JP6287918B2 - Manufacturing method of container for high temperature - Google Patents

Manufacturing method of container for high temperature Download PDF

Info

Publication number
JP6287918B2
JP6287918B2 JP2015060751A JP2015060751A JP6287918B2 JP 6287918 B2 JP6287918 B2 JP 6287918B2 JP 2015060751 A JP2015060751 A JP 2015060751A JP 2015060751 A JP2015060751 A JP 2015060751A JP 6287918 B2 JP6287918 B2 JP 6287918B2
Authority
JP
Japan
Prior art keywords
zirconia
refractory
refractory layer
mass
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015060751A
Other languages
Japanese (ja)
Other versions
JP2016179482A (en
Inventor
井上 明彦
明彦 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2015060751A priority Critical patent/JP6287918B2/en
Publication of JP2016179482A publication Critical patent/JP2016179482A/en
Application granted granted Critical
Publication of JP6287918B2 publication Critical patent/JP6287918B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、900℃以上の高温物体の保持、輸送、精錬などに用いられる高温用容器の製造方法に関する。   The present invention relates to a method for producing a high-temperature container used for holding, transporting, refining, etc., high-temperature objects of 900 ° C. or higher.

ジルコニア(ZrO2)は、その高融点・高耐食性から、溶銑や溶鋼などの高温物体の保持、輸送、精錬などに用いる高温用容器の内張り耐火物(「ワーク耐火物」ともいう)として汎く使用されている。但し、純粋なジルコニアは、室温では単斜晶系であるが、温度を上昇させていくと、およそ900〜1100℃で正方晶及び立方晶へと結晶が転移し、この転移で数%にも達する体積膨張の変化を示すことから、純粋で緻密な構造では割れやすく、耐火物としては使用しにくい。そこで、ジルコニアに酸化カルシウム(CaO)または酸化イットリウム(Y23)を固溶させた安定化ジルコニアが使用されている。これは、ジルコニアに酸化カルシウムまたは酸化イットリウムを固溶させると、正方晶及び立方晶が室温でも安定化するために、温度変化を与えても体積変化を回避することができ、体積変化に起因する割れが防止できることによる。 Zirconia (ZrO 2 ) is widely used as lining refractories (also called “work refractories”) for high-temperature containers used for holding, transporting and refining hot objects such as hot metal and molten steel because of its high melting point and high corrosion resistance. It is used. However, pure zirconia is monoclinic at room temperature, but as the temperature is raised, the crystal transitions to tetragonal and cubic crystals at about 900-1100 ° C. Since it shows the change in volume expansion reached, it is easy to break in a pure and dense structure and difficult to use as a refractory. Therefore, stabilized zirconia in which calcium oxide (CaO) or yttrium oxide (Y 2 O 3 ) is dissolved in zirconia is used. This is because, when calcium oxide or yttrium oxide is dissolved in zirconia, tetragonal crystals and cubic crystals are stabilized at room temperature, so that volume changes can be avoided even when temperature changes are applied, and this is due to volume changes. This is because cracks can be prevented.

したがって、このような安定化ジルコニアを配合した耐火物を内張り耐火物層として施工すれば、温度変化に対応できる高温用容器を得ることができる。但し、このような安定化ジルコニアは高価であるために、様々な用途に汎く用いることは問題があった。   Therefore, if a refractory compounded with such stabilized zirconia is applied as a lining refractory layer, a high-temperature container capable of responding to temperature changes can be obtained. However, since such stabilized zirconia is expensive, there has been a problem in using it for various purposes.

そのために、安定化していない天然産のジルコニアを耐火物原料とする手段が提案されている。例えば、特許文献1には、安定化していない天然産の単斜晶系ジルコニアに水酸化カルシウム(Ca(OH)2)を添加し、この混合物を攪拌混合し、か焼してジルコニアを安定化させた後に、これを耐火物原料として用いて成型し且つ焼成し、ジルコニア耐火物を製造する方法が開示されている。 For this reason, means for using unstabilized natural zirconia as a refractory material has been proposed. For example, in Patent Document 1, calcium hydroxide (Ca (OH) 2 ) is added to unstabilized natural monoclinic zirconia, this mixture is stirred and mixed, and calcined to stabilize zirconia. A method for producing a zirconia refractory by forming and firing using the refractory raw material as a refractory material is disclosed.

特開平2−124763号公報JP-A-2-1244763

しかしながら、上記特許文献1には以下の問題がある。即ち、特許文献1の方法では、比較的安価な天然産のジルコニアと水酸化カルシウムとを原料とすることから、製造コストの低減が期待できるが、それでも一旦原料をか焼した上で、これを成型して焼成するという工程が必要であり、ジルコニア耐火物が比較的高価なものであるという問題は依然として解消することができない。   However, Patent Document 1 has the following problems. That is, in the method of Patent Document 1, since a relatively inexpensive natural zirconia and calcium hydroxide are used as raw materials, a reduction in manufacturing cost can be expected. However, once the raw materials are calcined, The process of molding and firing is required, and the problem that the zirconia refractory is relatively expensive cannot be solved.

本発明はこのような事情に鑑みてなされたもので、その目的とするところは、高価な安定化ジルコニアを使用せず、安価な未安定化ジルコニアを、高温での焼成や予熱を施すことなく内張り耐火物として用いて、高温物体の保持、輸送、精錬などに用いられる高温用容器を製造する方法を提供することである。   The present invention has been made in view of such circumstances, and its purpose is not to use expensive stabilized zirconia, but to inexpensively unstabilized zirconia without firing or preheating at high temperature. It is intended to provide a method for producing a high-temperature container used as a refractory for lining and used for holding, transporting, refining, etc., high-temperature objects.

