JP4034858B2 - Indeterminate refractories for casting construction - Google Patents

Indeterminate refractories for casting construction Download PDF

Info

Publication number
JP4034858B2
JP4034858B2 JP29767597A JP29767597A JP4034858B2 JP 4034858 B2 JP4034858 B2 JP 4034858B2 JP 29767597 A JP29767597 A JP 29767597A JP 29767597 A JP29767597 A JP 29767597A JP 4034858 B2 JP4034858 B2 JP 4034858B2
Authority
JP
Japan
Prior art keywords
alumina
refractory
construction
spinel
ultrafine powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29767597A
Other languages
Japanese (ja)
Other versions
JPH11116345A (en
Inventor
利弘 礒部
理文 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krosaki Harima Corp filed Critical Krosaki Harima Corp
Priority to JP29767597A priority Critical patent/JP4034858B2/en
Publication of JPH11116345A publication Critical patent/JPH11116345A/en
Application granted granted Critical
Publication of JP4034858B2 publication Critical patent/JP4034858B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63488Polyethers, e.g. alkylphenol polyglycolether, polyethylene glycol [PEG], polyethylene oxide [PEO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、製鉄産業における溶融金属容器の内張り等に使用される流し込み施工用不定形耐火物に関する。
【0002】
【従来の技術】
流し込み施工用不定形耐火物(以下、流し込み材と称する)は、定形耐火物に比べて施工が迅速かつ容易、製造コストが低いなどの利点がある。しかし、多量の施工水を使用することから、緻密性に劣ることは否めない。そこで流し込み材は
、耐火性超微粉と分散剤との添加で施工時の流動性を向上させ、施工水を低減して施工体の緻密化を図ることが知られている。
【0003】
ここで使用される耐火性超微粉は、特開平7−277841号公報等に見られるように、シリカ、アルミナ、カオリン、粘土、ベントナイト、チタニア、アルミノシリケート、酸化クロム、炭素などである。一方、分散剤は無機系の珪酸塩、炭酸塩、リン酸塩、有機系のポリカルボン酸塩、無水カルボン酸の重合物、芳香族多環縮合物スルホン酸塩系、メラニン樹脂スルホン酸塩系、リグニンスルホン酸塩系、ポリアクリル酸塩等である。
【0004】
【発明が解決しようとする課題】
しかし、近年の炉操業の過酷化と炉材コストの大幅な削減要求に対し、従来の流し込み材では、その耐用性において十分なものではない。
本発明は、施工性を損なうことなく、従来材質に比べて耐用性に優れた流し込み材を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明は、製鉄産業における溶融金属容器の内張りに使用される流し込み施工用不定形耐火物であって、アルミナ超微粉および/またはAl・MgO系スピネル超微粉を1〜20重量%含み全体としてアルミナ−マグネシア質、アルミナ−スピネル質あるいはアルミナ−スピネル−マグネシア質とした耐火性骨材100重量部に、アルミナセメントとカルボキシル基含有ポリエーテル系分散剤を添加してなり、施工時に流し込み施工用不定形耐火物組成全体に対して外掛け3〜8重量%の施工水を添加し、混練後、施工される流し込み施工用不定形耐火物である。
【0006】
有機系分散剤は、耐火性微粉の表面に吸着して粒子同士の反発させる吸着層を形成するが、本発明で使用するカルボキシル基含有ポリエーテル系分散剤は、長大なエチレンオキサイド鎖を有していることで、アルミナ超微粉および/またはAl23・MgO系スピネル超微粉の粒子表面に形成される分散剤の吸着層の厚さが特に大きく、分散効果に優れる。
【0007】
カルボキシル基含有ポリエーテル系分散剤を使用したことによる本発明おける顕著な流動性向上は、後述の実施例で示した試験結果のとおり、アルミナ超微粉および/またはAl23・MgO系スピネル超微粉との組み合わせによって初めて得ることができる。
【0008】
本発明においてこの効果が得られる理由は明確ではないが、アルミナ超微粉またはAl23・MgO系スピネル超微粉は中性質であるのに対し、酸性質または塩基性質のシリカ、マグネシア、チタニアなどの超微粉では粒子表面に形成される分散剤の吸着層が沈着し難いためと考えられる。なお、炭素、クロムなどは中性質であるが、炭素は濡れ性が悪いために分散剤の吸着性に劣り、クロムは公害源となる問題があり、いずれも好ましくない。
【0009】
また、一般の有機系分散剤はアルミナセメント粒子表面への吸着によってアルミナセメントからのイオンの溶出を妨げ、流し込み材の硬化遅延および強度低下の原因となる。これに対し、カルボキシル基含有ポリエーテル系分散剤は、飽和吸着量が小さいことによりアルミナセメント粒子表面への吸着量が少ないため、AlイオンとCaイオンの溶出を妨げないことで施工体の硬化促進および強度にも優れた効果をもつ。
【0010】
その結果、本発明による流し込み材は、優れた施工性をもって高強度かつ緻密な施工体を得ることができる。
【0011】
【発明の実施の形態】
本発明で使用するアルミナ超微粉またはAl23・MgO系スピネル超微粉は、カルボキシル基含有ポリエーテル系分散剤との組み合わせにより、流し込み材の施工時の流動性を向上させる効果をもつ。アルミナ超微粉の具体的な材質は、焼結アルミナまたは電融アルミナを微粉砕したものである。
【0012】
一方、Al23・MgO系スピネル超微粉(以下、単にスピネル超微粉と称する)の具体例は、焼結スピネルまたは電融スピネルを微粉砕したものである。Al23とMgOの化学成分値は必ずしもスピネル理論値のものでなくてもよく、例えばAl23リッチであってもよい。
耐火性骨材中に占めるアルミナ超微粉および/またはスピネル超微粉の割合は、1〜20重量%とする。1重量%未満では耐食性および流動性に劣り、20重量%を超えると過焼結となって耐スポーリング性に劣り、しいては耐用性の低下を招く。
【0013】
また、アルミナ超微粉またはスピネル超微粉は、焼結品の中でも仮焼品の使用が好ましい。焼結アルミナが通常1700℃以上の超高温で焼成されるのに対し、仮焼品は1000〜1500℃程度の比較的低温で焼成されたものである。高温焼成されていないことで表面性状が活性であり、分散剤による吸着層が剥離し難いためか、本発明における流動性の向上がさらに顕著となる。
【0014】
アルミナ超微粉またはスピネル超微粉の粒径の具体例は、10μm以下とする。粒径が大きいと本発明の流動性向上について顕著な効果が得られない。また本発明は、耐火性骨材中にアルミナ超微粉および/またはスピネル超微粉を1〜20重量%含有するものであり、超微粉以外のアルミナまたはスピネルの割合を制約するものではない。
【0015】
これらに耐火性超微粉の粒径確認は、例えばレーザー回折法によって行なうことができる。後述の本発明実施例における耐火性超微粉の粒径確認についても、このレーザー回折法を使用した。
【0016】
耐火物骨材において、前記のアルミナ超微粉またはスピネル超微粉以外は、その割合、粒径ともに限定されるものではない。火骨材全体としてアルミナ−マグネシア質、アルミナ−スピネル質あるいはアルミナ−スピネル−マグネシア質とし、流し込み材全体の粒度構成は密充填の施工体が得られるように、アルミナ超微粉および/またはスピネル超微粉との割合に合わせて適宜調整する。
【0017】
アルミナ超微粉またはスピネル超微粉以外に使用する耐火骨材の種類は、例えば、アルミナ(超微粉以外での使用分)、スピネル(超微粉以外での使用分)、マグネシア、ジルコン、ジルコニア、シリカ、シリカ−アルミナ、炭素、炭化物、窒化物等である。また、本発明は、アルミナ超微粉および/またはスピネル超微粉を使用していれば、他の耐火性超微粉を組合せ使用してもよい。
【0018】
このうち、例えばアルミナについて具体例を示すと、焼結アルミナ、電融アルミナ、高アルミナ等である。マグネシア、スピネル等についても焼結品、電融品のいずれを使用してもよい。また、施工体に断熱性あるいは軽量化を付与するために前記耐火性骨材は多孔質品を使用してもよい。
【0019】
アルミナセメントは結合剤としての役割をもつ。添加割合は従来の流し込み材と特に変わりない。好ましくは、耐火骨材100重量部に対して1〜15重量部とする。1未満では十分な施工体強度が得られず、15重量部を超えると耐食性低下の傾向がある。アルミナセメントは、例えば電気化学(株)社製の「HAセメント」、仏国;ラファージュ・アルミネート社の「セカール71」、米国;アルコア社「CA−25」(いずれも商品名)などの市販品から入手することができる。
【0020】
カルボキシル基含有ポリエーテル系分散剤は、粉状、液状のいずれで使用してもよい。液状は例えば水等に分散または溶解したものである。添加量は従来材質における分散剤の場合と特に変わりなく、耐火性骨材100重量部に対し、固形分換算で0.03〜0.5重量部が好ましい。添加量が少ないと流動性付与の効果が不十分となり、多過ぎると硬化遅延によって施工性に劣る。さらに好ましい割合は、0.05〜0.25重量部である。また、他の分散剤と組み合わせ使用してもよいが、分散剤の総量は経済性の意味からも1重量部を超えることは好ましくない。
【0021】
このカルボキシル基含有ポリエーテル系分散剤は、例えば花王(株)社製の「マイティ3000S」や「マイティ21V」(いずれも商品名)などの市販品から入手することができる。
【0022】
本発明では他にも、必要によっては流し込み材の添加物として知られている耐火超粗大粒子、硬化調整剤、消化防止剤、塩基性乳酸アルミニウム、有機短繊維、金属短繊維、ガラス粉、金属粉、炭素粉、ピッチ粉、セラミック短繊維、発泡剤、粘土、揮発シリカなどを添加してもよい。
【0023】
ここで耐火超粗大粒子は、一般には粒径8〜30mmの耐火性原料をいう。耐火超粗大粒子は、施工体組織内に発生した亀裂が進展するのを防止する役割を持ち、前記した耐火性骨材とは区別される。その材質はマグネシア、アルミナ、スピネル、ムライトなどである。
【0024】
耐火性骨材にマグネシアを使用した場合、施工水との反応で消化が懸念されるため、消化防止剤として揮発シリカを添加することが好ましい。揮発シリカは、例えばシリコン、シリコン合金製造の際の副産物として得られるシリカ超微粒子である。「シリカフラワー」あるいは「マイクロシリカ」の商品名で市販されている。
【0025】
流し込み材の施工は常法どおり、流し込み材組成全体に対して外掛け3〜8重量%程度の施工水を添加し、混練後、流し込み施工される。施工の際には充填促進のために耐火物中に棒状バイブレータを挿入するか、施工枠にバイブレータを取付けて、振動を付与するのが好ましい。また、本発明の材質は流動性に富むため、必ずしも振動を付与する必要はない。溶融金属容器を内張りする際には、中子を用して直接流し込み施工する他、予め流し込み施工して得たブロックを内張りしてもよい。
【0026】
【実施例】
表1は、各例で使用した耐火性超微粉の粒径と化学分析値である。
表2および表3は、本発明実施例とその比較例ならびにその試験結果を示す。ここでのカルボキシル基含有ポリエーテル系分散剤は、花王(株)社製の「マイティ21V」(商品名)を使用した。
また、分散剤はいずれも粉末状で添加したものである。したがって、各例での表示は、固形分の割合である。
【0027】
試験方法は、以下のとおり。
流動性;各例の材質に合わせた最適量の施工水を添加し、混練後、未振動状態でのフリーフロー値を測定した。下端の直径100×上端の直径70×高さ60mmのフローコーンから排出し、測定した。したがって、全く広がりがない状態が100mmである。
【0028】
緻密性;流し込み施工後、養生、乾燥(110×24時間)したものについて、見掛気孔率を測定した。
耐食性;流し込み施工後、養生、乾燥(110×24時間)して得た施工体について、転炉スラグおよび鋼片(重量比=1:1)を侵食剤とした回転侵食試験法にて測定した。1650℃×30分を8サイクルを行った後、溶損寸法を測定した。
【0029】
耐スラグ浸透性;前記回転侵食試験法に供した溶損後の試験片を切断し、スラグ浸透寸法を測定した。
強度;流し込み施工後、養生、乾燥(110×24時間)して得た施工体について、曲げ強さを測定した。
実機試験;150t溶鋼取鍋の内張りに使用し、その耐用チャージ数を測定した。
【0030】
【表1】

Figure 0004034858
【0031】
【表2】
Figure 0004034858
【0032】
【表3】
Figure 0004034858
【0033】
実施例はいずれも流動性に富み、施工水の低減によって施工体の緻密性が向上する。その結果、緻密質で耐食性および耐スラグ浸透性に優れた施工体を得ることができた。中でも、仮焼品のアルミナ超微粉またはスピネル超微粉を使用したものがより優れた結果が得られた。
【0034】
これに対し、従来一般的な分散剤を使用した比較例1〜4、比較例8〜11および比較例13は、いずれも流動性に劣ることで緻密な施工体が得られない。その結果、耐食性、耐スラグ浸透性および強度共に劣る。
【0035】
なお。比較例1は施工水の増量で流動性を補っており、フリーフロー値は実施例5に同じ数値であるが、施工水量が多いことで緻密性に劣る。したがって、比較例1も実質的には流動性に劣る。
【0036】
超微粉にマグネシア超微粉を使用した比較例5および比較例14、超微粉にシリカ超微粉を使用した比較例7および比較例15は、流動性の向上において本発明実施例のごとき効果が得られず、緻密性、耐食性、耐スラグ浸透性および強度共に劣る
【0037】
比較例6と比較例12はアルミナ超微粉またはスピネル超微粉を使用しているが、その量が20重量%を超えるため、過焼結による耐スポーリング性の低下で耐用性に劣る。
【0038】
【発明の効果】
以上のように本発明の流し込み材は、優れた施工性をもって高強度かつ緻密な施工体を得ることができる。近年の炉操業の過酷化と炉材コストの大幅な削減要求の状況下において、本発明による流し込み材の価値は大きい。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an indeterminate refractory material for casting construction used for lining of molten metal containers in the steel industry.
[0002]
[Prior art]
An irregular refractory for casting construction (hereinafter referred to as a casting material) has advantages such as quicker and easier construction and lower manufacturing cost than a regular refractory. However, since a large amount of construction water is used, it cannot be denied that the density is inferior. Therefore, it is known that the casting material improves the fluidity at the time of construction by adding a refractory ultrafine powder and a dispersing agent, reduces the construction water, and densifies the construction body.
[0003]
The fire-resistant ultrafine powder used here is silica, alumina, kaolin, clay, bentonite, titania, aluminosilicate, chromium oxide, carbon, etc. as can be seen in JP-A-7-277841. On the other hand, the dispersant is inorganic silicate, carbonate, phosphate, organic polycarboxylate, polymer of carboxylic anhydride, aromatic polycyclic condensate sulfonate, melanin resin sulfonate Lignin sulfonates, polyacrylates and the like.
[0004]
[Problems to be solved by the invention]
However, the conventional casting material is not sufficient in its durability in response to the recent severe operation of the furnace and the demand for significant reduction of the furnace material cost.
An object of this invention is to provide the casting material excellent in durability compared with the conventional material, without impairing workability.
[0005]
[Means for Solving the Problems]
The present invention is an irregular refractory material for casting construction used for lining of molten metal containers in the steel industry , and contains 1 to 20% by weight of alumina ultrafine powder and / or Al 2 O 3 .MgO-based spinel ultrafine powder. As a whole , alumina cement and carboxyl group-containing polyether dispersant are added to 100 parts by weight of refractory aggregate made of alumina-magnesia, alumina-spinel, or alumina-spinel-magnesia, and poured during construction. It is an unshaped refractory for casting construction that is constructed after adding 3 to 8% by weight of construction water to the entire construction of unstructured refractory composition for construction and kneading .
[0006]
The organic dispersant is adsorbed on the surface of the refractory fine powder to form an adsorption layer that repels particles. The carboxyl group-containing polyether dispersant used in the present invention has a long ethylene oxide chain. Therefore, the thickness of the adsorption layer of the dispersant formed on the surface of the particles of the alumina ultrafine powder and / or Al 2 O 3 .MgO-based spinel ultrafine powder is particularly large, and the dispersion effect is excellent.
[0007]
The remarkable improvement in fluidity in the present invention due to the use of the carboxyl group-containing polyether dispersant is that the alumina ultrafine powder and / or the Al 2 O 3 .MgO spinel It can be obtained for the first time in combination with fine powder.
[0008]
The reason why this effect is obtained in the present invention is not clear, but alumina ultrafine powder or Al 2 O 3 .MgO-based spinel ultrafine powder is moderate, whereas acid or basic silica, magnesia, titania, etc. This is thought to be because the adsorption layer of the dispersant formed on the particle surface is difficult to deposit with the ultrafine powder. Carbon, chromium, and the like are medium in nature, but carbon has poor wettability, so that the adsorptivity of the dispersant is inferior, and chromium has a problem of becoming a pollution source.
[0009]
Further, general organic dispersants prevent the elution of ions from the alumina cement due to adsorption to the surface of the alumina cement particles, causing a delay in hardening of the casting material and a decrease in strength. On the other hand, the carboxyl group-containing polyether dispersant has a small amount of adsorption on the surface of alumina cement particles due to its small amount of saturated adsorption, so it does not hinder the elution of Al ions and Ca ions to accelerate the hardening of the construction body. It also has an excellent effect on strength.
[0010]
As a result, the casting material according to the present invention can obtain a high-strength and dense construction body with excellent workability.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The alumina ultrafine powder or Al 2 O 3 .MgO-based spinel ultrafine powder used in the present invention has an effect of improving the fluidity at the time of construction of the casting material, in combination with the carboxyl group-containing polyether dispersant. A specific material of the ultrafine alumina powder is a finely pulverized sintered alumina or electrofused alumina.
[0012]
On the other hand, a specific example of the Al 2 O 3 .MgO-based spinel ultrafine powder (hereinafter simply referred to as spinel ultrafine powder) is obtained by finely pulverizing a sintered spinel or an electrofused spinel. The chemical component values of Al 2 O 3 and MgO do not necessarily have to be spinel theoretical values, and may be, for example, Al 2 O 3 rich.
The ratio of the ultrafine alumina powder and / or the fine spinel powder in the refractory aggregate is 1 to 20% by weight. If it is less than 1% by weight, it is inferior in corrosion resistance and fluidity, and if it exceeds 20% by weight, it becomes oversintered and inferior in spalling resistance, leading to a decrease in durability.
[0013]
In addition, the alumina ultrafine powder or the spinel ultrafine powder is preferably a calcined product among the sintered products. Sintered alumina is usually fired at an ultrahigh temperature of 1700 ° C. or higher, whereas a calcined product is fired at a relatively low temperature of about 1000 to 1500 ° C. The improvement in the fluidity in the present invention becomes more remarkable because the surface property is active because it is not fired at a high temperature and the adsorbing layer due to the dispersant is difficult to peel off.
[0014]
A specific example of the particle diameter of the alumina ultrafine powder or the spinel ultrafine powder is 10 μm or less. When the particle size is large, a remarkable effect cannot be obtained for improving the fluidity of the present invention. Moreover, this invention contains 1-20 weight% of alumina ultrafine powder and / or spinel ultrafine powder in a refractory aggregate, and does not restrict | limit the ratio of alumina or spinel other than ultrafine powder.
[0015]
The particle diameter of the refractory ultrafine powder can be confirmed by, for example, a laser diffraction method. This laser diffraction method was also used for confirming the particle size of the refractory ultrafine powder in Examples described later.
[0016]
In the refractory aggregate, other than the above-mentioned alumina ultrafine powder or spinel ultrafine powder, the ratio and particle size are not limited. Magnesia, alumina - - alumina as a whole anti-fire aggregate spinel or alumina - Spinel - and magnesia, the particle size configuration of the entire cast material as construction of packing is obtained, alumina micronized and / or spinel greater It adjusts suitably according to the ratio with fine powder.
[0017]
The types of refractory aggregates used in addition to alumina ultrafine powder or spinel ultrafine powder are, for example, alumina (for use other than ultrafine powder), spinel (for use other than ultrafine powder), magnesia, zircon, zirconia, silica, Silica-alumina, carbon, carbide, nitride and the like. Further, in the present invention, as long as alumina ultrafine powder and / or spinel ultrafine powder is used, other fireproof ultrafine powder may be used in combination.
[0018]
Among these, for example, specific examples of alumina include sintered alumina, electrofused alumina, and high alumina. As for magnesia, spinel and the like, either a sintered product or an electromelted product may be used. Moreover, in order to give heat insulation or weight reduction to a construction body, the said fireproof aggregate may use a porous article.
[0019]
Alumina cement serves as a binder. The addition ratio is not particularly different from the conventional casting material. Preferably, it is 1 to 15 parts by weight with respect to 100 parts by weight of the refractory aggregate. If it is less than 1, sufficient construction body strength cannot be obtained, and if it exceeds 15 parts by weight, the corrosion resistance tends to decrease. Alumina cements are commercially available, for example, “HA Cement” manufactured by Electrochemical Co., Ltd., France; “SECAR 71” manufactured by Lafarge Aluminate, USA; “CA-25” (all trade names) manufactured by Alcoa. It can be obtained from the product.
[0020]
The carboxyl group-containing polyether dispersant may be used in either powder or liquid form. The liquid is, for example, dispersed or dissolved in water or the like. The addition amount is not particularly different from the case of the dispersant in the conventional material, and is preferably 0.03 to 0.5 parts by weight in terms of solid content with respect to 100 parts by weight of the refractory aggregate. When the addition amount is small, the effect of imparting fluidity becomes insufficient, and when it is too large, the workability is inferior due to the delay in curing. A more desirable ratio is from 0.05 to 0.25 part by weight. Further, although it may be used in combination with other dispersants, it is not preferable that the total amount of the dispersant exceeds 1 part by weight from the viewpoint of economy.
[0021]
This carboxyl group-containing polyether dispersant can be obtained from commercial products such as “Mighty 3000S” and “Mighty 21V” (both trade names) manufactured by Kao Corporation.
[0022]
In the present invention, other than that, known as an additive of a pouring material, refractory ultra coarse particles, curing modifier, digestion inhibitor, basic aluminum lactate, organic short fiber, short metal fiber, glass powder, metal Powder, carbon powder, pitch powder, ceramic short fiber, foaming agent, clay, volatile silica and the like may be added.
[0023]
Here, the refractory ultra coarse particles generally refer to a refractory raw material having a particle diameter of 8 to 30 mm. The refractory ultra coarse particles have a role of preventing the cracks generated in the construction body structure from progressing, and are distinguished from the aforementioned refractory aggregate. The material is magnesia, alumina, spinel, mullite and the like.
[0024]
When magnesia is used for the refractory aggregate, there is concern about digestion due to reaction with the construction water, so it is preferable to add volatile silica as a digestion inhibitor. Volatile silica is, for example, ultrafine silica particles obtained as a by-product in the production of silicon and silicon alloys. It is marketed under the trade name “Silica Flower” or “Micro Silica”.
[0025]
The casting material is applied in the usual manner by adding about 3 to 8% by weight of construction water to the entire casting material composition, kneading and then casting. In the construction, it is preferable to insert a rod-like vibrator into the refractory to facilitate filling or attach a vibrator to the construction frame to impart vibration. Moreover, since the material of the present invention is rich in fluidity, it is not always necessary to apply vibration. When the molten metal container is lined, a block obtained by casting in advance may be lined in addition to direct casting using a core.
[0026]
【Example】
Table 1 shows the particle size and chemical analysis value of the refractory ultrafine powder used in each example.
Tables 2 and 3 show examples of the present invention, comparative examples thereof, and test results thereof. As the carboxyl group-containing polyether dispersant here, “Mighty 21V” (trade name) manufactured by Kao Corporation was used.
Moreover, all the dispersing agents are added in powder form. Therefore, the display in each example is a solid content ratio.
[0027]
The test method is as follows.
Flowability: An optimal amount of construction water according to the material of each example was added, and after kneading, the free flow value in an unvibrated state was measured. It was discharged from a flow cone having a lower end diameter of 100 × upper end diameter of 70 × height of 60 mm and measured. Therefore, the state where there is no spread is 100 mm.
[0028]
Denseness: The apparent porosity was measured for the cured and dried (110 × 24 hours) after casting.
Corrosion resistance: After casting, curing and drying (110 × 24 hours) were measured by the rotary erosion test method using converter slag and steel slabs (weight ratio = 1: 1) as erodants. . After performing 8 cycles of 1650 ° C. × 30 minutes, the erosion dimension was measured.
[0029]
Resistance to slag penetration; The test piece after melting for use in the rotational erosion test method was cut, and the slag penetration size was measured.
Strength: After casting, bending strength was measured for a construction body obtained by curing and drying (110 × 24 hours).
Actual machine test: Used for lining of 150t molten steel ladle, and measured the number of charges to be used.
[0030]
[Table 1]
Figure 0004034858
[0031]
[Table 2]
Figure 0004034858
[0032]
[Table 3]
Figure 0004034858
[0033]
Each of the examples is rich in fluidity, and the density of the construction body is improved by reducing the construction water. As a result, it was possible to obtain a dense construction body excellent in corrosion resistance and slag penetration resistance. Among them, a better result was obtained when the calcined product using alumina ultrafine powder or spinel ultrafine powder was used.
[0034]
On the other hand, in Comparative Examples 1 to 4, Comparative Examples 8 to 11 and Comparative Example 13 using a conventional general dispersing agent, none of the fluidity is inferior, so that a dense construction body cannot be obtained. As a result, both corrosion resistance, slag penetration resistance and strength are poor.
[0035]
Note that. Comparative Example 1 compensates for fluidity by increasing the amount of construction water, and the free flow value is the same value as in Example 5, but the denseness is inferior due to the large amount of construction water. Therefore, Comparative Example 1 is also substantially inferior in fluidity.
[0036]
Comparative Example 5 and Comparative Example 14 using ultra-fine magnesia powder as the ultrafine powder, Comparative Example 7 and Comparative Example 15 using ultra-fine silica powder as the ultrafine powder have the same effects as the embodiment of the present invention in improving fluidity. Inferior in denseness, corrosion resistance, slag penetration and strength
Comparative Example 6 and Comparative Example 12 use alumina ultrafine powder or spinel ultrafine powder, but since the amount exceeds 20 wt%, the durability is inferior due to a decrease in spalling resistance due to oversintering.
[0038]
【The invention's effect】
As described above, the casting material of the present invention can obtain a high-strength and dense construction body with excellent workability. The value of the casting material according to the present invention is great under the recent severe conditions of furnace operation and the demand for significant reduction of furnace material cost.

Claims (3)

製鉄産業における溶融金属容器の内張りに使用される流し込み施工用不定形耐火物であって、アルミナ超微粉および/またはAl・MgO系スピネル超微粉を1〜20重量%含み全体としてアルミナ−マグネシア質、アルミナ−スピネル質あるいはアルミナ−スピネル−マグネシア質とした耐火性骨材100重量部に、アルミナセメントとカルボキシル基含有ポリエーテル系分散剤を添加してなり、施工時に流し込み施工用不定形耐火物組成全体に対して外掛け3〜8重量%の施工水を添加し、混練後、施工される流し込み施工用不定形耐火物。 A construction for monolithic refractory pouring used in lining a molten metal container in steel industry, alumina micronized and / or Al 2 O 3 · MgO-based spinel micronized to 1-20 wt% unrealized overall alumina - magnesia, alumina - spinel or alumina - spinel - the refractory aggregate 100 parts by weight of a magnesia made by adding alumina cement and a carboxyl group-containing polyether-based dispersant, construction for castable during construction An unshaped refractory for casting construction that is constructed after adding 3 to 8% by weight of construction water to the entire refractory composition and kneading . アルミナ超微粉および/またはスピネル超微粉の粒径が、10μm以下である請求項1記載の流し込み施工用不定形耐火物。  The amorphous refractory for casting construction according to claim 1, wherein the particle size of the alumina ultrafine powder and / or spinel ultrafine powder is 10 µm or less. カルボキシル基含有ポリエーテル系分散剤の添加量が、耐火性骨材100重量部に対し、固形分換算で0.03〜0.5重量部である請求項1または2記載の流し込み施工用不定形耐火物。  The amorphous amount for casting construction according to claim 1 or 2, wherein the addition amount of the carboxyl group-containing polyether dispersant is 0.03 to 0.5 parts by weight in terms of solid content with respect to 100 parts by weight of the refractory aggregate. Refractory.
JP29767597A 1997-10-14 1997-10-14 Indeterminate refractories for casting construction Expired - Lifetime JP4034858B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29767597A JP4034858B2 (en) 1997-10-14 1997-10-14 Indeterminate refractories for casting construction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29767597A JP4034858B2 (en) 1997-10-14 1997-10-14 Indeterminate refractories for casting construction

Publications (2)

Publication Number Publication Date
JPH11116345A JPH11116345A (en) 1999-04-27
JP4034858B2 true JP4034858B2 (en) 2008-01-16

Family

ID=17849692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29767597A Expired - Lifetime JP4034858B2 (en) 1997-10-14 1997-10-14 Indeterminate refractories for casting construction

Country Status (1)

Country Link
JP (1) JP4034858B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4571354B2 (en) * 2001-09-28 2010-10-27 黒崎播磨株式会社 Indeterminate refractories for casting construction
JP6384511B2 (en) * 2016-04-27 2018-09-05 Jfeスチール株式会社 Castable refractories

Also Published As

Publication number Publication date
JPH11116345A (en) 1999-04-27

Similar Documents

Publication Publication Date Title
CN1827555A (en) Non-oxide composite refractory materials for molten iron chute
CA2321843C (en) Free-flowing basic castable and castings produced therefrom
JPH07330447A (en) Flow-in refractory material
JP2874831B2 (en) Refractory for pouring
JP2001114571A (en) Castable refractory for trough of blast furnace
JP4034858B2 (en) Indeterminate refractories for casting construction
Gheisari et al. Recent Advancement in monolithic refractories via application of Nanotechnology “A review Paper”
JP2000203953A (en) Castable refractory for trough of blast furnace
JP4336030B2 (en) Unstructured refractory lining structure for ladle
JP2604310B2 (en) Pouring refractories
JP4408552B2 (en) Alumina-magnesia castable refractories using magnesium carbonate as a magnesia source
RU2140407C1 (en) Refractory concrete mix
JP4571354B2 (en) Indeterminate refractories for casting construction
JPH026373A (en) Cast amorphous refractory
JP2004137122A (en) Pouring refractory containing compact silicon carbide
JPH06256064A (en) Dense castable refractory low in water content and capable of being cast
JPH0952169A (en) Refractory for tuyere of molten steel container
JP3212856B2 (en) Irregular cast refractories and their moldings
JPS63162579A (en) Thermosettable monolithic refractories
JP4373081B2 (en) Refractory
JPH07330450A (en) Flow-in refractory material
JP4450423B2 (en) Indeterminate refractories for casting construction
JPH06199575A (en) Alumina-spinel castable refractory
JP2004307293A (en) Monolithic refractory composition
JPH0647502B2 (en) High-alumina casting material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070903

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070903

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071026

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term