JP6077877B2 - Castable refractories for blast furnace firewood - Google Patents

Castable refractories for blast furnace firewood Download PDF

Info

Publication number
JP6077877B2
JP6077877B2 JP2013025655A JP2013025655A JP6077877B2 JP 6077877 B2 JP6077877 B2 JP 6077877B2 JP 2013025655 A JP2013025655 A JP 2013025655A JP 2013025655 A JP2013025655 A JP 2013025655A JP 6077877 B2 JP6077877 B2 JP 6077877B2
Authority
JP
Japan
Prior art keywords
mass
less
component
blast furnace
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013025655A
Other languages
Japanese (ja)
Other versions
JP2014152092A (en
Inventor
和晃 原口
和晃 原口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krosaki Harima Corp filed Critical Krosaki Harima Corp
Priority to JP2013025655A priority Critical patent/JP6077877B2/en
Priority to PCT/JP2014/053172 priority patent/WO2014126095A1/en
Priority to TW103104701A priority patent/TWI532703B/en
Publication of JP2014152092A publication Critical patent/JP2014152092A/en
Application granted granted Critical
Publication of JP6077877B2 publication Critical patent/JP6077877B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/06Aluminous cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/12Opening or sealing the tap holes
    • C21B7/125Refractory plugging mass
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/14Discharging devices, e.g. for slag
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/4653Tapholes; Opening or plugging thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/10Details, accessories, or equipment peculiar to furnaces of these types
    • F27B1/12Shells or casings; Supports therefor
    • F27B1/14Arrangements of linings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/0003Linings or walls
    • F27D1/0006Linings or walls formed from bricks or layers with a particular composition or specific characteristics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/28Fire resistance, i.e. materials resistant to accidental fires or high temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/34Non-shrinking or non-cracking materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3821Boron carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/424Carbon black
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Metallurgy (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Blast Furnaces (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Description

本発明は、高炉樋の内張りとして使用するキャスタブル耐火物に関する。   The present invention relates to a castable refractory used as a lining of a blast furnace pit.

高炉樋は、高炉から出銑した溶銑が取鍋、混銑車等に至る通路の役割を持つ。その内張り材は施工性の面からキャスタブル耐火物が使用されており、その材質はアルミナ−炭化珪素−炭素質が主流である。   The blast furnace has the role of a passage from the hot metal discharged from the blast furnace to the ladle, chaos car, etc. The lining material is castable refractory from the viewpoint of workability, and the material is mainly alumina-silicon carbide-carbonaceous.

このような高炉樋用キャスタブル耐火物においては、酸化防止剤として炭化ホウ素(BC)を添加する技術が知られている(例えば、特許文献1参照)。炭化ホウ素は酸化することで耐火材料の表面に被膜を形成し、この被膜は炭素材料の酸化を防止する機能を有する。 In such a blast furnace castable refractory, a technique of adding boron carbide (B 4 C) as an antioxidant is known (see, for example, Patent Document 1). Boron carbide oxidizes to form a film on the surface of the refractory material, and this film has a function of preventing oxidation of the carbon material.

また、特許文献2には、BCとアルミナ微粉及びシリカ超微粉とを併用すると、BCから生成したBと、Al及びSiOが反応し、ムライト(3Al・2SiO)を固溶した9Al・2B(以下「9A2B」という。)の柱状結晶がマトリクス部や空隙に絡み合うように析出することが開示されている。マトリクス部や空隙に9A2Bが析出することにより、材料の気孔率が大幅に低下するとともに、高温の熱間強度が向上し、スラグや銑鉄に対しての耐食性、耐磨耗性を改善できるとされている。 In Patent Document 2, when B 4 C, alumina fine powder and silica ultra fine powder are used in combination, B 2 O 3 generated from B 4 C reacts with Al 2 O 3 and SiO 2 to produce mullite (3Al 2 O 3 · 2SiO 2) 9Al 2 O 3 · 2B 2 O 3 solid solution (hereinafter referred to as "9A2B". columnar crystals) has been disclosed to be precipitated as entangled in the matrix portion and the gap. Precipitation of 9A2B in the matrix and voids significantly reduces the porosity of the material, improves the hot strength at high temperatures, and improves the corrosion resistance and wear resistance against slag and pig iron. ing.