上記課題を解決するための本発明の要旨は以下のとおりである。
[1]金属からなる外殻の内側に、永久耐火物層、内張り耐火物層をこの順に備えた、900℃以上の高温物体を保持する高温用容器の製造方法において、酸化カルシウム(CaO)、酸化イットリウム(Y23)またはこれらの化合物からなるジルコニア安定化材と、未安定化ジルコニア(ZrO2)とを、前記ジルコニア安定化材のCaO換算またはY23換算の質量と前記未安定化ジルコニアの質量との質量比が5対95から11対89の範囲で含有し、且つ、酸化珪素(SiO2)の含有量が0.5質量%以下である混合物を60質量%以上含有し、残部が、アルミナ(Al23)、マグネシア(MgO)、酸化クロム(Cr23)、黒鉛(C)、炭化珪素(SiC)、窒化珪素(Si34)及びこれらの化合物のうちの1種または2種以上、並びに、結合材と不可避な不純物であり、気孔率が15%以下の耐火物であって、900℃未満の温度で焼成されたか、または、不焼成のままの成形耐火物または不定形耐火物を、前記内張り耐火物層として施工することを特徴とする、高温用容器の製造方法。
[2]内張り耐火物層として施工する前記成形耐火物または前記不定形耐火物は、アルミナ、マグネシア、酸化クロム、黒鉛、炭化珪素、窒化珪素及びこれらの化合物を含有しないことを特徴とする、上記[1]に記載の高温用容器の製造方法。
[3]前記外殻と前記永久耐火物層との間、または、前記永久耐火物層と前記内張り耐火物層との間に、熱伝達係数が30W/(m2×K)以下の断熱層を施工することを特徴とする、上記[1]または上記[2]に記載の高温用容器の製造方法。
The gist of the present invention for solving the above problems is as follows.
[1] In a method for manufacturing a high-temperature container for holding a high-temperature object of 900 ° C. or higher, which is provided with a permanent refractory layer and a lining refractory layer in this order inside a metal outer shell, calcium oxide (CaO), A zirconia stabilizing material composed of yttrium oxide (Y 2 O 3 ) or a compound thereof and an unstabilized zirconia (ZrO 2 ) are combined with the mass of the zirconia stabilizing material in terms of CaO or Y 2 O 3 and 60% by mass or more of a mixture containing the stabilized zirconia in a mass ratio of 5:95 to 11:89 and having a silicon oxide (SiO 2 ) content of 0.5% by mass or less And the balance is alumina (Al 2 O 3 ), magnesia (MgO), chromium oxide (Cr 2 O 3 ), graphite (C), silicon carbide (SiC), silicon nitride (Si 3 N 4 ), and compounds thereof Out of Refractories that are seeds or two or more, as well as binders and inevitable impurities, and have a porosity of 15% or less, and are fired at a temperature of less than 900 ° C. or molded refractories that remain unfired Alternatively, a method for producing a container for high temperature, wherein an amorphous refractory is applied as the lining refractory layer.
[2] The molded refractory or the amorphous refractory applied as a lining refractory layer does not contain alumina, magnesia, chromium oxide, graphite, silicon carbide, silicon nitride, or a compound thereof. The method for producing a high-temperature container according to [1].
[3] A heat insulating layer having a heat transfer coefficient of 30 W / (m 2 × K) or less between the outer shell and the permanent refractory layer or between the permanent refractory layer and the lining refractory layer. The method for producing a high-temperature container according to [1] or [2] above, wherein:

本発明によれば、原料に高価な安定化ジルコニアを使用せずに、安価な未安定化ジルコニアを、高温での焼成や予熱を施すことなく内張り耐火物として用いて、高温物体の保持、輸送、精錬などに用いられる高温用容器を製造することが実現される。   According to the present invention, without using expensive stabilized zirconia as a raw material, inexpensive unstabilized zirconia is used as a lining refractory without firing or preheating at a high temperature, to hold and transport high-temperature objects. It is possible to manufacture a high-temperature container used for refining and the like.

本発明を適用して製造した溶銑鍋の側面断面図である。It is side surface sectional drawing of the hot metal ladle manufactured by applying this invention.

以下、本発明を具体的に説明する。まず、本発明に至った経緯について説明する。   Hereinafter, the present invention will be specifically described. First, the background to the present invention will be described.

本発明者らは、安定化されていないジルコニア(ZrO2)を、高温での焼成や予熱を施すことなく、高温用容器の内張り耐火物層用の耐火物として使用することを検討し、この検討結果に基づく試験を行った。以下、その結果を説明する。 The present inventors examined the use of unstabilized zirconia (ZrO 2 ) as a refractory for the lining refractory layer of a container for high temperature without firing or preheating at high temperature. A test based on the examination results was conducted. The results will be described below.

ジルコニア安定化材として、酸化カルシウム(CaO)や酸化イットリウム(Y23)などの2価または3価の金属酸化物を用いることは当業者に周知である。安定化されていないジルコニアの粉体と、酸化カルシウムや酸化イットリウムなどのジルコニア安定化材(以下、単に「安定化材」とも記す)の粉体との混合物を、高温用容器の内張り耐火物層として施工した場合、この内張り耐火物層のジルコニアは、使用開始時点では安定化されていないが、使用開始後、900℃以上の温度となったときに安定化が始まる。ジルコニアの安定化は組織の転移を伴うために、割れ、亀裂、剥離などの欠陥の原因となる。 It is well known to those skilled in the art to use a divalent or trivalent metal oxide such as calcium oxide (CaO) or yttrium oxide (Y 2 O 3 ) as the zirconia stabilizer. A mixture of unstabilized zirconia powder and powder of zirconia stabilizing material such as calcium oxide or yttrium oxide (hereinafter also simply referred to as “stabilizing material”) is used as a lining refractory layer for a high-temperature container. In this case, the zirconia of the lining refractory layer is not stabilized at the start of use, but starts to stabilize when the temperature reaches 900 ° C. or higher after the start of use. Since stabilization of zirconia is accompanied by tissue transition, it causes defects such as cracks, cracks, and delamination.

この安定化に伴う割れなどの欠陥を避けるために、従来は、酸化珪素(SiO2)などの低融点物質を添加して耐火性能を犠牲にし、弾性率を下げたり、予め緩やかな昇降温速度で時間とコストを掛けて焼成したりすることが行われていた。 In order to avoid defects such as cracks associated with this stabilization, conventionally, a low melting point material such as silicon oxide (SiO 2 ) is added to sacrifice fire resistance, lower the elastic modulus, or increase the temperature slowly In some cases, firing is performed with time and cost.

本発明者らは、金属製の外殻で周囲を覆った状態で、安定化されていないジルコニアを、単斜晶系から正方晶及び立方晶へと結晶を転移させて体積膨張させることにより、外殻による拘束力によって、割れや亀裂が回避され、且つ、ジルコニアは共存する安定化材によって安定化されるという着想に基づき、安定化材の粉体と安定化されていないジルコニアの粉体との混合物を、高温用容器の内張り耐火物層として、事前に焼成することなく施工した。試験では、安定化材として、酸化カルシウムを使用した。   The inventors of the present invention, by covering the periphery with a metal outer shell, volume-expanding unstabilized zirconia by transferring crystals from monoclinic to tetragonal and cubic crystals, Based on the concept that cracks and cracks are avoided by the restraining force of the outer shell, and zirconia is stabilized by the coexisting stabilizing material, the stabilizing material powder and the unstabilized zirconia powder This mixture was applied as a lining refractory layer of a high-temperature container without firing in advance. In the test, calcium oxide was used as a stabilizing material.

しかしながら、酸化珪素を0.5質量%以上含有する一般的なジルコニア系耐火物配合では、割れや亀裂は解消されなかった。これは、結晶の転移による体積膨張に伴って発生する内部応力が、0.5質量%以上の酸化珪素を含有するジルコニア系耐火物の塑性変形によって解消してしまい、金属製の外殻による圧縮応力が作用せず、割れや亀裂を低減する効果が発揮されないものと考えられた。   However, with a general zirconia refractory compound containing 0.5% by mass or more of silicon oxide, cracks and cracks were not eliminated. This is because the internal stress generated with the volume expansion due to crystal transition is eliminated by the plastic deformation of the zirconia refractory containing 0.5% by mass or more of silicon oxide, and is compressed by the metal outer shell. It was considered that the effect of reducing cracks and cracks was not exhibited because no stress was applied.

そこで、酸化珪素の含有量を、可及的に低減して0.5質量%以下とした結果、内張り耐火物層の稼動面近傍では割れや亀裂などの欠陥の低減傾向が確認できた。   Therefore, as a result of reducing the content of silicon oxide as much as possible to 0.5% by mass or less, a tendency to reduce defects such as cracks and cracks was confirmed in the vicinity of the working surface of the lining refractory layer.

しかしながら、内張り耐火物層の稼動面と永久耐火物層側の面とのおよそ中間位置において、稼動面と平行な方向の割れが発生する場合があった。この稼動面と平行な方向の割れは、気孔率が15%以下である比較的緻密な内張り耐火物層で発生し、気孔率が15%以上の内張り耐火物層では割れは極めて少なかった。但し、気孔率が15%以上の場合には、耐食性が劣ることから、内張り耐火物層として実用に供することはできない。   However, a crack in a direction parallel to the working surface may occur at an approximately intermediate position between the working surface of the lining refractory layer and the surface on the permanent refractory layer side. This crack in the direction parallel to the working surface occurred in a relatively dense lining refractory layer having a porosity of 15% or less, and the lining refractory layer having a porosity of 15% or more had very few cracks. However, when the porosity is 15% or more, the corrosion resistance is inferior, so it cannot be put into practical use as a lining refractory layer.

稼動面と永久耐火物層側の面とのおよそ中間位置において発生する、稼動面と平行な方向の割れの発生原因として、稼動面近傍では温度が十分高いので転移が進むが、永久耐火物層側に近づくにつれて温度が低くなるために転移が進まず、熱膨張率の異なる組織が共存したことによるものと推定した。   As a cause of cracking in the direction parallel to the working surface, which occurs at approximately the middle position between the working surface and the surface on the permanent refractory layer side, the transition proceeds because the temperature is sufficiently high near the working surface, but the permanent refractory layer It was estimated that the transition was not progressed because the temperature became lower as it approached the side, and the structures with different thermal expansion coefficients coexisted.

そこで、内張り耐火物層の永久耐火物層に近い部分の温度を上昇させることを目的として、ジルコニア系耐火物からなる内張り耐火物層の酸化珪素含有量を0.5質量%以下とした上で、内張り耐火物層よりも外殻側である外殻と永久耐火物層との間に断熱層を施工した。その結果、断熱層を設置することで、気孔率が15%以下の緻密な内張り耐火物層であっても、稼動面と平行な方向の割れが解消した。   Therefore, for the purpose of increasing the temperature of the portion of the lining refractory layer close to the permanent refractory layer, the silicon oxide content of the lining refractory layer made of zirconia refractory is set to 0.5% by mass or less. The heat insulation layer was constructed between the outer shell, which is on the outer shell side of the lining refractory layer, and the permanent refractory layer. As a result, by installing the heat insulating layer, even in the case of a dense lining refractory layer having a porosity of 15% or less, cracks in the direction parallel to the working surface were eliminated.

この断熱層の熱伝達係数(断熱層の熱伝導率/断熱層の厚み)は低いほど望ましいが、高くとも30W/(m2×K)以下であれば、内張り耐火物層の100mm相当分以上の熱抵抗が得られ、内張り耐火物層の永久耐火物層に近い部分の温度が十分上昇して割れが低減される。また、断熱層を内張り耐火物と永久耐火物層との間に設置しても、同等の効果が得られた。 This insulation layer heat transfer coefficient (thickness of the heat insulation layer thermal conductivity / heat insulating layer) is as low desirable, if both 30 W / (m 2 × K) less high than 100mm equivalent of refractory lining layer Thus, the temperature of the portion of the lining refractory layer close to the permanent refractory layer is sufficiently raised to reduce cracking. Moreover, even if it installed the heat insulation layer between the lining refractory layer and the permanent refractory layer, the same effect was acquired.

ジルコニア安定化材である酸化カルシウムの質量または酸化イットリウムの質量と、未安定化ジルコニアの質量との質量比が8対92のときに最も割れや亀裂が少なかったが、この質量比が5対95から11対89の範囲では耐用性は良好であった。   When the mass ratio of the mass of calcium oxide or yttrium oxide as the zirconia stabilizing material to the mass of unstabilized zirconia was 8 to 92, there were few cracks or cracks, but this mass ratio was 5 to 95. From 11 to 89, the durability was good.

本発明は、上記試験結果に基づきなされたものであり、本発明に係る高温用容器の製造方法は、金属からなる外殻の内側に、永久耐火物層、内張り耐火物層をこの順に備えた、900℃以上の高温物体を保持する高温用容器の製造方法において、酸化カルシウム(CaO)、酸化イットリウム(Y23)またはこれらの化合物からなるジルコニア安定化材と、未安定化ジルコニア(ZrO2)とを、前記ジルコニア安定化材のCaO換算またはY23換算の質量と前記未安定化ジルコニアの質量との質量比が5対95から11対89の範囲で含有し、且つ、酸化珪素(SiO2)の含有量が0.5質量%以下である混合物を60質量%以上含有し、残部が、アルミナ(Al23)、マグネシア(MgO)、酸化クロム(Cr23)、黒鉛(C)、炭化珪素(SiC)、窒化珪素(Si34)及びこれらの化合物のうちの1種または2種以上、並びに、結合材と不可避な不純物であり、気孔率が15%以下の耐火物であって、900℃未満の温度で焼成されたか、または、不焼成のままの成形耐火物または不定形耐火物を、前記内張り耐火物層として施工することを特徴とする。 The present invention has been made based on the above test results, and the method for producing a high-temperature container according to the present invention comprises a permanent refractory layer and a lining refractory layer in this order inside a metal outer shell. , A zirconia stabilizing material composed of calcium oxide (CaO), yttrium oxide (Y 2 O 3 ) or a compound thereof, and unstabilized zirconia (ZrO). 2 ) in the range of 5:95 to 11:89, and the mass ratio of the mass of the zirconia-stabilized material in terms of CaO or Y 2 O 3 to the mass of the unstabilized zirconia is oxidized. 60% by mass or more of a mixture having a silicon (SiO 2 ) content of 0.5% by mass or less, with the balance being alumina (Al 2 O 3 ), magnesia (MgO), chromium oxide (Cr 2 O 3 ) , Lead (C), silicon carbide (SiC), silicon nitride (Si 3 N 4) and one or more of these compounds, as well as, a binder and inevitable impurities, porosity of 15% or less The molded refractory that has been fired at a temperature of less than 900 ° C. or that has not been fired or an unshaped refractory is applied as the lining refractory layer.

本発明では、900℃以上の高温物体を保持する高温用容器を対象とする。これは、保持する高温物体の温度が900℃未満では、ジルコニアの転移が起こらず、本発明の効果が得られないからである。また、内張り耐火物層として施工する、ジルコニア安定化材と未安定化ジルコニアとの混合物は、成形耐火物(成形レンガ)であっても、不定形耐火物であっても、どちらでも本発明を適用することができる。   The present invention is directed to a high-temperature container that holds a high-temperature object of 900 ° C. or higher. This is because when the temperature of the high-temperature object to be held is less than 900 ° C., zirconia transition does not occur and the effects of the present invention cannot be obtained. Moreover, the mixture of the zirconia stabilizing material and the unstabilized zirconia applied as the lining refractory layer may be a molded refractory (molded brick) or an irregular refractory. Can be applied.

本発明では、内張り耐火物層として施工する、安定化材と未安定化ジルコニアとの混合物を、不焼成とすることで、使用開始後に金属製の外殻で拘束された状態で、転移による膨張応力が生じることから、耐火物の組織が緻密となり、耐用性が向上する。   In the present invention, a mixture of a stabilizing material and unstabilized zirconia applied as a lining refractory layer is unfired, and is expanded by transition in a state of being restrained by a metal outer shell after the start of use. Since the stress is generated, the structure of the refractory becomes dense and the durability is improved.

但し、安定化材と未安定化ジルコニアとの混合物に900℃未満の温度での焼成を行っても、ジルコニアの転移は起こらず、上記の効果は損なわれない。つまり、焼成温度が900℃未満である限り、内張り耐火物層として施工する前、及び、内張り耐火物層として施工した後、安定化材と未安定化ジルコニアとの混合物を焼成処理しても構わない。即ち、大気雰囲気中では消化などの劣化が進むCaOの活性度を下げるために、900℃未満の温度で焼成することは問題ない。   However, even if the mixture of the stabilizing material and the unstabilized zirconia is baked at a temperature of less than 900 ° C., the zirconia is not transferred and the above effect is not impaired. That is, as long as the firing temperature is less than 900 ° C., the mixture of the stabilizing material and the unstabilized zirconia may be fired before being applied as the lining refractory layer and after being applied as the lining refractory layer. Absent. That is, there is no problem in firing at a temperature of less than 900 ° C. in order to reduce the activity of CaO, which progresses in degradation such as digestion, in the air atmosphere.

ジルコニア安定化材としては、前述した酸化カルシウム、酸化イットリウムの他に、例えば、水酸化カルシウム(Ca(OH)2)や水酸化イットリウム(Y(OH)3)などの化合物も使用することができる。安定化材の配合割合には最適範囲があり、本発明では、水酸化カルシウムや水酸化イットリウムなどの化合物も含め、安定化材のCaO換算の質量またはY23換算の質量と未安定化ジルコニアの質量との質量比を基準として、安定化材の配合割合を制御する。つまり、安定化材のCaO換算の質量またはY23換算の質量と未安定化ジルコニアの質量との質量比を5対95から11対89の範囲とする。 As the zirconia stabilizer, for example, compounds such as calcium hydroxide (Ca (OH) 2 ) and yttrium hydroxide (Y (OH) 3 ) can be used in addition to the above-mentioned calcium oxide and yttrium oxide. . There is an optimum range for the blending ratio of the stabilizing material. In the present invention, the CaO equivalent mass or Y 2 O 3 equivalent mass of the stabilizing agent, including compounds such as calcium hydroxide and yttrium hydroxide, is not stabilized. The blending ratio of the stabilizing material is controlled based on the mass ratio with the mass of zirconia. That is, the mass ratio of the stabilizing material in terms of CaO or Y 2 O 3 and the mass of unstabilized zirconia is in the range of 5:95 to 11:89.

ここで、CaO換算とは、例えば水酸化カルシウムをCaO換算する場合には、Ca(OH)2の式量が74であり、CaOの式量が56であるので、水酸化カルシウムの質量に0.7568(=56/74)を乗算した値が、水酸化カルシウムをCaOに換算した質量になる。Y23換算も同様にして算出する。 Here, for example, when calcium hydroxide is converted to CaO, the CaO equivalent is 74 (Ca (OH) 2 ) and the CaO formula is 56, so the mass of calcium hydroxide is 0. The value obtained by multiplying by 7568 (= 56/74) is the mass obtained by converting calcium hydroxide into CaO. Y 2 O 3 conversion is similarly calculated.

安定化材の質量と未安定化ジルコニアの質量との質量比が5対95よりも安定化材の配合量が少ないと、1500℃以上の高温にしないと立方晶への転移が十分に進まず、未安定化ジルコニアを内張り耐火物として利用することができない。特に、永久耐火物層に近い範囲では、断熱層を設置しても稼動面に比べて温度が低いために、安定化の効果が得られない。一方、質量比が11対89よりも安定化材の配合量が多いと、酸化カルシウムや酸化イットリウムが過剰になり、CaZrO3などの結晶相が発生して組織を脆化させ、耐用性に優れる内張り耐火物層を形成させることができない。 If the weight ratio of the stabilizing material to the unstabilized zirconia is less than 5:95, the transition to cubic crystals will not proceed sufficiently unless the temperature is increased to 1500 ° C. or higher. Unstabilized zirconia cannot be used as a lining refractory. In particular, in the range close to the permanent refractory layer, even if the heat insulating layer is installed, the temperature is lower than that of the operating surface, so that the stabilization effect cannot be obtained. On the other hand, when the blending amount of the stabilizing material is larger than 11:89, calcium oxide and yttrium oxide become excessive, a crystal phase such as CaZrO 3 is generated, the structure becomes brittle, and the durability is excellent. A lining refractory layer cannot be formed.

ジルコニア安定化材と未安定化ジルコニアとの混合物の内張り耐火物層における配合率が低いと、転移した物体と転移しない物体との膨張挙動の差に起因して、内張り耐火物層に割れや亀裂が発生する。安定化材と未安定化ジルコニアとの混合物の配合率を60質量%未満とし、残部に、例えばアルミナを混合した場合、安定化材と未安定化ジルコニアとの混合物と、アルミナとの界面に間隙(亀裂)が生じ、アルミナが脱落するような損耗形態が観察された。   If the blending ratio of the mixture of zirconia-stabilized material and unstabilized zirconia in the lining refractory layer is low, cracks or cracks in the lining refractory layer due to the difference in expansion behavior between the transferred and non-transferred objects. Will occur. When the blending ratio of the mixture of the stabilizing material and unstabilized zirconia is less than 60% by mass and, for example, alumina is mixed in the balance, there is a gap at the interface between the mixture of the stabilizing material and unstabilized zirconia and the alumina. A form of wear was observed in which (crack) occurred and alumina dropped off.

この結果から、ジルコニア安定化材と未安定化ジルコニアとの混合物の内張り耐火物層における配合率は60質量%以上であることが必要である。安定化材と未安定化ジルコニアとの混合物以外の残部は、アルミナ、マグネシア、酸化クロム、黒鉛、炭化珪素、窒化珪素及びこれらの化合物のうちの1種または2種以上とすればよい。   From this result, the blending ratio in the lining refractory layer of the mixture of the zirconia stabilizing material and the unstabilized zirconia is required to be 60% by mass or more. The balance other than the mixture of the stabilizing material and unstabilized zirconia may be one or more of alumina, magnesia, chromium oxide, graphite, silicon carbide, silicon nitride, and these compounds.

当然ではあるが、これらを添加せず、酸化珪素が0.5質量%以下である、ジルコニア安定化材と未安定化ジルコニアとの混合物のみを内張り耐火物層として施工することもできる。   Of course, it is also possible to apply only a mixture of a zirconia stabilizing material and an unstabilized zirconia, in which silicon oxide is 0.5% by mass or less, without being added as a lining refractory layer.

本発明において、鋼材などの金属製の外殻は必須の要件である。これは、金属製の外殻で内張り耐火物を拘束し、体積膨張を内部応力として作用させて転移時の欠陥の発生を抑止するためである。金属製外殻の材質や寸法は任意であるが、強度や弾性率が低い場合や永久耐火物層を介して内張り耐火物層を覆う範囲が狭い場合は、内張り耐火物層が膨張した時に応力を保ったまま保持できなくなることから、このようなものは不適当である。   In the present invention, a metal outer shell such as steel is an essential requirement. This is for restraining the occurrence of defects during transition by restraining the lining refractory with a metal outer shell and causing volume expansion to act as an internal stress. The material and dimensions of the metal outer shell are arbitrary. Such a thing is unsuitable because it becomes impossible to hold with keeping.

同様の理由で、低融点物質で塑性変形を促す酸化珪素は可及的に低減すべきであるが、0.5質量%以下であれば実際上の悪影響は生じない。また、酸化珪素を低減したことにより、耐食性も向上する傾向が認められた。当然ではあるが、酸化珪素を意図的に添加することは全く必要性がない。   For the same reason, silicon oxide that promotes plastic deformation with a low-melting-point material should be reduced as much as possible. However, if it is 0.5% by mass or less, there is no practical adverse effect. Moreover, the tendency for corrosion resistance to improve was recognized by reducing silicon oxide. Of course, it is not absolutely necessary to intentionally add silicon oxide.

本発明において、外殻と永久耐火物層との間、または、永久耐火物層と内張り耐火物層との間に、熱伝達係数が30W/(m2×K)以下の断熱層を施工することで、未安定化ジルコニアの内張り耐火物層への適用がより一層効果的になる。断熱層を設けない場合の内張り耐火物層の割れは、内張り耐火物層内部の温度勾配に起因すると考えられる。その裏づけとして、割れは内張り耐火物層の残厚が約100mmよりも小さくなったときに多く発生し、それよりも残厚が大きいと割れは少ない。これは、内張り耐火物層の残厚が大きいと、全体の熱伝達係数が低いために温度勾配が小さく、熱応力が小さいためと考えられる。 In the present invention, a heat insulating layer having a heat transfer coefficient of 30 W / (m 2 × K) or less is applied between the outer shell and the permanent refractory layer or between the permanent refractory layer and the lining refractory layer. Thus, application of unstabilized zirconia to the lining refractory layer becomes even more effective. It is considered that the crack of the lining refractory layer when the heat insulation layer is not provided is caused by a temperature gradient inside the lining refractory layer. In support of this, many cracks occur when the remaining thickness of the lining refractory layer becomes smaller than about 100 mm, and if the remaining thickness is larger than that, there are few cracks. This is presumably because when the remaining thickness of the lining refractory layer is large, the overall heat transfer coefficient is low, so the temperature gradient is small and the thermal stress is small.

以上説明したように、本発明によれば、原料に高価な安定化ジルコニアを使用せずに、安価な未安定化ジルコニアを、高温での焼成や予熱を施すことなく内張り耐火物として用いて、高温物体の保持、輸送、精錬などに用いられる高温用容器を製造することが実現される。   As described above, according to the present invention, without using expensive stabilized zirconia as a raw material, inexpensive unstabilized zirconia is used as a lining refractory without firing or preheating at a high temperature. It is possible to manufacture a high-temperature container used for holding, transporting, refining, and the like of high-temperature objects.

図1に、本発明を適用して製造した溶銑鍋の側面断面図を示す。溶銑鍋1は、鉄皮2を外殻とし、鉄皮2の内側に、永久耐火物層3、内張り耐火物層4がこの順に施工されて構成されている。永久耐火物層3としては、マグネシア質レンガ、アルミナ質レンガ、粘土質レンガ、ロー石レンガなどの慣用のレンガを使用する。   FIG. 1 shows a side sectional view of a hot metal ladle manufactured by applying the present invention. The hot metal ladle 1 has an iron shell 2 as an outer shell, and a permanent refractory layer 3 and a lining refractory layer 4 are constructed in this order inside the iron shell 2. As the permanent refractory layer 3, conventional bricks such as magnesia bricks, alumina bricks, clay bricks and rhostone bricks are used.

厚み30mmの鉄皮2の内側に厚み50mmの永久耐火物層3を施工し、その内側に、厚み160mmの内張り耐火物層4を施工した。内張り耐火物層4としては、溶銑鍋1の上端側のスラグライン部(図示せず)を除いて、未安定化ジルコニアを80質量%、水酸化カルシウムを12質量%、バインダーを8質量%含有する不定形の混合物を型枠内に施工した。この不定形の混合物中での不可避の混合成分は、いずれの成分も0.5質量%以下であった。また、鉄皮2と永久耐火物層3との間に、市販の厚み3mmのシート状微孔性断熱材を断熱層5として施工した。尚、スラグライン部は、スラグに対する耐食性に優れる炭素含有耐火物を施工した。   A permanent refractory layer 3 having a thickness of 50 mm was applied to the inner side of the iron skin 2 having a thickness of 30 mm, and a lining refractory layer 4 having a thickness of 160 mm was applied to the inner side thereof. The lining refractory layer 4 contains 80% by mass of unstabilized zirconia, 12% by mass of calcium hydroxide, and 8% by mass of binder except for the slag line part (not shown) on the upper end side of the hot metal ladle 1. An amorphous mixture was applied in the mold. All of the inevitable mixed components in the amorphous mixture were 0.5% by mass or less. Further, a commercially available sheet-like microporous heat insulating material having a thickness of 3 mm was applied as the heat insulating layer 5 between the iron skin 2 and the permanent refractory layer 3. In addition, the slag line part constructed the carbon containing refractory which is excellent in the corrosion resistance with respect to slag.

水酸化カルシウムをCaOに換算するには、水酸化カルシウムの質量に0.7568(=56/74)を乗算すればよく、したがって、CaOに換算した水酸化カルシウムの含有量は9.1質量%(=12×0.7568)となる。未安定化ジルコニアとCaOに換算した水酸化カルシウムの質量比は、80対9.1、つまり、89.8対10.2であった。   In order to convert calcium hydroxide to CaO, it is only necessary to multiply the mass of calcium hydroxide by 0.7568 (= 56/74). Therefore, the content of calcium hydroxide converted to CaO is 9.1% by mass. (= 12 × 0.7568) The mass ratio of unstabilized zirconia to calcium hydroxide converted to CaO was 80 to 9.1, that is, 89.8 to 10.2.

シート状微孔性断熱材の熱伝導率は、使用開始時が0.03W/(m×K)、1年後の解体修理時は0.06W/(m×K)であったので、溶銑鍋使用期間中の断熱層5における熱伝達係数(熱伝導率/断熱層厚み)は10〜20W/(m2×K)となる。 The thermal conductivity of the sheet-like microporous heat insulating material was 0.03 W / (m × K) at the start of use, and 0.06 W / (m × K) at the time of dismantling after 1 year. The heat transfer coefficient (thermal conductivity / heat insulating layer thickness) in the heat insulating layer 5 during the pot use period is 10 to 20 W / (m 2 × K).

上記組成の内張り耐火物層4を施工した後、所定の水分乾燥工程及び型枠外しを行い、その後、溶銑搬送用の高温用容器として使用を開始した。溶銑鍋の使用期間中、内張り耐火物層の割れや剥離による損耗は観察されず、従来の安定化ジルコニアを用いた内張り耐火物層に比べて損耗速度は2割低減した。   After constructing the lining refractory layer 4 having the above composition, a predetermined moisture drying step and mold removal were performed, and thereafter, the use was started as a high-temperature container for hot metal conveyance. During use of the hot metal ladle, no wear due to cracking or peeling of the lining refractory layer was observed, and the wear rate was reduced by 20% compared to the lining refractory layer using conventional stabilized zirconia.

1 溶銑鍋
2 鉄皮
3 永久耐火物層
4 内張り耐火物層
5 断熱層
1 Hot metal ladle 2 Iron skin 3 Permanent refractory layer 4 Lined refractory layer 5 Thermal insulation layer

Claims (3)

金属からなる外殻の内側に、永久耐火物層、内張り耐火物層をこの順に備えた、900℃以上の高温物体を保持する高温用容器の製造方法において、
酸化カルシウム(CaO)、酸化イットリウム(Y23)またはこれらの化合物からなるジルコニア安定化材と、安定化されていない単斜晶系ジルコニア(ZrO2)とを、前記ジルコニア安定化材のCaO換算またはY23換算の質量と前記安定化されていない単斜晶系ジルコニアの質量との質量比が5対95から11対89の範囲で含有し、且つ、酸化珪素(SiO2)の含有量が0.5質量%以下である混合物を60質量%以上含有し、残部が、アルミナ(Al23)、マグネシア(MgO)、酸化クロム(Cr23)、黒鉛(C)、炭化珪素(SiC)、窒化珪素(Si34)及びこれらの化合物のうちの1種または2種以上、並びに、結合材と不可避な不純物であり、気孔率が15%以下の耐火物であって、900℃未満の温度で焼成されたか、または、不焼成のままの成形耐火物または不定形耐火物を、前記内張り耐火物層として施工することを特徴とする、高温用容器の製造方法。
In the manufacturing method of the container for high temperature which hold | maintains the high temperature object of 900 degreeC or more provided with the permanent refractory layer and the lining refractory layer in this order inside the outer shell which consists of metal,
Calcium oxide (CaO), yttrium oxide (Y 2 O 3 ) or a zirconia stabilizing material composed of these compounds, and unstabilized monoclinic zirconia (ZrO 2 ) are used as the CaO of the zirconia stabilizing material. The mass ratio of the converted or Y 2 O 3 converted mass to the mass of the unstabilized monoclinic zirconia is in the range of 5:95 to 11:89, and silicon oxide (SiO 2 ) 60% by mass or more of a mixture having a content of 0.5% by mass or less, with the balance being alumina (Al 2 O 3 ), magnesia (MgO), chromium oxide (Cr 2 O 3 ), graphite (C), Silicon carbide (SiC), silicon nitride (Si 3 N 4 ) and one or more of these compounds, as well as binders and inevitable impurities, are refractories with a porosity of 15% or less. 900 ℃ not yet If it were fired at a temperature, or a molded refractory or monolithic refractory remains unfired, characterized by construction as the refractory lining layer, the manufacturing method of high-temperature vessel.
内張り耐火物層として施工する前記成形耐火物または前記不定形耐火物は、アルミナ、マグネシア、酸化クロム、黒鉛、炭化珪素、窒化珪素及びこれらの化合物を含有しないことを特徴とする、請求項1に記載の高温用容器の製造方法。   The molded refractory or the amorphous refractory applied as a lining refractory layer does not contain alumina, magnesia, chromium oxide, graphite, silicon carbide, silicon nitride, or a compound thereof. The manufacturing method of the container for high temperature as described. 前記外殻と前記永久耐火物層との間、または、前記永久耐火物層と前記内張り耐火物層との間に、熱伝達係数が30W/(m2×K)以下の断熱層を施工することを特徴とする、請求項1または請求項2に記載の高温用容器の製造方法。 A heat insulating layer having a heat transfer coefficient of 30 W / (m 2 × K) or less is applied between the outer shell and the permanent refractory layer or between the permanent refractory layer and the lining refractory layer. The manufacturing method of the container for high temperature of Claim 1 or Claim 2 characterized by the above-mentioned.
JP2015060751A 2015-03-24 2015-03-24 Manufacturing method of container for high temperature Expired - Fee Related JP6287918B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015060751A JP6287918B2 (en) 2015-03-24 2015-03-24 Manufacturing method of container for high temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015060751A JP6287918B2 (en) 2015-03-24 2015-03-24 Manufacturing method of container for high temperature

Publications (2)

Publication Number Publication Date
JP2016179482A JP2016179482A (en) 2016-10-13
JP6287918B2 true JP6287918B2 (en) 2018-03-07

Family

ID=57132308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015060751A Expired - Fee Related JP6287918B2 (en) 2015-03-24 2015-03-24 Manufacturing method of container for high temperature

Country Status (1)

Country Link
JP (1) JP6287918B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111390149A (en) * 2020-04-24 2020-07-10 中信戴卡股份有限公司 Casting ladle for casting aluminum alloy

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106862547B (en) * 2017-02-28 2019-04-23 山东钢铁股份有限公司 A kind of bakie working lining inner lining structure adsorbing inclusion content in melting steel

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61155254A (en) * 1984-12-26 1986-07-14 住友金属工業株式会社 Two layer brick for lining molten metal vessel
JP3685568B2 (en) * 1996-11-08 2005-08-17 品川白煉瓦株式会社 Indefinite refractory for secondary smelting ladle lining
JPH10206031A (en) * 1997-01-23 1998-08-07 Sumitomo Metal Ind Ltd Heat insulating lining structure for ladle laying part
JP3615400B2 (en) * 1998-09-30 2005-02-02 品川白煉瓦株式会社 Unfired carbon-containing refractories and molten metal containers
PL2090554T3 (en) * 2008-02-18 2012-10-31 Refractory Intellectual Property Gmbh & Co Kg Refractory article incorporating a cold slag band
JP5680297B2 (en) * 2009-11-17 2015-03-04 Jfeスチール株式会社 Refractory lining structure for steelmaking containers
JP5741316B2 (en) * 2011-08-17 2015-07-01 新日鐵住金株式会社 Lining drying method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111390149A (en) * 2020-04-24 2020-07-10 中信戴卡股份有限公司 Casting ladle for casting aluminum alloy
CN111390149B (en) * 2020-04-24 2021-06-22 中信戴卡股份有限公司 Casting ladle for casting aluminum alloy

Also Published As

Publication number Publication date
JP2016179482A (en) 2016-10-13

Similar Documents

Publication Publication Date Title
JP4834012B2 (en) Insulated castable refractories
TW200938509A (en) Aluminum compound-bonded brick for furnace hearth
WO2010095637A1 (en) Unburned alumina-carbon brick and kiln facility utilizing same
JP5110540B2 (en) FeO resistant coating material
JP5448190B2 (en) Alumina-carbon unfired brick for lining of molten metal holding furnace and manufacturing method, kiln furnace equipment and construction method using the same
JP5777561B2 (en) Brick for stainless steel refining ladle and stainless steel refining ladle
JP2000103665A (en) Carbon-including unburned refractory material, and vessel for molten metal
JP5361795B2 (en) Lined casting material
JP6287918B2 (en) Manufacturing method of container for high temperature
JP6662346B2 (en) Refractory and manufacturing method thereof
JP6077877B2 (en) Castable refractories for blast furnace firewood
EP2792656B1 (en) Method for producing a silicon carbide whisker-reinforced refractory ceramic composition
JP5769313B2 (en) Low thermal expansion insulation castable
JP5907312B2 (en) Method for manufacturing lining structure of molten metal container
JP6154772B2 (en) Alumina-silicon carbide-carbon brick
JP2004131310A (en) Castable refractory for lining tundish
JP5712888B2 (en) Lined lining structure for steelmaking containers
JP4408552B2 (en) Alumina-magnesia castable refractories using magnesium carbonate as a magnesia source
JP2009242122A (en) Brick for blast furnace hearth and blast furnace hearth lined with the same
JP5594406B2 (en) Construction method of irregular refractories
WO2013145152A1 (en) Furnace wall structure of molten metal container and method for constructing furnace wall of molten metal container
JP2020100853A (en) Monolithic refractory for blast furnace runner cover
JP4704263B2 (en) Amorphous refractory molding material and Amorphous refractory molding
JP5358936B2 (en) Construction method of irregular refractories
JP3140855B2 (en) Basic amorphous refractories containing lactic acid and phosphate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180122

R150 Certificate of patent or registration of utility model

Ref document number: 6287918

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees