a desirable amorphous refractory.
Japanese Patent Application Laid-Open No. 64-87577 JP-A-5-51266 JP-A-2-225379 JP-A-8-2975

上述したように、従来の流し込み施工用不定形耐火物、とくにアルミナセメントを結合材として含有する不定形耐火物は、耐食性や耐スポール性を改善するために、各種の添加材を加えているが、この添加材の使用は効果が少ないか、却って他の特性を阻害するという問題があった。   As mentioned above, conventional refractories for casting construction, especially refractories containing alumina cement as a binder, have various additives added to improve corrosion resistance and spall resistance. However, the use of this additive has a problem that it is less effective or, on the contrary, obstructs other properties.

そこで、本発明の目的は、特別な添加物の使用なしでも耐スポール性の良好な不定形耐火物とすることの可能な施工方法を提案することにある。   Therefore, an object of the present invention is to propose a construction method capable of making an amorphous refractory having good spall resistance without the use of a special additive.

上述した従来技術が抱えているそれぞれの問題点等について検討する中で、発明者は、とくに不定形耐火物の耐スポール性の向上に有効な施工方法として、下記要旨構成に係る本発明を開発するに到った。   While examining each of the above-mentioned problems of the prior art, the inventor developed the present invention according to the following summary configuration as an effective construction method particularly for improving the spall resistance of the irregular refractory. I arrived.

即ち、本発明は、アルミナセメント含有不定形材を混練し、流し込み、養生、乾燥、そして加熱する一連の処理工程からなる施工方法において、前記流し込み後に行う養生が、35〜80℃の温度に24時間以上保持する処理であって、この養生の処理を、水蒸気飽和雰囲気中で行うことを特徴とする不定形耐火物の施工方法である。   That is, the present invention is a construction method comprising a series of treatment steps of kneading, pouring, curing, drying, and heating an alumina cement-containing amorphous material, and the curing performed after pouring is performed at a temperature of 35 to 80 ° C. It is a treatment method for holding for at least an hour, and this curing treatment is performed in a steam saturated atmosphere.

上記の構成にかかる本発明によれば、施工時の養生方法を工夫することで、アルミナセメントを含有する不定形耐火物の耐スポール性を改善することができる。従って、本発明によれば特別な添加剤を用いることがないので経済的に有利である。   According to this invention concerning said structure, the spall resistance of the amorphous refractory containing an alumina cement can be improved by devising the curing method at the time of construction. Therefore, according to the present invention, no special additive is used, which is economically advantageous.

また、本発明によれば、水蒸気飽和雰囲気中での養生処理を採用した場合、その後に行う乾燥時の爆裂を抑制する効果がある。   Moreover, according to this invention, when the curing process in a steam saturated atmosphere is adopted, there is an effect of suppressing the explosion during drying performed thereafter.

発明者は、アルミナセメントを結合材とする不定形耐火物を、取鍋等で実際に使用したとき、同一の材料を同一の操業条件で使用したとしても、その寿命に大きな差があることを知見した。その原因について、究明したところ、施工条件、なかでも養生条件が大きく影響していることを突き止めた。その原因についてさらに詳細に調べる中で、発明者は、不定形耐火物中に予めマイクロクラック(微亀裂)を導入しておくと、この耐スポール性が改善されることを突き止めた。 The inventor has found that there is a large difference in the life even when the same material is used under the same operating conditions when the amorphous refractory with alumina cement as a binder is actually used in a ladle or the like. I found out. As a result of investigating the cause, it was found that the construction conditions, especially the curing conditions, had a great influence. In further examine in detail the cause, the inventor idea to introduce a pre Mema Ikurokurakku (fine cracks) in monolithic refractories, have found that this spalling resistance is improved.

一般に、アルミナセメントの硬化体は、高い養生温度ではマイクロクラックを発生して強度の低下を招くことが知られている。即ち、アルミナセメントは20℃では、CAH10やCAHの生成量の増加にしたがって強度が増加していくが、40℃の場合はCAH10の減少およびCAHの増加にしたがってマイクロクラックを発生して強度が低下する。 In general, it is known that a hardened body of alumina cement generates microcracks at a high curing temperature and causes a decrease in strength. In other words, the strength of the alumina cement increases with an increase in the amount of CAH 10 and C 2 AH 8 produced at 20 ° C., but at 40 ° C., the strength increases with a decrease in CAH 10 and an increase in C 3 AH 6. Cracks occur and the strength decreases.

そして、このような転移の反応は、次式に示すとおり、多量の水を遊離するが、この転移はまた水の存在下においてのみ生ずるものとされている。
3CAH10→CAH+2AH+18H
このように、CAH10が安定結晶であるCAHに転移すると、CAH10よりCAHやAHの方が比重が重いので、セメント水和物のまわりに空隙、即ちマイクロクラックが発生して強度が低下するのである。このように、CAHが転移生成することによって、マイクロクラックが発生するものの、不定形耐火物の耐スポール性は逆に改善されるのである。
Such a transfer reaction liberates a large amount of water as shown in the following formula, but this transfer is also considered to occur only in the presence of water.
3CAH 10 → C 3 AH 6 + 2AH 3 + 18H
Thus, when CAH 10 is transferred to C 3 AH 6 which is a stable crystal, C 3 AH 6 and AH 3 have a higher specific gravity than CAH 10 , so there are voids, ie, microcracks around cement hydrate. It occurs and the strength decreases. As described above, the transition generation of C 3 AH 6 causes micro cracks, but the spall resistance of the irregular refractory is conversely improved.

そこで、本発明では、1〜20mass%(内数)のアルミナセメントを含有する不定形材を混練して使用する。流し込み材の場合は、流し込みが終った後、ただちに35〜80℃で養生する。アルミナセメントを使用した不定形耐火物を養生した場合、30℃を境に低温側では主にCAH10が、高温側ではCAH10が生成した後、CAHに転移する。また、30℃付近では、これらの低温型と高温型の反応の分岐点となり、相互作用の結果として反応が遅延し、凝結が遅れる問題がある。本発明で、アルミナセメント含有不定形材を35〜80℃で養生する理由は、セメント水和物であるCAHを意図的に生成させ、前記マイクロクラックを発生させるためである。この養生温度が30℃以下では、高温型のCAHに転移生成は起こらず、30〜35℃の範囲では、凝結が遅れる問題がある。一方、この養生温度が80℃を上回ると、養生時に大きな亀裂が発生したり、水分の蒸発が避けられないなどの問題があり、好ましくない。 Therefore, in the present invention, an amorphous material containing 1 to 20 mass% (inner number) of alumina cement is kneaded and used. In the case of casting material, it is cured at 35-80 ° C. immediately after the casting is finished. When an amorphous refractory using alumina cement is cured, CAH 10 is mainly produced at the low temperature side and CAH 10 is produced at the high temperature side at 30 ° C., and then transferred to C 3 AH 6 . Further, in the vicinity of 30 ° C., there is a problem that these low temperature type and high temperature type reaction becomes a branch point, and as a result of the interaction, the reaction is delayed and the condensation is delayed. In the present invention, the reason for curing the alumina cement-containing amorphous material at 35 to 80 ° C. is to intentionally generate C 3 AH 6 which is a cement hydrate and generate the microcracks. When the curing temperature is 30 ° C. or lower, no transition occurs in the high-temperature C 3 AH 6, and in the range of 30 to 35 ° C., there is a problem that the setting is delayed. On the other hand, when the curing temperature exceeds 80 ° C., there are problems such as large cracks occurring during curing and evaporation of moisture being unavoidable.

本発明において、養生の時間を24時間以上とするのは、CAH10を確実にCAHに転移させるためである。この転移によって、セメント水和物にマイクロクラック(微亀裂)が発生し、もちろん現象的にはセメント硬化体としての強度の低下も見られる。ただし、このマクロクラックは、乾燥後および焼成後にも残存し少なくとも、耐スポール性の改善には大きく寄与する。この点に関し、養生時間が24時間を下回ると、前述の転移が十分に進まず、耐スポール性改善の効果は小さくなる。一方、100時間を超えると、転移は終了し、耐スポール性改善効果が飽和するので、経済的に好ましくない。なお、一旦35℃以下で24時間程度養生した後、35℃以上で養生しても、同様の転移は起こるものの、耐スポール性改善の効果は小さい。 In the present invention, the curing time is 24 hours or longer in order to reliably transfer CAH 10 to C 3 AH 6 . Due to this transition, microcracks (microcracks) are generated in the cement hydrate, and, of course, a decrease in strength as a hardened cement body is also observed. However, the microswitch cracks also remained after drying and after calcining at least contributes significantly to improved spalling resistance. In this regard, if the curing time is less than 24 hours, the above-mentioned transfer does not proceed sufficiently and the effect of improving the spall resistance is reduced. On the other hand, if it exceeds 100 hours, the transition is completed and the effect of improving the spall resistance is saturated, which is not economically preferable. In addition, even if it is cured at 35 ° C. or lower for about 24 hours and then cured at 35 ° C. or higher, the same transition occurs, but the effect of improving the spall resistance is small.

次に、上述した養生は、35℃以上で実施することになるため、時間経過とともに、不定形耐火物中の自由水が蒸発する。しかし、前述したようにCAH10からCAHへの転移は、水分の存在が必須である。そこで、本発明では、養生時のその高い温度の影響により、成形体表面から水分が蒸発すると、その表面部分では、前記の転移反応が進まなくなることを考慮し、流し込み不定形材の表面部分からの水分蒸発を抑制することにした。 Next, since the curing described above is performed at 35 ° C. or higher, free water in the amorphous refractory evaporates with time. However, as described above, the transition from CAH 10 to C 3 AH 6 requires the presence of moisture. Therefore, in the present invention, in consideration of the fact that when the moisture evaporates from the surface of the molded body due to the influence of the high temperature at the time of curing, the surface reaction does not proceed, the surface portion of the cast amorphous material It was decided to suppress moisture evaporation.

このような水分の蒸発を抑制するため、本発明の好まし実施形態としては、養生処理を水蒸気飽和雰囲気中で行うことである。このような水蒸気飽和雰囲気中での処理と等しい作用・効果を示す他の養生処理の方法としては、流し込み不定形耐火物の表面を気密シートで覆う方法がある。いずれの方法によっても、流し込み不定形耐火物の表面からの水分蒸発を防止、もしくは、抑制することができる。 To inhibit evaporation of such water as preferred it has an embodiment of the present invention is to perform curing treatment in a water vapor saturated atmosphere. As another curing method that exhibits the same action and effect as the treatment in the steam saturated atmosphere, there is a method of covering the surface of the cast amorphous refractory with an airtight sheet. Any method can prevent or suppress moisture evaporation from the surface of the cast amorphous refractory.

本発明において、アルミナセメント含有不定形耐火物としては、骨材として、Al、SiO、MgOの1種以上を主成分として含有し、必要に応じて、Cr、ZrO、SiC、Cなどを含有する不定形耐火物を使用することができる。 In the present invention, the alumina cement-containing amorphous refractory contains, as an aggregate, one or more of Al 2 O 3 , SiO 2 , and MgO as main components, and, if necessary, Cr 2 O 3 , ZrO 2. An amorphous refractory containing SiC, SiC, or the like can be used.

例えば、下記(a)〜(d)のものなどが用いられる。
(a)スピネルクリンカーを少なくとも60mass%、アルミナクリンカー10〜35mass%、アルミナセメント3〜10mass%とからなるアルミナスピネル不定形耐火物。
(b)アルミナ40〜90mass%、MgO・Al系スピネル2〜50mass%およびアルミナセメント2〜25mass%を主材とした配合物100mass%に、長さ0.5〜20mmの有機質短繊維を外掛け0.01〜0.5mass%含有させてなるアルミナスピネル質不定形耐火物。
(c)マグネシア2〜20mass%、アルミナセメント1〜15mass%、残部がアルミナを主材とした配合物100mass%に、外掛けで非晶質シリカ超微粉を0.05〜3mass%および粒径10〜50mmのアルミナ質粗大粒子を10〜40mass%含有させた不定形耐火物。
(d)粒径が1mmを越えるスピネルクリンカー:5〜30mass%、粒径が1mm以下のマグネシアクリンカー:5〜15mass%、粒径が1mm以下の未安定ジルコニアクリンカー:5〜10mass%を含有し、残部がAl含有量90mass%以上のアルミナクリンカーと、粒径10μm以下のシリカ超微粉とからなるアルミナスピネル質不定形耐火物。
(e)マグネシア:7mass%、シリカ:0.8mass%、アルミナセメント:2mass%、残部アルミナからなるアルミナシリカ系不定形耐火物。
For example, the following (a) to (d) are used.
(A) An alumina spinel amorphous refractory comprising at least 60 mass% of spinel clinker, 10 to 35 mass% of alumina clinker, and 3 to 10 mass% of alumina cement.
(B) An organic short fiber having a length of 0.5 to 20 mm in a composition of 100 mass% mainly composed of 40 to 90 mass% of alumina, 2 to 50 mass% of MgO · Al 2 O 3 spinel and 2 to 25 mass% of alumina cement. Alumina-spinel amorphous refractories containing an outer coating of 0.01 to 0.5 mass%.
(C) Magnesia 2 to 20 mass%, alumina cement 1 to 15 mass%, the balance being 100 mass% of the composition mainly composed of alumina, 0.05 to 3 mass% of amorphous silica ultrafine powder and particle size 10 monolithic refractory which contains 10~40Mass% alumina Shitsuara large particles ~50Mm.
(D) spinel clinker having a particle size exceeding 1 mm: 5-30 mass%, magnesia clinker having a particle size of 1 mm or less: 5-15 mass%, unstable zirconia clinker having a particle size of 1 mm or less: 5-10 mass%, An alumina spinel amorphous refractory comprising the balance of alumina clinker with an Al 2 O 3 content of 90 mass% or more and ultrafine silica powder with a particle size of 10 μm or less.
(E) Alumina-silica refractory material composed of magnesia: 7 mass%, silica: 0.8 mass%, alumina cement: 2 mass%, and the remaining alumina.

なお、上記のアルミナセメントとしては、JIS R 2511の1〜5種およびJIS規格にはないがアルミナ分が90%前後のアルミナセメントが使用できる。   As the above-mentioned alumina cement, 1 to 5 kinds of JIS R 2511 and alumina cement having an alumina content of about 90% can be used although not in the JIS standard.

上述した不定形耐火物は、水を加えて万能混練機、モルタルミキサーなどで混練し、目的とする施工部位に施工し、上述した養生処理を行った後、従来の常法に従う方法で、必要に応じて脱枠を行って、100〜500℃の温度に加熱して乾燥を行い、さらその後、使用温度(1200℃〜1700℃程度)まで加熱焼成し、使用に供する不定形耐火物とする。 The above-mentioned amorphous refractory is added to water, kneaded with a universal kneader, mortar mixer, etc., applied to the target construction site, subjected to the curing treatment described above, and then required by a method according to the conventional method. Correspondingly performing de border, and dried by heating to a temperature of 100 to 500 ° C., then further heated firing to operating temperature (1200 ° C. to 1700 approximately ° C.), and monolithic refractories subjected to use To do.

以下、養生の処理時に、水分の蒸発を抑制するために行った例につき参考のために説明する。
7mass%MgO−0.8mass%、SiO−2mass%アルミナセメント−残部アルミナからなる不定形耐火物を用意した。万能混練機を使用して、4mass%の水を添加して5分間混練し、並および(35×35×160)mmの試験型に流し込んだ。
養生温度は40℃とし、これを密閉したビニール袋中に入れて流し込み不定形耐火物の表面から水が蒸発するのを防止する養生処理を行った。また、比較のために、養生温度を20℃に保持して実験室内で行った。これらの養生後、110℃で1日乾燥し、大気炉中、1100℃、または1500℃で3時間保持して焼成した。
Hereinafter, an example performed to suppress the evaporation of moisture during the curing process will be described for reference.
An amorphous refractory consisting of 7 mass% MgO-0.8 mass%, SiO 2 -2 mass% alumina cement-remainder alumina was prepared. Using a universal kneader, and kneaded for 5 minutes by adding 4 mass% of water was poured into the test-type parallel form and (35 × 35 × 160) mm .
Curing temperature was 4 0 ° C., in a plastic bag in a sealed this, moisture from the surface of the monolithic refractories casting is subjected to curing treatment to prevent the evaporation. For comparison, the curing temperature was kept at 20 ° C. in the laboratory. After these curing, it was dried at 110 ° C. for 1 day, and was fired in an atmospheric furnace at 1100 ° C. or 1500 ° C. for 3 hours.

(35×35×160)mmの試験片を使用して、養生後および乾燥後の曲げ強度、弾性率を測定した。また並形形状の試験片を1100℃で3時間焼成し、耐スポーリング試験に供した。耐スポーリング試験は、JIS R2657の耐火れんがのスポーリング試験方法に従い1350℃に保持した電気炉中で15分間加熱した後、5分の片面水冷、10分の空冷を繰り返した。空冷時に撮影した加熱面の写真より、剥落せずに残存した面積率を求め、残存が90%を下回った回数を剥落回数とした。ただし、この繰り返し数の最大は10回とした。 Using a (35 × 35 × 160) mm test piece, the bending strength and elastic modulus after curing and after drying were measured. Moreover , the parallel-shaped test piece was baked at 1100 ° C. for 3 hours and subjected to a spalling resistance test. In the spalling resistance test, heating was carried out for 15 minutes in an electric furnace maintained at 1350 ° C. according to the JIS R2657 fireproof brick spalling test method, and then single-sided water cooling for 5 minutes and air cooling for 10 minutes were repeated. From the photograph of the heated surface taken during air cooling, the area ratio remaining without being peeled off was determined, and the number of times the remaining was below 90% was taken as the number of peeling. However, the maximum number of repetitions was 10.

図1、図2、養生および乾燥後における、曲げ強度と養生日数との関係(図1)、および弾性率養生日数との関係(図2)を示すものである。40℃で養生した場合、養生日数が経つにつれ、曲げ強度は低下している。弾性率については、40℃養生の日数が経つにつれ、やや低下する。乾燥後の曲げ強度については、何れの場合も、養生後の2倍程度となった。一方、乾燥後の弾性率については、養生後と乾燥後とでは差がない。この現象は、40℃養生がマイクロクラック(微亀裂)を生成し、養生後と乾燥後の曲げ強度と弾性率を低下させる効果があることを示す。また、40℃で養生した場合、乾燥しても弾性率の増加はなく、耐スポール性の観点から好ましいことがわかった。 1 and 2, after curing and after drying, the relationship between the flexural strength curing days (Fig. 1), and illustrates the relationship between the elastic modulus and curing days (Figure 2). When cured at 40 ° C., the bending strength decreases as the number of days of curing passes. The elastic modulus slightly decreases as the number of days of curing at 40 ° C. passes. Bending strength after drying, in any case, was the time about twice the post-curing. On the other hand, there is no difference in the elastic modulus after drying between after curing and after drying . This phenomenon shows that 40 ° C. curing produces microcracks (microcracks), and has the effect of reducing the bending strength and elastic modulus after curing and after drying. Moreover, when it hardened | cured at 40 degreeC, even if it dried, it turned out that an elastic modulus does not increase and it is preferable from a viewpoint of spall resistance.

図3、図4に、比較例1と本発明に適合する発明例1の養生後、乾燥後および焼成後の曲げ強度と弾性率を示す。養生後の曲げ強度や弾性率について比較例と発明例の関係が、乾燥および焼成後にも維持され、組織形態も維持されているものと推定できる。 Figure 3, Figure 4, after curing of Comparative Example 1 and the present invention is compatible with Invention Example 1 illustrates the flexural strength and elastic modulus after drying and after calcining. Relationship between the comparative example and the outgoing Akirarei for flexural strength and elastic modulus after curing is maintained even after drying and after firing, it estimated that is also maintained morphology.

図5に耐スポール性の尺度として、剥離回数に及ぼす養生条件の影響を整理した。本発明に適合する40℃(発明例1〜4)、60℃(発明例5)、80℃(発明例6)で1日以上養生した場合、いずれも10回の熱衝撃でも剥離することなく、優れた耐スポール性が得られたが、20℃で養生した場合(比較例1)および40℃で半日養生をした場合(比較例2)は、耐スポール性劣り、発の効果が明確に顕れた。これらの耐スポール性は前述の機械的な特性の変化と関連するものと考えられる。 FIG. 5 shows the effect of curing conditions on the number of peelings as a measure of sparing resistance. When cured at 40 ° C. (Invention Examples 1 to 4), 60 ° C. (Invention Example 5), and 80 ° C. (Invention Example 6) for one day or more in accordance with the present invention, none of them are peeled even by 10 thermal shocks. excellent although spalling resistance was obtained, when the half-day aging at curing the case (Comparative example 1) and 40 ° C. at 20 ° C. (Comparative example 2), the spalling resistance is inferior, inventions example the effect of Clearly appeared. These spall resistances are considered to be related to the aforementioned change in mechanical properties.

本発明の施工方法、とくに養生技術は、主としてアルミナセメントを含有する不定形耐火物の耐スポール性の改善に有効な方法であり、特別な添加剤を用いることもないので経済的であり、鉄鋼業で用いられる溶湯用容器のライニングに用いられるが、他の金属溶湯用容器やガラス等の他の材料の保存容器用ライニング耐火物施工方法としても適用が可能である。   The construction method of the present invention, especially the curing technique, is an effective method for improving the spall resistance of an amorphous refractory mainly containing alumina cement, and is economical because no special additive is used. Although it is used for lining of molten metal containers used in industry, it can also be applied as a refractory construction method for lining refractories for other materials such as molten metal containers and other materials such as glass.

養生および乾燥後の曲げ強度に及ぼす養生温度の影響を示すグラフである。It is a graph which shows the influence of the curing temperature on the bending strength after curing and drying. 養生および乾燥後の弾性率に及ぼす養生温度の影響を示すグラフである。It is a graph showing the effect of curing temperature on elastic modulus after curing and drying. 養生条件に応じた養生後、乾燥後および焼成後の曲げ度を示すグラフである。 After curing in accordance with the curing conditions, a graph showing the bending strength of the post-drying and after calcining. 養生条件に応じた養生後、乾燥後および焼成後の弾率を示すグラフである。 After curing in accordance with the curing conditions, a graph showing the elastic modulus after drying and after calcining. 耐スポール性の尺度である剥落回数に及ぼす養生条件の影響を示したグラフである。It is the graph which showed the influence of the curing condition on the frequency | count of peeling which is a measure of sparing resistance.

Claims (1)

アルミナセメント含有不定形材を混練し、流し込み、養生、乾燥、そして加熱する一連の処理工程からなる施工方法において、前記流し込み後に行う養生が、35〜80℃の温度に24時間以上保持する処理であって、この養生の処理を、水蒸気飽和雰囲気中で行うことを特徴とする不定形耐火物の施工方法。   In the construction method consisting of a series of treatment steps of kneading, casting, curing, drying and heating the alumina cement-containing amorphous material, the curing performed after the casting is carried out by maintaining the temperature at 35 to 80 ° C. for 24 hours or more. And the construction method of the irregular refractory characterized by performing the treatment of this curing in a steam saturated atmosphere.
JP2013145124A 2013-07-11 2013-07-11 Construction method of irregular refractories Active JP5594406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013145124A JP5594406B2 (en) 2013-07-11 2013-07-11 Construction method of irregular refractories

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013145124A JP5594406B2 (en) 2013-07-11 2013-07-11 Construction method of irregular refractories

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007315882A Division JP5358936B2 (en) 2007-12-06 2007-12-06 Construction method of irregular refractories

Publications (2)

Publication Number Publication Date
JP2013231592A JP2013231592A (en) 2013-11-14
JP5594406B2 true JP5594406B2 (en) 2014-09-24

Family

ID=49678171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013145124A Active JP5594406B2 (en) 2013-07-11 2013-07-11 Construction method of irregular refractories

Country Status (1)

Country Link
JP (1) JP5594406B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017188391A1 (en) * 2016-04-27 2017-11-02 黒崎播磨株式会社 Construction method of unshaped refractory, and unshaped refractory used in said construction method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1163850A (en) * 1997-08-27 1999-03-05 Kawasaki Steel Corp Method for casting unshaped refractory in melted metal container
JP3706739B2 (en) * 1998-04-27 2005-10-19 Jfeスチール株式会社 Casting refractory construction method
JP4399579B2 (en) * 2003-04-08 2010-01-20 美濃窯業株式会社 Castable molded product and method for producing the same

Also Published As

Publication number Publication date
JP2013231592A (en) 2013-11-14

Similar Documents

Publication Publication Date Title
JP4834012B2 (en) Insulated castable refractories
JP6499464B2 (en) Insulated refractory
US9683782B2 (en) Methods for producing silicon carbide whisker-reinforced refractory composition
JP2010235342A (en) Monolithic refractory for blast furnace iron spout
JP5594406B2 (en) Construction method of irregular refractories
JP5769313B2 (en) Low thermal expansion insulation castable
JP6527443B2 (en) Method for producing zirconia-based precast refractory for waste melting furnace
WO2014126095A1 (en) Castable refractory for blast furnace trough
JP6959809B2 (en) Amorphous refractory for pouring work
WO2015111394A1 (en) Process for producing lining structure of vessel for molten metal, and lining structure of vessel for molten metal
JP6287918B2 (en) Manufacturing method of container for high temperature
KR101100269B1 (en) General castable for turn-dish using wasted refractory
JP5358936B2 (en) Construction method of irregular refractories
JPH0687667A (en) Zirconia-mullite containing castable refractory
JPH082975A (en) Refractory for casting application
JP7032084B2 (en) Amorphous refractory
JP2009242122A (en) Brick for blast furnace hearth and blast furnace hearth lined with the same
TWI597255B (en) Silicon carbide refractory block
JP4323732B2 (en) Insulating castable refractory
JP2000191363A (en) Spalling resistant spinel brick
JP4704263B2 (en) Amorphous refractory molding material and Amorphous refractory molding
JP7202245B2 (en) Brick lining for calcium phosphate firing furnace
WO2015132848A1 (en) Castable refractory
JP2020100853A (en) Monolithic refractory for blast furnace runner cover
JP2014024689A (en) Magnesia monolithic refractory

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140721

R150 Certificate of patent or registration of utility model

Ref document number: 5594406

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250