特開2000−203953号公報JP 2000-203953 A 特開平3−164479号公報Japanese Patent Laid-Open No. 3-164479

特許文献1に記載のように、BCは酸化により被膜(B)を生成し、表面酸化保護膜として機能する。一方で、Bはキャスタブル耐火物中のAlと反応をすることによって、AlとBの固溶体(9A2B)を形成する。しかし、この固溶体(9A2B)が形成されると、表面酸化保護膜としてのBが消費され、表面酸化保護の機能が低下する。表面酸化保護の機能が低下すると、キャスタブル耐火物の内部成分が酸化雰囲気に曝されてしまうため、炭素材料の酸化と、BとAlの反応が同時進行的に起こり、酸化層が更に内部まで進行する。 As described in Patent Document 1, B 4 C generates a coating (B 2 O 3 ) by oxidation and functions as a surface oxidation protective film. On the other hand, B 2 O 3 forms a solid solution (9A2B) of Al 2 O 3 and B 2 O 3 by reacting with Al 2 O 3 in the castable refractory. However, when this solid solution (9A2B) is formed, B 2 O 3 as a surface oxidation protection film is consumed, and the function of surface oxidation protection is lowered. When the function of surface oxidation protection is reduced, the internal components of the castable refractory are exposed to the oxidizing atmosphere, so that the oxidation of the carbon material and the reaction of B 2 O 3 and Al 2 O 3 occur simultaneously, and the oxidation The layer proceeds further into the interior.

また、特許文献2では9A2Bが析出することで耐食性、耐摩耗性が改善するとされているが、9A2Bは緻密な焼結体であるため、9A2Bが生成すると施工体の強度が増し、未酸化の健全な組織との間に強度差が発生する。そうすると、この強度差によって亀裂剥離の組織劣化を招きやすい施工体となる。特に高炉樋のスラグライン部においては、高炉操業により加熱冷却が繰り返されるため、繰返し熱履歴による構造体の変化及びその際の熱衝撃によって亀裂剥離が生じやすい。   Further, in Patent Document 2, it is said that the corrosion resistance and the wear resistance are improved by precipitation of 9A2B. However, since 9A2B is a dense sintered body, the strength of the construction body increases when 9A2B is generated, and it is unoxidized. Differences in strength occur between healthy tissues. If it does so, it will become a construction body which is easy to cause the structure deterioration of crack peeling by this strength difference. In particular, in the slag line portion of the blast furnace slag, since heating and cooling are repeated by blast furnace operation, crack peeling is likely to occur due to a change in structure due to repeated thermal history and thermal shock at that time.

以上に鑑み、本発明が解決しようとする課題は、BCによる酸化防止機能が低下せず、施工体の亀裂剥離の発生も防止できる高炉樋用キャスタブル耐火物を提供することにある。 In view of the above, the problem to be solved by the present invention is to provide a castable refractory for a blast furnace slag that does not deteriorate the anti-oxidation function due to B 4 C and can prevent crack peeling of the construction body.

本発明の一観点によれば、SiC成分を40質量%以上80質量%以下C成分を0.3質量%以上3.0質量%以下含有し、全原料中の粒径45μm以上のAl 成分含有率が10質量%以上40質量%以下、かつ全原料中の粒径45μm未満のAl 成分含有率が6.9質量%以下である高炉樋用キャスタブル耐火物が提供される。 According to one aspect of the present invention, the SiC component is contained in an amount of 40% by mass or more and 80% by mass or less , and the B 4 C component is contained in an amount of 0.3% by mass or more and 3.0% by mass or less . A castable refractory for a blast furnace with an Al 2 O 3 component content of 10% by mass or more and 40% by mass or less and an Al 2 O 3 component content of less than 45 μm in all raw materials is 6.9% by mass or less. Provided.

本発明では、高炉樋用キャスタブル耐火物の化学成分の合量100質量%(全原料)粒径45μm未満のAl 成分含有率を6.9質量%以下に制限しているので、BC成分由来のBがAlと反応して9A2Bを生成することが抑制される。すなわち、BがAlと反応して消費されにくいことからBCによる酸化防止機能が低下せず、9A2Bの生成が抑制されることから施工体の亀裂剥離の発生も防止できる。 In the present invention, the content of Al 2 O 3 having a particle size of less than 45 μm in the total amount of chemical components of the blast furnace slag castable refractory 100% by mass ( total raw material) is limited to 6.9% by mass or less. , B 2 O 3 derived from the B 4 C component is inhibited from reacting with Al 2 O 3 to produce 9A2B. That is, since B 2 O 3 reacts with Al 2 O 3 and is not easily consumed, the anti-oxidation function by B 4 C is not lowered, and the generation of 9A2B is suppressed, so that the occurrence of crack peeling of the construction body is also prevented. it can.

本発明の高炉樋用キャスタブル耐火物は、典型的には、アルミナ原料、炭化珪素原料及び炭素原料を主原料とし更に炭化ホウ素(BC)原料を配合したアルミナ−炭化珪素−炭素質であり、これに分散剤及び結合剤を加えてなる。そして、その化学成分として、SiC成分を40質量%以上80質量%以下C成分を0.3質量%以上3.0質量%以下含有し、全原料中の粒径45μm以上のAl 成分含有率が10質量%以上40質量%以下、かつ全原料中の粒径45μm未満のAl 成分含有率が6.9質量%以下である。全原料中の粒径45μm未満のAl 成分含有率は3.9質量%以下であることが好ましく、BC成分の含有量は0.3質量%以上1.5質量%以下であることが好ましい。なお、アルミナ−炭化珪素−炭素質ではフリーのC成分も含有するが、その含有量は1〜10質量%程度である。 The blast furnace refractory refractory of the present invention is typically an alumina-silicon carbide-carbonaceous material in which an alumina raw material, a silicon carbide raw material, and a carbon raw material are used as a main raw material and a boron carbide (B 4 C) raw material is blended. A dispersant and a binder are added to this. Then, as its chemical composition, 80 wt% to 40 wt% of SiC components below, B 4 and C component contained 0.3 wt% to 3.0 wt%, the above particle size 45μm in total feed Al 2 The content of O 3 component is 10% by mass or more and 40% by mass or less , and the content of Al 2 O 3 component having a particle size of less than 45 μm in all raw materials is 6.9% by mass or less. The content of Al 2 O 3 component having a particle size of less than 45 μm in all raw materials is preferably 3.9% by mass or less, and the content of B 4 C component is 0.3% by mass or more and 1.5% by mass or less. Preferably there is. In addition, although alumina-silicon carbide-carbonaceous material also contains free C component, the content is about 1-10 mass%.

本発明の高炉樋用キャスタブル耐火物の特徴は、全原料中の粒径45μm未満のAl 成分含有率を6.9質量%以下に限定したことにある。この全原料中の粒径45μm未満のAl 成分含有率には、アルミナ原料に由来するAl成分のほか、結合剤として汎用されているアルミナセメントに由来するAl成分も含まれる。すなわち、全原料中の粒径45μm未満のAl 成分含有率とは、高炉樋用キャスタブル耐火物全体(高炉樋用キャスタブル耐火物の化学成分の合量100質量%中)における、粒径45μm未満のAl 成分含有率である。なお、上記特許文献1の表2に示されている実施例5は、仮焼アルミナが5質量%含まれており、アルミナセメントを外掛けで3質量%含む。このアルミナセメント中には粒径45μm未満Al成分が少なくとも70質量%含まれている。更に粒径1mm以下の電融アルミナには粒径45μm未満Al成分が2質量%程度は含まれる。このため、キャスタブル耐火物全体における粒径45μm未満のAl 成分含有率は7質量%以上となる。 The feature of the castable refractory for a blast furnace fire of the present invention is that the content of Al 2 O 3 component having a particle size of less than 45 μm in all raw materials is limited to 6.9% by mass or less. The Al 2 O 3 component content of less than the particle size 45μm of this total in the raw materials, in addition to Al 2 O 3 component derived from the alumina raw material, Al 2 O 3 components derived from the alumina cement is widely used as a binder Is also included. That is, the Al 2 O 3 component content of less than the particle size 45μm in the total feed, in the entire blast furnace trough castable refractory (total amount 100 mass% of the chemical components of the blast furnace trough for castable refractories), particle size Al 2 O 3 component content of less than 45 μm . In addition, Example 5 shown by Table 2 of the said patent document 1 contains 5 mass% of calcination alumina, and contains 3 mass% of alumina cement as an outer shell. This alumina cement contains at least 70% by mass of an Al 2 O 3 component having a particle size of less than 45 μm. Further, the fused alumina having a particle size of 1 mm or less contains about 2% by mass of an Al 2 O 3 component having a particle size of less than 45 μm. Therefore, Al 2 O 3 component content of less than the particle size 45μm across castable refractory is 7 mass% or more.

本発明の高炉樋用キャスタブル耐火物に使用するアルミナ原料としては、焼結アルミナ、電融アルミナ、ばん土けつ岩、ボーキサイト等が挙げられる。中でも、品質が安定している焼結アルミナ、電融アルミナ等の合成品が好ましい。微粉部には仮焼アルミナを使用してもよい。   Examples of the alumina raw material used in the castable refractory for a blast furnace pit of the present invention include sintered alumina, electrofused alumina, clay shale, bauxite and the like. Of these, synthetic products such as sintered alumina and fused alumina having stable quality are preferable. You may use calcined alumina for a fine powder part.

炭化珪素原料としては、SiC純度が85質量%以上のものが好ましく、95質量%以上のものがより好ましい。SiC成分の含有量は、40質量%未満では耐スラグ性の効果に劣り、80質量%を超えるとその分、炭素、アルミナ等の割合を少なくしなければならず、耐溶銑侵食性に劣る。   As a silicon carbide raw material, that whose SiC purity is 85 mass% or more is preferable, and that whose mass is 95 mass% or more is more preferable. If the content of the SiC component is less than 40% by mass, the effect of slag resistance is inferior, and if it exceeds 80% by mass, the proportion of carbon, alumina, etc. must be reduced accordingly, and the hot metal erosion resistance is inferior.

炭素原料としては、各種ピッチ、カーボンブラック、人造黒鉛、りん状黒鉛、土状黒鉛、コークス、無煙炭等の1種又は2種以上が挙げられる。炭素原料(フリーのC成分)の含有量は上述のとおり1〜10質量%程度である。   Examples of the carbon raw material include one or more of various pitches, carbon black, artificial graphite, phosphorus-like graphite, earth-like graphite, coke, anthracite, and the like. The content of the carbon raw material (free C component) is about 1 to 10% by mass as described above.

酸化防止剤として、炭化ホウ素(BC)を用いる。BC成分の含有量が0.3質量%未満では酸化防止効果が得られない。またBC成分の含有量が3.0質量%を超えると液相生成量が多くなり、過焼結作用により亀裂剥離が生じやすくなる。 Boron carbide (B 4 C) is used as an antioxidant. When the content of the B 4 C component is less than 0.3% by mass, the antioxidant effect cannot be obtained. On the other hand, when the content of the B 4 C component exceeds 3.0% by mass, the amount of liquid phase generated increases, and crack peeling tends to occur due to oversintering action.

分散剤としては、トリポリリン酸ソーダ、ヘキサメタリン酸ソーダ、ウルトラポリリン酸ソーダ、酸性ヘキサメタリン酸ソーダ、ホウ酸ソーダ、炭酸ソーダ、ポリメタリン酸塩などの無機塩、クエン酸ソーダ、酒石酸ソーダ、ポリアクリル酸、ポリアクリル酸ソーダ、スルホン酸ソーダ、ポリカルボン酸塩、β−ナフタレンスルホン酸塩類、ナフタリンスルフォン酸等が挙げられる。   Dispersants include inorganic salts such as sodium tripolyphosphate, sodium hexametaphosphate, sodium ultrapolyphosphate, sodium acid hexametaphosphate, sodium borate, sodium carbonate, polymetaphosphate, sodium citrate, sodium tartrate, polyacrylic acid, polyacrylic acid Examples include sodium acrylate, sodium sulfonate, polycarboxylate, β-naphthalenesulfonate, naphthalene sulfonic acid, and the like.

結合剤としては、アルミナセメント、マグネシアセメント、コロイダルシリカ、コロイダルアルミナ等が挙げられる。中でも施工体の組織強度が得られやすいアルミナセメントが好ましく、アルミナセメントはJIS規格の耐火物アルミナセメント1種又は2種相当品が好ましい。   Examples of the binder include alumina cement, magnesia cement, colloidal silica, colloidal alumina, and the like. Of these, alumina cement is preferable because the structure strength of the construction body can be easily obtained. The alumina cement is preferably JIS standard refractory alumina cement 1 type or 2 type equivalent.

上記各原料のほかにも、上記化学成分の規定値を満たす範囲内で、ケイ酸質粉末、乾燥促進剤、Al粉、Si粉、金属ファイバー、有機ファイバー、セラミックファイバー、塩基性乳酸アルミニウム、ホウ素化合物、酸化防止剤、増粘剤、硬化剤、硬化遅延剤、耐火粗大粒子等を使用することができる。   In addition to the above raw materials, silicic acid powder, drying accelerator, Al powder, Si powder, metal fiber, organic fiber, ceramic fiber, basic aluminum lactate, boron within the range satisfying the specified values of the above chemical components A compound, an antioxidant, a thickener, a curing agent, a curing retarder, a refractory coarse particle, and the like can be used.

本発明の高炉樋用キャスタブル耐火物は、従来の高炉樋用キャスタブル耐火物と同様に、施工水を添加して施工される。   The castable refractory for a blast furnace slag of the present invention is constructed by adding construction water in the same manner as the conventional castable refractory for a blast furnace slag.

表1に本発明の実施例及び比較例を示す。   Table 1 shows examples and comparative examples of the present invention.

Figure 0006077877
Figure 0006077877

表1の化学成分となるように、アルミナ原料、炭化珪素原料、炭素原料、炭化ホウ素(BC)原料、分散剤及び結合剤を配合し、適量の施工水を添加後混練し、型枠に流し込み成形した。次いで養生・乾燥し、試験施工体を得た。なお、表1の実施例及び比較例ではアルミナ原料として電融アルミナ、炭化珪素原料として純度が95質量%以上の炭化珪素、炭素原料としてカーボンブラック及びピッチ、酸化防止剤として炭化ホウ素(BC)、分散剤としてポリアクリル酸、結合剤としてアルミナセメント2種相当品を使用し、化学成分値として示した。なお、表1中「その他」の成分には、表1に記されない成分と分散剤及び各原料不純物の成分が含まれる。 Mixing alumina raw material, silicon carbide raw material, carbon raw material, boron carbide (B 4 C) raw material, dispersant and binder so as to be the chemical components in Table 1, kneading after adding an appropriate amount of construction water, Cast into a mold. Subsequently, it was cured and dried to obtain a test construction body. In Examples and Comparative Examples in Table 1, electrofused alumina as an alumina raw material, silicon carbide having a purity of 95% by mass or more as a silicon carbide raw material, carbon black and pitch as a carbon raw material, boron carbide (B 4 C as an antioxidant) ), Polyacrylic acid as a dispersant, and two types of alumina cement equivalent as a binder were used, and the chemical component values are shown. In Table 1, the “others” component includes components not shown in Table 1, a dispersant, and components of each raw material impurity.

得られた試験施工体について、以下の要領で、酸化試験を行うとともに曲げ試験を行って曲げ強さを測定し、総合評価を行った。   About the obtained test construction object, the following test was performed, the oxidation test was performed, the bending test was performed, the bending strength was measured, and comprehensive evaluation was performed.

(酸化試験)
直径50mm、高さ50mmの試験片を作製し、乾燥後、大気中1000℃で焼成した。焼成後の試験片について、外観及び高さ25mm位置を水平方向に切断した面の酸化状態を観察した。酸化状態の観察では、白みを帯びた部分を酸化部分とみなした。酸化が進んでいないものを○、酸化は進んでいないが試験片外観が多泡化し性状が劣るものを△、酸化が進んでいるものを×として評価した。
(Oxidation test)
A test piece having a diameter of 50 mm and a height of 50 mm was prepared, dried, and fired at 1000 ° C. in the atmosphere. About the test piece after baking, the oxidation state of the surface which cut | disconnected the external appearance and the 25-mm height position in the horizontal direction was observed. In the observation of the oxidation state, the whitened portion was regarded as the oxidized portion. The case where the oxidation was not progressed was evaluated as ◯, the case where the oxidation was not advanced but the appearance of the test piece was foamed and the properties were inferior was evaluated as Δ, and the case where the oxidation was advanced was evaluated as x.

(曲げ試験)
40mm×40mm×160mmの試験片を作製し、乾燥後、大気中1000℃で焼成した。焼成後の試験片について、JIS R2553に準じて曲げ試験を行い曲げ強さを測定した。実施例2を実機に供したところ亀裂剥離が抑制される結果が得られ、また曲げ強さが15MPa以上の場合は亀裂剥離が発生したことから、曲げ強さ15MPa未満を好ましい範囲とした。なお、比較例2を実機に供したところ、亀裂剥離が多い結果であった。
(Bending test)
A test piece of 40 mm × 40 mm × 160 mm was prepared, dried, and fired at 1000 ° C. in the atmosphere. About the test piece after baking, the bending test was done according to JISR2553 and the bending strength was measured. When Example 2 was applied to an actual machine, a result in which crack peeling was suppressed was obtained, and crack peeling occurred when the bending strength was 15 MPa or more. Therefore, a bending strength of less than 15 MPa was set as a preferred range. In addition, when the comparative example 2 was used for the actual machine, it was a result with many crack peeling.

(総合評価)
酸化試験及び曲げ強さは緻密な焼結体(9A2B)の生成の程度を評価する項目であり、これらの項目において酸化試験○、曲げ強さ15MPa未満を満足すれば、緻密な焼結体(9A2B)による亀裂剥離は発生しないし、BC成分由来のBによる酸化防止機能も低下しない。したがって、総合評価では、酸化試験が○であって曲げ強さが15MPa未満の場合を○とし、酸化試験が△若しくは×、又は曲げ強さが15MPa以上の場合を×とした。
(Comprehensive evaluation)
The oxidation test and the bending strength are items for evaluating the degree of formation of a dense sintered body (9A2B). If the oxidation test ○ and the bending strength of less than 15 MPa are satisfied in these items, the dense sintered body ( The crack peeling by 9A2B) does not occur, and the antioxidant function by B 2 O 3 derived from the B 4 C component does not deteriorate. Therefore, in the comprehensive evaluation, the case where the oxidation test was ◯ and the bending strength was less than 15 MPa was evaluated as ◯, the oxidation test was Δ or ×, or the case where the bending strength was 15 MPa or more was evaluated as ×.

表1に示すとおり、本発明で規定する化学成分の範囲にある実施例1〜6は、いずれも総合評価が○であった。   As shown in Table 1, the overall evaluation of each of Examples 1 to 6 in the range of chemical components defined in the present invention was good.

これに対して、比較例1はBC成分を0.8質量%含有するが、全原料中の粒径45μm未満のAl 成分含有率が7.2質量%と多例であり、実施例と比較して、耐酸化性が劣り、曲げ強さが高くなった。 In contrast, Comparative Example 1 B 4 is C-containing components 0.8 wt%, with Al 2 O 3 Example component content of 7.2 wt% and not multi-grain size of less than 45μm in total feed Yes, compared with the examples, the oxidation resistance was inferior and the bending strength was high.

比較例2は、全原料中の粒径45μm未満のAl 成分含有率が11質量%と更に多例であり、更に、耐酸化性が劣化し、曲げ強さも高くなる結果であった。 Comparative Example 2 is a further not multi Example Al 2 O 3 component content of less than the particle size 45μm is 11 mass% in the total feed, further oxidation resistance is deteriorated, there results also increases flexural strength It was.

比較例3はBC成分が0.2質量%と少ない例であり、BCが少ないためにBの生成量が減少したことでAlとの固溶体(9A2B)の生成が抑制された影響のためか、曲げ強さは高くなかったが、耐酸化性に劣る結果であった。 Comparative Example 3 is an example in which the B 4 C component is as low as 0.2% by mass, and since the amount of B 2 O 3 produced is reduced due to the small amount of B 4 C, the solid solution with Al 2 O 3 (9A2B) The bending strength was not high due to the effect of suppressing the formation, but the result was inferior in oxidation resistance.

比較例4はBCが3.1質量%と多い例であり、試験片の酸化が抑制され耐酸化性は向上するが、BC過多の影響で表面が多泡化し、試験片の外観性状は悪かった。また液相生成量が多くなるためか、曲げ強さが高くなった。 Comparative Example 4 is B 4 C and the large 3.1 wt% example, is improved oxidation resistance is suppressed oxidation of the specimen, the surface under the influence of B 4 C excess is multi foaming, of the test piece The appearance properties were poor. Also, the bending strength increased because the liquid phase generation amount increased.

Claims (3)

SiC成分を40質量%以上80質量%以下C成分を0.3質量%以上3.0質量%以下含有し、全原料中の粒径45μm以上のAl 成分含有率が10質量%以上40質量%以下、かつ全原料中の粒径45μm未満のAl 成分含有率が6.9質量%以下である高炉樋用キャスタブル耐火物。 The SiC component is contained in an amount of 40% by mass or more and 80% by mass or less , the B 4 C component is contained in an amount of 0.3% by mass or more and 3.0% by mass or less, and the content of Al 2 O 3 component having a particle size of 45 μm or more in all raw materials is 10. A castable refractory for a blast furnace with an Al 2 O 3 component content of 6.9% by mass or less and having a particle size of less than 45 μm in all raw materials of 40% by mass or less . 全原料中の粒径45μm未満のAl 成分含有率が3.9質量%以下である請求項1に記載の高炉樋用キャスタブル耐火物。 2. The castable refractory for a blast furnace according to claim 1, wherein the content of Al 2 O 3 component having a particle size of less than 45 μm in all raw materials is 3.9% by mass or less. C成分の含有量が0.3質量%以上1.5質量%以下である請求項1又は2に記載の高炉樋用キャスタブル耐火物。 The castable refractory for a blast furnace firewood according to claim 1 or 2, wherein the content of the B 4 C component is 0.3 mass% or more and 1.5 mass% or less.
JP2013025655A 2013-02-13 2013-02-13 Castable refractories for blast furnace firewood Active JP6077877B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013025655A JP6077877B2 (en) 2013-02-13 2013-02-13 Castable refractories for blast furnace firewood
PCT/JP2014/053172 WO2014126095A1 (en) 2013-02-13 2014-02-12 Castable refractory for blast furnace trough
TW103104701A TWI532703B (en) 2013-02-13 2014-02-13 Blast furnace with castable refractory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013025655A JP6077877B2 (en) 2013-02-13 2013-02-13 Castable refractories for blast furnace firewood

Publications (2)

Publication Number Publication Date
JP2014152092A JP2014152092A (en) 2014-08-25
JP6077877B2 true JP6077877B2 (en) 2017-02-08

Family

ID=51354095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013025655A Active JP6077877B2 (en) 2013-02-13 2013-02-13 Castable refractories for blast furnace firewood

Country Status (3)

Country Link
JP (1) JP6077877B2 (en)
TW (1) TWI532703B (en)
WO (1) WO2014126095A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6535528B2 (en) * 2015-07-08 2019-06-26 日本製鉄株式会社 Alumina-silicon carbide-carbon based monolithic refractories
JP7219605B2 (en) * 2018-03-22 2023-02-08 黒崎播磨株式会社 mud material
CN111517815A (en) * 2020-06-08 2020-08-11 郑州市瑞沃耐火材料有限公司 Silicon nitride composite high-thermal conductivity castable
CN115403391B (en) * 2022-08-16 2023-06-23 鄂尔多斯市西金矿冶有限责任公司 Silicon carbide-based castable for repairing carbonaceous furnace eye bricks and preparation method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0737343B2 (en) * 1988-10-06 1995-04-26 新日本製鐵株式会社 Irregular refractory for hot metal pretreatment container
JPH068223B2 (en) * 1989-11-22 1994-02-02 大光炉材株式会社 Casting refractory material for blast furnace tappipe
JP2922998B2 (en) * 1990-07-19 1999-07-26 川崎炉材株式会社 Irregular refractories for blast furnace gutters
JPH04367571A (en) * 1991-06-13 1992-12-18 Kawasaki Refract Co Ltd Monolithic refractory for tapping trough of blast furnace
JPH0570250A (en) * 1991-09-18 1993-03-23 Kawasaki Refract Co Ltd Flowed-in runner material for molten iron runner
JP2000203953A (en) * 1998-12-28 2000-07-25 Harima Ceramic Co Ltd Castable refractory for trough of blast furnace
JP2002020177A (en) * 2000-06-29 2002-01-23 Kurosaki Harima Corp High-silicon carbide-containing castable refractory
JP5294624B2 (en) * 2007-12-28 2013-09-18 日本坩堝株式会社 Silicon carbide casting material
JP2010235342A (en) * 2009-03-30 2010-10-21 Kurosaki Harima Corp Monolithic refractory for blast furnace iron spout

Also Published As

Publication number Publication date
WO2014126095A1 (en) 2014-08-21
JP2014152092A (en) 2014-08-25
TWI532703B (en) 2016-05-11
TW201441179A (en) 2014-11-01

Similar Documents

Publication Publication Date Title
JP4834012B2 (en) Insulated castable refractories
JP6077877B2 (en) Castable refractories for blast furnace firewood
TW201402521A (en) High-temperature non-wetting refractory additive system
JP4922851B2 (en) Indefinite refractory
JP6662346B2 (en) Refractory and manufacturing method thereof
JP2010235342A (en) Monolithic refractory for blast furnace iron spout
EP2792656B1 (en) Method for producing a silicon carbide whisker-reinforced refractory ceramic composition
JP2015193512A (en) Refractory for casting, nozzle for casting using the same and plate for sliding nozzle
JP2001114571A (en) Castable refractory for trough of blast furnace
JP6959809B2 (en) Amorphous refractory for pouring work
JP2874831B2 (en) Refractory for pouring
CN105254317A (en) Magnesium-iron-aluminum spinel coal injection pipe
JP5174751B2 (en) Silicon carbide and titanium carbide containing amorphous refractories
KR101303812B1 (en) Alumina coated spinel-silicon carbide refractory compositions with high corrosion resistivity to coal slag and manufacturing method thereof
JPH08259340A (en) Magnesia-carbon-based castable refractory
JP6266968B2 (en) Blast furnace hearth lining structure
JP4160796B2 (en) High thermal shock resistant sliding nozzle plate brick
JP6315037B2 (en) Lined refractories for continuous casting tundish
JP2020100853A (en) Monolithic refractory for blast furnace runner cover
TWI478892B (en) No carbon and aluminum magnesium does not burn bricks
JP6098834B2 (en) Amorphous refractories for molten aluminum alloys
JP6609389B1 (en) Unshaped refractory for blast furnace
JP4468323B2 (en) Carbon materials for refractories and their uses
JP6354807B2 (en) Cast refractories for blast furnace main slag line
JPH0585805A (en) Carbon-containing fire-resistant material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170113

R150 Certificate of patent or registration of utility model

Ref document number: 6077877

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250