JP4571354B2 - Indeterminate refractories for casting construction - Google Patents

Indeterminate refractories for casting construction Download PDF

Info

Publication number
JP4571354B2
JP4571354B2 JP2001303320A JP2001303320A JP4571354B2 JP 4571354 B2 JP4571354 B2 JP 4571354B2 JP 2001303320 A JP2001303320 A JP 2001303320A JP 2001303320 A JP2001303320 A JP 2001303320A JP 4571354 B2 JP4571354 B2 JP 4571354B2
Authority
JP
Japan
Prior art keywords
mass
construction
refractory
alumina
fluidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001303320A
Other languages
Japanese (ja)
Other versions
JP2003112978A (en
Inventor
啓典 平尾
利弘 礒部
敬 西
浩二 井手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krosaki Harima Corp filed Critical Krosaki Harima Corp
Priority to JP2001303320A priority Critical patent/JP4571354B2/en
Publication of JP2003112978A publication Critical patent/JP2003112978A/en
Application granted granted Critical
Publication of JP4571354B2 publication Critical patent/JP4571354B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、製鉄産業における溶融金属容器の内張り等に使用される流し込み施工用不定形耐火物に関する。
【0002】
【従来の技術】
流し込み施工用不定形耐火物(以下、流し込み材と称する。)は、定形耐火物に比べて施工が迅速かつ容易であること、さらには製造コストが低いなどの利点がある。しかし、施工水によって施工体組織が多孔質化する問題がある。そこで、分散剤の添加と共に耐火材料の一部を耐火超微粉とすることで施工時の流動性を増し、その分、施工水の低減で施工体組織の緻密化が図られている。
【0003】
その一例として、特開平11−116345号公報には、アルミナまたはスピネルの耐火超微粉を含む耐火材料に、アルミナセメントと分散剤としてのカルボキシル基含有ポリエーテル系を添加した流し込み材が提案されている。
【0004】
【発明が解決しようとする課題】
しかし、前記従来の流し込み材は施工体の硬化が速くしかも強度に優れているが、施工時の流動性付与の効果は不十分であり、施工の安定性に劣る。そのため、十分な流動性確保のために施工水が多くなり、施工体の緻密化が損なわれている。
【0005】
本発明は、施工体の強度および施工の安定性共に優れた流し込み材を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明は、アルミナを含有した耐火材料100質量%に対し、石灰、消石灰、炭酸カルシウム、乳酸カルシウムのカルシウム化合物または活性マグネシア、炭酸マグネシウム、水酸化マグネシウムのマグネシウム化合物から選ばれる一種または二種以上:外掛け0.001〜5質量%と、カルボキシル基含有ポリエーテル系分散剤:外掛け0.03〜0.5質量%とを添加してなる流し込み施工用不定形耐火物である。
【0007】
本発明の流し込み材は、従来材質に比べて施工の安定性に優れ、しかも緻密な施工体を得ることができる。その理由は明確ではないが、以下の通りと考えられる。
【0008】
例えば流し込み材の分散剤として従来一般的なポリアクリル酸ソーダ等の有機系分散剤は、耐火性微粉の表面に吸着し、粒子同士を反発させる吸着層を形成することで分散効果を持つ。これに対し、カルボキシル基含有ポリエーテル系分散剤は長大なエチレンオキサイド鎖を有し、その長大なエチレンオキサイド鎖の立体反発の効果が大きいことで分散作用を持つが、粒子への吸着速度が遅いため、流動性付与の効果に劣る。
【0009】
本発明はカルボキシル基含有ポリエーテル系分散剤と共にカルシウム化合物および/またはマグネシア化合物を加える。このカルシウム化合物および/またはマグネシア化合物は、溶液中においてCa2+イオンおよび/またはMg2+イオンを溶出し、粒子への吸着速度を早めることにより、流動性を上げる。
【0010】
その流動性向上の効果はMg2+イオンよりもCa2+イオンの方が大きく、さらに吸着性の高い消石灰が最も高い。このため、粒子の吸着作用が低下傾向にある冬場での施工あるいは寒冷地での施工においても、カルシウム化合物として消石灰を使用した場合は安定した流動性付与の効果が得られる。
【0011】
また、本発明においてはスピネル微粉を耐火骨材の一部に用いた場合、スピネル微粉の粒子表面に形成される分散剤の吸着が大きくなり、分散性においてさらに優れた効果を発揮する。
【0012】
これは、シリカ、マグネシア、チタニアなどの微粉が酸性質または塩基性質であるのに対し、スピネル微粉が中性質であることで、粒子表面に形成される分散剤がより吸着しやすいためと考えられる。
【0013】
また、アルミナセメントはカルボキシル基含有ポリエーテル系分散剤と組み合わせて用いると、アルミナセメント粒子表面への吸着量が少ないため、アルミナセメントからのAl3+イオンとCa2+イオンの溶出を妨げないことで施工体の硬化促進および強度にも優れた効果をもつ。
【0014】
【発明の実施の形態】
本発明で使用するカルシウム化合物は石灰、消石灰、炭酸カルシウムまたは乳酸カルシウムである。マグネシウム化合物は、活性マグネシア、炭酸マグネシウムまたは水酸化マグネシウムである。これらはいずれも微粉、あるいは超微粉である。
【0015】
耐火材料100質量%に対する外掛け割合で、これらのカルシウム化合物またはマグネシウム化合物から選ばれる一種または二種以上が、0.001質量%未満では流動性付与において本発明の効果が得られない。5質量%を超えると硬化が速くなりすぎて施工性に劣る。さらに好ましくは0.01〜1質量%である。
【0016】
本発明においてマグネシウム化合物の一例として使用する活性マグネシアは、マグネサイト、水酸化マグネシウムなどを例えば1400℃以下、通常1000〜1400℃の比較的低温で焼成して得られ、一般には軽焼マグネシアあるいは仮焼マグネシアとも称される。イオン反応性が高いためMg2+イオンを溶出し、吸着速度向上に作用する。電融マグネシアあるいは1800〜1900℃で強焼される焼成マグネシアはイオン活性が低く、Mg2+イオンの溶出はほとんど見られず、前記活性マグネシアの効果は得られない。
【0017】
流動性の向上はマグネシウム化合物に比べ、カルシウム化合物の方がより効果的である。また、カルシウム化合物の中でも消石灰を使用した場合は、施工時の温度が5〜30℃のいずれの場合でも優れた流動性を示す。したがって、寒冷地あるいは冬季においても安定した施工性が得られる。
【0018】
耐火材料にはアルミナを使用する。アルミナの耐火材料に占める割合は好ましくは10〜90質量%である。アルミナの具体例は、焼結アルミナ、電融アルミナ、高アルミナ、仮焼アルミナ等である。微粉部にはこのうち仮焼アルミナを用いるのが好ましい。
【0019】
アルミナ以外の耐火材料としては、例えば焼結または電融のスピネルあるいはマグネシアが好ましい。スピネルの化学組成はMgO:Al比がスピネル理論組成値に近いものが好ましいが、これに限らずMgOが例えば5〜25質量%のアルミナリッチスピネルでもよい。中でもスピネル微粉の使用は分散剤の吸着が大きくなり、流動性の向上にさらに効果的である。スピネル微粉の粒径は例えば1mm以下、さらに好ましくは0.1mm以下とする。スピネル微粉の好ましい使用量は耐火材料100質量に占める割合で20質量%以下、さらに好ましくは1〜20質量%である。1質量%未満ではスピネル微粉使用の効果が不十分となり、20質量%を超えると過焼結となって耐スポーリング性低下の傾向が見られる。
【0020】
本発明において使用する耐火材料は、本発明の効果を損なわない範囲において、さらにジルコン、ジルコニア、シリカ、シリカ−アルミナ、炭素、炭化物、窒化物等を組み合わせてもよい。
【0021】
以上の耐火材料の粒度は不定形耐火物の流動性、施工後の緻密化を考慮して、粗粒、中粒、微粒に適宜調整する。また耐火材料一部に前記以外の耐火超微粉を組合わせ使用することで、流動性および施工後の緻密化をさらに向上させることができる。
【0022】
耐火超微粉の例としては、平均粒径が20μm以下のシリカ、アルミナ、カオリン、粘土、ベントナイト、チタニア、アルミノシリケート、酸化クロム、炭素などが挙げられる。
【0023】
アルミナセメントは結合剤としての役割をもつ。その割合は、耐火材料100質量%に対して外掛け20質量%以下が好ましい。さらに好ましくは 1〜18質量%である。20質量%を超えると耐食性低下の傾向が見られる。耐火超微粉等の凝集作用で充分な施工体強度が得られる場合、このアルミナセメントは必ずしも添加の必要はない。
【0024】
カルボキシル基含有ポリエーテル系分散剤は、粉状、液状のいずれで使用してもよい。液状は例えば水等に分散または溶解したものである。添加量は従来材質における分散剤の場合と特に変わりなく、耐火材料100質量%に対し、外掛け0.03〜0.5質量%とする。液状での使用は、この割合は固形分換算値である。カルボキシル基含有ポリエーテル系分散剤の添加量が少ないと流動性付与の効果が不十分となり、多過ぎると硬化遅延によって施工性に劣る。
【0025】
本発明では他にも、必要によっては流し込み材の添加物として知られている耐火超粗大粒子、硬化調整剤、消化防止剤、塩基性乳酸アルミニウム、有機短繊維、金属短繊維、ガラス粉、金属粉、炭素粉、ピッチ粉、セラミック短繊維、発泡剤などを添加してもよい。
【0026】
ここで耐火超粗大粒子は、通常、粒径8〜30mmの耐火性原料をいう。施工体組織内に発生した亀裂が進展するのを防止する役割を持つ。その材質はマグネシア、アルミナ、スピネル、ムライトなどである。骨材としての耐火材料は粒径が一般に8mm未満であることから、耐火超粗大粒子と耐火材料とは区別される。
【0027】
流し込み材の施工は常法どおり、流し込み材組成全体に対して外掛け3〜8質量%程度の施工水を添加し、混練後、流し込み施工される。施工の際には必要により、バイブレータの使用で施工体の充填化を図ってもよい。
【0028】
【実施例】
表1、2は本発明実施例とその比較例ならびにその試験結果を示す。
【0029】
【表1】

Figure 0004571354
【表2】
Figure 0004571354
ここでのカルボキシル基含有ポリエーテル系分散剤は、花王(株)社製の「タイトロック」(商標)を使用した。また、分散剤はいずれも粉末状で添加したものである。
【0030】
試験方法は、以下のとおりである。
【0031】
流動性:各例の材質に合わせ、施工性において最適量の施工水を添加し、混練後、未振動状態でのフリーフロー値を測定した。下端の直径 100×上端の直径70×高さ60mmのフローコーンから排出し、広がり直径を測定した。したがって、全く広がりがない状態が100mmであり、数値が大きいほど流動性に優れる。また、この試験は、5℃、20℃、30℃の各温度域にて測定した(他の硬化時間、緻密性および強度試験はいずれも約20℃の室温下で測定)。
【0032】
硬化時間:流し込み施工直後から混錬物内で起こる水和反応に伴う発熱が最高温度になるまでの時間を測定し、硬化時間とした。
【0033】
緻密性:流し込み施工後、養生、乾燥(110℃×24時間)して得た施工体について、見掛気孔率を測定した。
【0034】
強度;前記緻密性と同様にして得た施工体について、曲げ強さを測定した。
【0035】
実機試験:A製鉄所の300t溶鋼取鍋の内張り材として流し込み施工し、その耐用性(耐用チャージ数)を求めた。測定値の記載がないものは試験しなかったことを示す。
【0036】
本発明の実施例はいずれも流動性に優れ、かつ安定した施工性が得られた。またその施工体組織は緻密であり、強度も大きい。その結果、実機試験において優れた耐用性が得られている。
【0037】
また、実施例の中で消石灰を使用したものは、流動性において測定温度の変化に殆ど影響されないことが確認される。これにより、寒冷地、冬季など低温下での施工においても安定した施工性が得られる。また、耐火超微粉としてスピネル微粉の使用例では、流動性においてさらに優れている。
【0038】
これに対し比較例1、7は分散剤にカルボキシル基含有ポリエーテル系を使用しているが、カルシウム化合物、マグネシウム化合物を添加しない材質であり、流動性が落ちる。
【0039】
比較例6はカルボキシル基含有ポリエーテル系分散剤、カルシウム化合物ともに添加しているが、カルシウム化合物の割合が多過ぎることから流し込み材は施工後ただちに硬化し、流し込み施工が困難となり、施工しなかった。このため試験片が得られず、各物性値の試験も行なわなかった。
【0040】
カルシウム化合物、またはマグネシウム化合物を添加したが、分散剤としてポリアクリル酸ソーダを使用した比較例2〜4および8と、ヘキサメタリン酸ソーダを使用した比較例5および9は、施工に必要な流動性を得るために施工水分が多くなり、施工体の緻密性に劣る。
【0041】
本発明の流し込み材は、各種溶融金属用の容器・樋等の内張りあるいはその補修に使用される。
【0042】
【発明の効果】
以上のように本発明の流し込み材は、安定した施工性をもって高強度かつ緻密な施工体を得ることができる。したがって、近年の炉操業の過酷化と炉材コストの大幅な削減要求の状況下において、本発明による流し込み材の価値は大きい。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an indeterminate refractory material for casting construction used for lining of molten metal containers in the steel industry.
[0002]
[Prior art]
An irregular refractory material for casting construction (hereinafter referred to as a casting material) has advantages such as quicker and easier construction and lower manufacturing cost than a regular refractory material. However, there is a problem that the construction body tissue becomes porous due to construction water. Therefore, by adding a dispersant, a part of the refractory material is made into a refractory ultrafine powder to increase the fluidity during construction, and accordingly, the construction body structure is densified by reducing the construction water.
[0003]
As an example, Japanese Patent Application Laid-Open No. 11-116345 proposes a casting material obtained by adding alumina cement and a carboxyl group-containing polyether system as a dispersant to a refractory material containing refractory ultrafine powder of alumina or spinel. .
[0004]
[Problems to be solved by the invention]
However, although the conventional casting material is fast in curing the construction body and excellent in strength, the effect of imparting fluidity at the time of construction is insufficient and the construction stability is poor. Therefore, the amount of construction water is increased to ensure sufficient fluidity, and densification of the construction body is impaired.
[0005]
An object of this invention is to provide the casting material excellent in the intensity | strength of a construction body, and the stability of construction.
[0006]
[Means for Solving the Problems]
The present invention is based on 100 mass% of the refractory material containing alumina, and one or more selected from calcium compounds of lime, slaked lime, calcium carbonate, calcium lactate or active magnesia, magnesium carbonate, magnesium hydroxide: It is an unshaped refractory material for casting construction formed by adding 0.001 to 5% by mass of outer covering and a carboxyl group-containing polyether dispersant: 0.03 to 0.5% by weight of outer covering.
[0007]
The casting material of the present invention is excellent in construction stability as compared with conventional materials, and can provide a dense construction body. The reason is not clear, but is considered as follows.
[0008]
For example, organic dispersants such as sodium polyacrylate, which are generally used as a dispersant for a casting material, have a dispersion effect by forming an adsorption layer that adsorbs to the surface of the refractory fine powder and repels particles. In contrast, a carboxyl group-containing polyether dispersant has a long ethylene oxide chain, and has a dispersing action due to a large steric repulsion effect of the long ethylene oxide chain, but the adsorption rate to the particles is slow. Therefore, it is inferior to the effect of providing fluidity.
[0009]
In the present invention, a calcium compound and / or a magnesia compound is added together with a carboxyl group-containing polyether dispersant. This calcium compound and / or magnesia compound elutes Ca 2+ ions and / or Mg 2+ ions in the solution, and increases fluidity by increasing the adsorption rate to the particles.
[0010]
The effect of the fluidity improver is greater in the Ca 2+ ion than Mg 2+ ions, the highest even higher adsorptive slaked lime. For this reason, even in construction in winter or cold districts where the adsorption action of particles tends to decrease, when slaked lime is used as the calcium compound, a stable fluidity imparting effect can be obtained.
[0011]
Further, in the present invention, when spinel fine powder is used as a part of the refractory aggregate, the adsorption of the dispersant formed on the surface of the spinel fine powder particles is increased, and a further excellent effect in dispersibility is exhibited.
[0012]
This is thought to be because the fine particles of silica, magnesia, titania, etc. have acid or basic properties, while the spinel fine powder has medium properties, so that the dispersant formed on the particle surface is more easily adsorbed. .
[0013]
In addition, when alumina cement is used in combination with a carboxyl group-containing polyether dispersant, the amount of adsorption on the surface of the alumina cement particles is small, so it does not interfere with the elution of Al 3+ ions and Ca 2+ ions from the alumina cement. It also has excellent effects on body hardening acceleration and strength.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The calcium compound used in the present invention is lime, slaked lime, calcium carbonate or calcium lactate. The magnesium compound is active magnesia, magnesium carbonate or magnesium hydroxide. These are all fine powders or ultrafine powders.
[0015]
The effect of the present invention cannot be obtained in imparting fluidity when one or two or more selected from these calcium compounds or magnesium compounds in an outer coating ratio with respect to 100% by mass of the refractory material is less than 0.001% by mass. If it exceeds 5% by mass, curing becomes too fast and the workability is poor. More preferably, it is 0.01-1 mass%.
[0016]
The active magnesia used as an example of the magnesium compound in the present invention is obtained by firing magnesite, magnesium hydroxide or the like at a relatively low temperature of, for example, 1400 ° C. or lower, usually 1000 to 1400 ° C. Also called baked magnesia. Since the ion reactivity is high, Mg 2+ ions are eluted to improve the adsorption rate. Fused magnesia or 1800-1900 firing magnesia that is strong sintered at ℃ low ion activity, elution of Mg 2+ ions hardly observed, the effect of the active magnesia can not be obtained.
[0017]
The improvement in fluidity is more effective with calcium compounds than with magnesium compounds. Moreover, when slaked lime is used among calcium compounds, the fluidity | liquidity which was excellent in any case where the temperature at the time of construction is 5-30 degreeC is shown. Therefore, stable workability can be obtained even in cold regions or in winter.
[0018]
Alumina is used as the refractory material. The proportion of alumina in the refractory material is preferably 10 to 90% by mass. Specific examples of alumina are sintered alumina, electrofused alumina, high alumina, calcined alumina, and the like. Of these, calcined alumina is preferably used for the fine powder portion.
[0019]
As a refractory material other than alumina, for example, sintered or electrofused spinel or magnesia is preferable. The chemical composition of spinel is preferably such that the MgO: Al 2 O 3 ratio is close to the theoretical spinel composition value, but is not limited to this, and may be alumina rich spinel with 5 to 25% by mass of MgO, for example. Among them, the use of fine spinel powder increases the adsorption of the dispersant and is more effective for improving the fluidity. The particle size of the spinel fine powder is, for example, 1 mm or less, more preferably 0.1 mm or less. The preferred amount of spinel fine powder used is 20% by mass or less, more preferably 1 to 20% by mass in terms of 100% by mass of the refractory material. If it is less than 1% by mass, the effect of using spinel fine powder is insufficient, and if it exceeds 20% by mass, oversintering occurs and a tendency to decrease the spalling resistance is observed.
[0020]
The refractory material used in the present invention may be further combined with zircon, zirconia, silica, silica-alumina, carbon, carbide, nitride, and the like as long as the effects of the present invention are not impaired.
[0021]
The particle size of the above refractory material is appropriately adjusted to coarse particles, medium particles, and fine particles in consideration of the fluidity of the amorphous refractory and the densification after the construction. Moreover, fluidity and densification after construction can be further improved by using a combination of refractory ultrafine powder other than the above as part of the refractory material.
[0022]
Examples of the refractory ultrafine powder include silica, alumina, kaolin, clay, bentonite, titania, aluminosilicate, chromium oxide, and carbon having an average particle size of 20 μm or less.
[0023]
Alumina cement serves as a binder. The ratio is preferably 20% by mass or less on the outer side with respect to 100% by mass of the refractory material. More preferably, it is 1-18 mass%. When it exceeds 20 mass%, the tendency of corrosion resistance fall is seen. This alumina cement does not necessarily need to be added when sufficient construction strength can be obtained by agglomeration action of refractory ultrafine powder or the like.
[0024]
The carboxyl group-containing polyether dispersant may be used in either powder or liquid form. The liquid is, for example, dispersed or dissolved in water or the like. The addition amount is not particularly different from the case of the dispersant in the conventional material, and the outer coating is 0.03 to 0.5% by mass with respect to 100% by mass of the refractory material. For use in liquid form, this ratio is a solid content conversion value. If the amount of the carboxyl group-containing polyether dispersant is small, the effect of imparting fluidity is insufficient, and if too large, the workability is inferior due to the delay in curing.
[0025]
In the present invention, other than that, known as an additive of a pouring material, refractory ultra coarse particles, curing modifier, digestion inhibitor, basic aluminum lactate, organic short fiber, short metal fiber, glass powder, metal Powder, carbon powder, pitch powder, ceramic short fiber, foaming agent and the like may be added.
[0026]
Here, the refractory ultra coarse particles generally refer to a refractory raw material having a particle diameter of 8 to 30 mm. It has a role to prevent the cracks generated in the construction body structure from developing. The material is magnesia, alumina, spinel, mullite and the like. Since the refractory material as an aggregate is generally less than 8 mm in particle size, the refractory ultra coarse particles and the refractory material are distinguished.
[0027]
The casting material is applied in the usual manner by adding about 3 to 8% by mass of outer working water to the entire casting material composition, and after the kneading, casting. If necessary, the construction body may be filled by using a vibrator.
[0028]
【Example】
Tables 1 and 2 show examples of the present invention, comparative examples thereof, and test results thereof.
[0029]
[Table 1]
Figure 0004571354
[Table 2]
Figure 0004571354
As the carboxyl group-containing polyether dispersant here, “Tight Rock” (trademark) manufactured by Kao Corporation was used. Moreover, all the dispersing agents are added in powder form.
[0030]
The test method is as follows.
[0031]
Flowability: In accordance with the materials of each example, an optimum amount of construction water was added in terms of workability, and after kneading, the free flow value in an unvibrated state was measured. The diameter of the lower end was 100 × the diameter of the upper end was 70 × the flow cone was 60 mm high, and the spread diameter was measured. Therefore, the state where there is no spread is 100 mm, and the larger the value, the better the fluidity. Moreover, this test was measured in each temperature range of 5 ° C., 20 ° C., and 30 ° C. (All other curing times, denseness, and strength tests were measured at room temperature of about 20 ° C.).
[0032]
Curing time: The time from the time immediately after pouring construction to the maximum temperature of the heat generated by the hydration reaction occurring in the kneaded product was measured, and the time was determined.
[0033]
Denseness: Apparent porosity was measured for the construction body obtained by curing and drying (110 ° C. × 24 hours) after casting.
[0034]
Strength: Bending strength was measured for a construction body obtained in the same manner as the above denseness.
[0035]
Actual machine test: Casting was performed as a lining material for a 300 t molten steel ladle at A Steel Works, and its durability (number of usable charges) was determined. If no measured value is described, it indicates that the test was not performed.
[0036]
All of the examples of the present invention were excellent in fluidity and stable workability was obtained. Moreover, the construction body structure is dense and strong. As a result, excellent durability was obtained in actual machine tests.
[0037]
Moreover, it is confirmed that what used slaked lime in an Example has little influence on the change of measurement temperature in fluidity | liquidity. As a result, stable workability can be obtained even in low-temperature construction such as in cold regions and winter. Moreover, in the use example of spinel fine powder as a refractory super fine powder, it is further excellent in fluidity | liquidity.
[0038]
On the other hand, Comparative Examples 1 and 7 use a carboxyl group-containing polyether system as a dispersant, but are materials that do not contain a calcium compound or a magnesium compound, resulting in poor fluidity.
[0039]
In Comparative Example 6, both the carboxyl group-containing polyether dispersant and the calcium compound were added, but since the ratio of the calcium compound was too high, the casting material hardened immediately after construction, and the casting construction was difficult and was not performed. . For this reason, a test piece was not obtained and each physical property value was not tested.
[0040]
Comparative Examples 2 to 4 and 8 using polyacrylic acid soda as a dispersing agent, and Comparative Examples 5 and 9 using sodium hexametaphosphate as a dispersant, with the addition of a calcium compound or a magnesium compound, have the fluidity necessary for construction. In order to obtain, construction moisture increases and it is inferior to the compactness of a construction body.
[0041]
The casting material of the present invention is used for the lining of containers and rivets for various molten metals or for repairing the same.
[0042]
【The invention's effect】
As described above, the casting material of the present invention can obtain a high-strength and dense construction body with stable workability. Therefore, the value of the casting material according to the present invention is great under the recent severe conditions of the furnace operation and the demand for significant reduction of the furnace material cost.

Claims (2)

アルミナを含有した耐火材料100質量%に対し、石灰、消石灰、炭酸カルシウム、乳酸カルシウムのカルシウム化合物または活性マグネシア、炭酸マグネシウム、水酸化マグネシウムのマグネシウム化合物から選ばれる一種または二種以上:外掛け0.001〜5質量%と、カルボキシル基含有ポリエーテル系分散剤:外掛け0.03〜0.5質量%とを添加してなる流し込み施工用不定形耐火物。One or more selected from lime, slaked lime, calcium carbonate, calcium lactate calcium compound or active magnesia, magnesium carbonate, magnesium hydroxide magnesium compound with respect to 100% by mass of the refractory material containing alumina: An amorphous refractory for casting construction, which is obtained by adding 001 to 5% by mass and a carboxyl group-containing polyether dispersant: outer coating 0.03 to 0.5% by mass. 耐火材料100質量%に対する割合で、さらにアルミナセメント:20質量%以下を添加してなる請求項1記載の流し込み施工用不定形耐火物。The amorphous refractory for casting construction according to claim 1, wherein alumina cement: 20% by mass or less is further added in a proportion relative to 100% by mass of the refractory material.
JP2001303320A 2001-09-28 2001-09-28 Indeterminate refractories for casting construction Expired - Fee Related JP4571354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001303320A JP4571354B2 (en) 2001-09-28 2001-09-28 Indeterminate refractories for casting construction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001303320A JP4571354B2 (en) 2001-09-28 2001-09-28 Indeterminate refractories for casting construction

Publications (2)

Publication Number Publication Date
JP2003112978A JP2003112978A (en) 2003-04-18
JP4571354B2 true JP4571354B2 (en) 2010-10-27

Family

ID=19123421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001303320A Expired - Fee Related JP4571354B2 (en) 2001-09-28 2001-09-28 Indeterminate refractories for casting construction

Country Status (1)

Country Link
JP (1) JP4571354B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008007369A (en) * 2006-06-29 2008-01-17 Jfe Refractories Corp Hardening promotion method for casting material and casting material
JP5590662B2 (en) * 2010-03-31 2014-09-17 黒崎播磨株式会社 Castable refractory manufacturing method
CN112028642B (en) * 2020-08-04 2022-05-10 山东金三河新材料科技有限公司 Zirconia refractory material and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06172045A (en) * 1992-12-04 1994-06-21 Harima Ceramic Co Ltd Refractory for casting process
JPH09278543A (en) * 1996-04-11 1997-10-28 Harima Ceramic Co Ltd Castable refractory material for lining in vacuum degassing apparatus
JPH10114580A (en) * 1996-10-07 1998-05-06 Towa Taika Kogyo Kk Alumina-magnesia base tundish coating material
JPH11116345A (en) * 1997-10-14 1999-04-27 Harima Ceramic Co Ltd Amorphous refractory for cast application
JP2003201183A (en) * 2001-12-28 2003-07-15 Kurosaki Harima Corp Refractory for casting operation
JP2004149340A (en) * 2002-10-29 2004-05-27 Kurosaki Harima Corp Monolithic refractory material for waste melting furnace, and waste melting furnace lined with the material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06172045A (en) * 1992-12-04 1994-06-21 Harima Ceramic Co Ltd Refractory for casting process
JPH09278543A (en) * 1996-04-11 1997-10-28 Harima Ceramic Co Ltd Castable refractory material for lining in vacuum degassing apparatus
JPH10114580A (en) * 1996-10-07 1998-05-06 Towa Taika Kogyo Kk Alumina-magnesia base tundish coating material
JPH11116345A (en) * 1997-10-14 1999-04-27 Harima Ceramic Co Ltd Amorphous refractory for cast application
JP2003201183A (en) * 2001-12-28 2003-07-15 Kurosaki Harima Corp Refractory for casting operation
JP2004149340A (en) * 2002-10-29 2004-05-27 Kurosaki Harima Corp Monolithic refractory material for waste melting furnace, and waste melting furnace lined with the material

Also Published As

Publication number Publication date
JP2003112978A (en) 2003-04-18

Similar Documents

Publication Publication Date Title
WO2010047136A1 (en) Binder for unshaped refractory, and unshaped refractory
JP4023916B2 (en) Alumina cement, alumina cement composition, amorphous refractory, and spraying method using the same
Yilmaz Corrosion of high alumina spinel castables by steel ladle slag
JP4234330B2 (en) Amorphous refractory composition
JPH07330447A (en) Flow-in refractory material
KR101047358B1 (en) Refractory Compositions for Steel Industry
PL190654B1 (en) Self-castable basic concrete mix and moulded products made thereof
JP2001114571A (en) Castable refractory for trough of blast furnace
JPH0352428B2 (en)
JP4571354B2 (en) Indeterminate refractories for casting construction
JP4220131B2 (en) Amorphous refractory composition for ladle
JP2874831B2 (en) Refractory for pouring
JPH06256064A (en) Dense castable refractory low in water content and capable of being cast
JP4034858B2 (en) Indeterminate refractories for casting construction
JP2596700B2 (en) Specific carbon-containing irregular refractories
JP4960541B2 (en) Magnesia-alumina-titania brick
JP6503798B2 (en) Explosion Proof Castable
JP4205926B2 (en) Unshaped refractory for waste melting furnace and waste melting furnace lined with it
JP4588239B2 (en) Alumina cement, alumina cement composition, and amorphous refractory using the same
JPH07330450A (en) Flow-in refractory material
JP2011047563A (en) Powder material composition for monolithic refractory and method of manufacturing refractory using the same
JPH11217255A (en) Alumina cement composition and prepared unshaped refractory using the same
JP2005067930A (en) Alumina cement, alumina cement composition, and monolithic refractory using it
JPH09157043A (en) Casting refractory for blast-furnace launder
JPH0725668A (en) Refractory for casting work

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100716

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100812

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4571354

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees