JP6194257B2 - Magnesia carbon brick - Google Patents

Magnesia carbon brick Download PDF

Info

Publication number
JP6194257B2
JP6194257B2 JP2014014609A JP2014014609A JP6194257B2 JP 6194257 B2 JP6194257 B2 JP 6194257B2 JP 2014014609 A JP2014014609 A JP 2014014609A JP 2014014609 A JP2014014609 A JP 2014014609A JP 6194257 B2 JP6194257 B2 JP 6194257B2
Authority
JP
Japan
Prior art keywords
mass
less
raw material
particle size
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014014609A
Other languages
Japanese (ja)
Other versions
JP2014196229A (en
Inventor
賢典 松尾
賢典 松尾
満晴 塩濱
満晴 塩濱
田中 雅人
雅人 田中
吉富 丈記
丈記 吉富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=52357362&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6194257(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Krosaki Harima Corp filed Critical Krosaki Harima Corp
Priority to JP2014014609A priority Critical patent/JP6194257B2/en
Publication of JP2014196229A publication Critical patent/JP2014196229A/en
Application granted granted Critical
Publication of JP6194257B2 publication Critical patent/JP6194257B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、溶融金属の運搬、貯蔵、精製などを行う窯炉全般の内張り材に好適に使用されるマグネシアカーボンれんがに関する。   The present invention relates to a magnesia carbon brick that is suitably used as a lining material for general kilns for carrying, storing, and refining molten metal.

マグネシアカーボンれんが(以下「MgO−Cれんが」という。)はマグネシアと黒鉛を主骨材として構成される耐食性、耐スポール性に優れたれんがであり、転炉を初めとする窯炉全般の内張り材として汎く用いられている。   Magnesia carbon brick (hereinafter referred to as “MgO-C brick”) is a brick with excellent corrosion resistance and spall resistance composed mainly of magnesia and graphite. It is widely used as.

近年の精錬容器の操業過酷化に伴い、より耐用性に優れるMgO−Cれんがが求められるようになった。その耐用性向上のためには、耐食性と耐スポーリング性に優れるのはもちろんのこと、窯炉の内張り材は一般に長期間使用され、加熱冷却の熱履歴を受けるため、同環境下においてもれんが組織を長期間維持、すなわち緻密性を維持できることが重要である。   With the recent severe operation of smelting vessels, MgO-C bricks with better durability have been demanded. In order to improve its durability, not only is it excellent in corrosion resistance and spalling resistance, but the lining material of the kiln furnace is generally used for a long period of time and receives the heat history of heating and cooling, so bricks in the same environment It is important to be able to maintain the tissue for a long period of time, that is, maintain compactness.

この点に関し特許文献1には、マグネシア系耐火原料の粒径0.1mm以下の材料の含有率をコントロールすることで、長期間高温下に曝されるような環境下においても組織劣化を抑制でき使用初期の耐食性を維持可能なMgO−Cれんがが開示されている。また、特許文献2には、マグネシア原料の粒度構成において粗粒、中間粒及び微粒の含有率をコントロールすることで、耐スポーリング性と被熱に伴う組織劣化による諸特性の低下を抑制できるMgO−Cれんがが開示されている。   In this regard, Patent Document 1 discloses that by controlling the content of a magnesia-based refractory raw material having a particle size of 0.1 mm or less, it is possible to suppress tissue deterioration even in an environment where the material is exposed to a high temperature for a long time. An MgO-C brick that can maintain the corrosion resistance at the beginning of use is disclosed. Further, Patent Document 2 discloses MgO that can suppress deterioration of various properties due to spalling resistance and structural deterioration due to heat by controlling the content of coarse particles, intermediate particles, and fine particles in the particle size constitution of the magnesia raw material. -C brick is disclosed.

一方、MgO−Cれんがには炭素系原料を使用しており、この酸化防止のために酸素との親和性が高い金属Al、金属Siなどの金属を添加することが多く、上述の特許文献1,2の実施例においても酸化防止材として金属が添加されている。   On the other hand, a carbon-based raw material is used for MgO-C brick, and in order to prevent this oxidation, a metal such as metal Al or metal Si having high affinity with oxygen is often added. In the second and second embodiments, a metal is added as an antioxidant.

ところが、この酸化防止材として添加される金属は、自身の酸化によってれんが中の炭素系原料の酸化を抑制するものの、その反応は一般に膨張を伴う。また、その酸化反応生成物はMgO−Cれんがのれんが組織中に多く存在するマグネシア原料と反応し、生成物をなし、れんが組織を膨張させる。これらのれんが組織における膨張反応はれんが組織の緩みに繋がり、ひいては耐食性の低下へと繋がる。   However, although the metal added as the antioxidant suppresses the oxidation of the carbon-based raw material in the brick by its own oxidation, the reaction generally involves expansion. In addition, the oxidation reaction product reacts with the magnesia raw material in which MgO-C brick is present in the structure in a large amount to form a product and expand the structure of the brick. These swelling reactions in the tissue lead to loosening of the brick tissue, which in turn leads to a decrease in corrosion resistance.

特開2007−297246号公報JP 2007-297246 A 特開平1−270564号公報JP-A-1-270564

本発明が解決しようとする課題は、酸化防止材として添加される金属の膨張反応によるれんが組織の緩みの発生を抑制でき、実炉使用時における長期間に亘る熱履歴に曝される条件下で使用されても、れんが組織の劣化が小さく緻密性の維持が可能であって、耐用性向上が可能なMgO−Cれんがを提供することにある。   The problem to be solved by the present invention is that the occurrence of loosening of the brick structure due to the expansion reaction of the metal added as an antioxidant can be suppressed, and it is exposed to a long-term heat history during use in an actual furnace. Even if it is used, it is to provide a MgO-C brick which can maintain a compactness with little deterioration of a brick structure and can improve durability.

本発明のMgO−Cれんがは、酸化防止材として金属Alを添加することを前提とする。この金属Alは実炉使用時にAlを生成し、更にこのAlはれんが組織中のマグネシア原料とスピネルを生成する。従来はこのスピネル生成による体積膨張により、拘束下で使用されるMgO−Cれんがは緻密化されると考えられてきた。しかし、本発明者らの研究により、れんが組織中で体積膨張が過度に起こると、れんが組織中で緩みが生じ、かつ残存膨張が大きくなるため気孔率が上昇してしまうことがわかった。 The MgO-C brick of the present invention is premised on adding metal Al as an antioxidant. This metal Al produces Al 2 O 3 when used in an actual furnace, and further this Al 2 O 3 produces magnesia raw material and spinel in the brick structure. Conventionally, it has been considered that MgO—C brick used under restraint is densified by volume expansion due to the generation of spinel. However, the inventors' research has shown that when volume expansion occurs excessively in a brick tissue, the brick loosens in the tissue and the residual expansion increases, resulting in an increase in porosity.

一方、金属Alは上述とおり炭素系原料の酸化防止機能も有しているため、れんが組織中の金属Alの含有量を減らすことはれんがの耐酸化性の低下をもたらす。そこで本発明者らが耐酸化性担保のために炭化硼素の適用を検討したところ、長期間の熱履歴に対してもれんが組織の劣化を抑制することができるという知見が得られた。そのメカニズムは以下のように考えられる。   On the other hand, since the metal Al also has an antioxidant function of the carbon-based raw material as described above, reducing the content of the metal Al in the brick structure causes a reduction in the oxidation resistance of the brick. Therefore, the present inventors examined the application of boron carbide to ensure oxidation resistance, and found that the deterioration of the brick structure can be suppressed against a long-term thermal history. The mechanism is considered as follows.

金属Alの反応生成物の生成温度はAlが約800℃、Alが約900℃である。一方、炭化硼素の酸化開始温度は約500℃であり、また、炭化硼素と金属Alの共存化においてAlBCが400〜500℃で生成を開始する。炭化硼素の酸化により生成したBはAlと反応し、9Al・2B、2Al・B、及びAlとBが混在した液相を生成する。これらのことから、金属Alが添加されたMgO−Cれんがに炭化硼素を含有させることで、マグネシア原料とスピネルを生成する原因となるAlの生成を雰囲気温度が低い段階から抑えることができる。また、Al−B系の低融点化合物が生成するため、れんが組織中のAl量を減少させることができる。これにより、Alとマグネシア原料とのスピネル反応が抑えられ、ひいてはれんが組織の膨張抑制に繋がるものと考えられる。更に、これら9Al・2B、2Al・B及びAlとBが混在する液相は高温下で酸化被膜として作用するため、金属Alの減量によるMgO−Cれんがの耐酸化性の低下を抑制ないし耐酸化性を向上させる。 The production temperature of the reaction product of metallic Al is about 800 ° C. for Al 4 C 3 and about 900 ° C. for Al 2 O 3 . On the other hand, the oxidation start temperature of boron carbide is about 500 ° C., and Al 4 BC starts to be formed at 400 to 500 ° C. in the coexistence of boron carbide and metal Al. B 2 O 3 produced by oxidation of boron carbide reacts with Al 2 O 3 , 9Al 2 O 3 .2B 2 O 3 , 2Al 2 O 3 .B 2 O 3 , and Al 2 O 3 and B 2 O 3 Produces a liquid phase. From these facts, by containing boron carbide in MgO-C brick to which metal Al is added, it is possible to suppress the generation of Al 2 O 3 that causes generation of magnesia raw material and spinel from the stage where the ambient temperature is low. it can. Further, since the low-melting compound of Al 2 O 3 -B 2 O 3 system is produced, it is possible to reduce the amount of Al 2 O 3 of brick tissue. Thereby, it is considered that the spinel reaction between Al 2 O 3 and the magnesia raw material is suppressed, and as a result, the expansion of the brick structure is suppressed. Furthermore, since the liquid phase these 9Al 2 O 3 · 2B 2 O 3, 2Al 2 O 3 · B 2 O 3 and Al 2 O 3 and B 2 O 3 are mixed to act as an oxidation film at a high temperature, metal Al This suppresses or improves the oxidation resistance of MgO-C bricks due to the decrease in the amount of MgO-C brick.

本発明者らは種々検討した結果、長期間に亘る熱履歴を受けても、れんが組織の緩みが少なく緻密性を維持させるためには、れんが組織を構成する金属Alの粒度と含有量、及び炭化硼素の粒度と含有量を調整することが重要であることを見出した。更にこの効果は、マグネシア原料の粒度構成の調整、金属Siの併用並びにその粒度及び含有量の調整、更には残炭率の高い結合材の適用によって、一層の向上が図られることがわかった。   As a result of various studies, the present inventors have found that the size and content of the metal Al constituting the brick structure, in order to maintain the compactness with little loosening of the brick structure even after receiving a thermal history over a long period of time, and It has been found that it is important to adjust the particle size and content of boron carbide. Furthermore, it has been found that this effect can be further improved by adjusting the particle size composition of the magnesia raw material, using the metal Si together, adjusting the particle size and content thereof, and applying a binder having a high residual carbon ratio.

すなわち、本発明は以下のMgO−Cれんがを提供する。
(1)マグネシア原料と黒鉛とを含有するマグネシアカーボンれんがにおいて、マグネシア原料と黒鉛との合量に占める割合で、黒鉛を8質量%以上25質量%以下、マグネシア原料を75質量%以上92質量%以下含有し、更に、粒径75μm以下の含有量が85質量%以上の金属Alを添加黒鉛量に対して1質量%以上15質量%以下、粒径45μm以下の含有量が85質量%以上の炭化硼素を添加金属Al量に対して1質量%以上50質量%以下含有し、マグネシア原料の粒度構成として、マグネシア原料と黒鉛との合量に占める割合で、粒径0.075mm以上1mm以下のマグネシア原料が35質量%以上、粒径0.075mm未満のマグネシア原料が15質量%以下配合され、かつ粒径0.075mm未満のマグネシア原料に対する粒径0.075mm以上1mm以下のマグネシア原料の質量比が4.2以上であるMgO−Cれんが。
(2)1400℃で3時間の還元雰囲気での熱処理後の見かけ気孔率が7.8%以下である(1)に記載のMgO−Cれんが。
)粒径45μm以下の含有量が85質量%以上の金属Siを添加黒鉛量に対して5質量%以下含有する(1)又は(2)に記載のMgO−Cれんが。
)結合材として、残炭率が48%以上のフェノール樹脂を使用した(1)乃至(3)のいずれかに記載のMgO−Cれんが。
That is, the present invention provides the following MgO-C brick.
(1) In a magnesia carbon brick containing a magnesia raw material and graphite, the proportion of the total mass of the magnesia raw material and graphite is 8% by mass to 25% by mass, and the mass of the magnesia raw material is 75% by mass to 92% by mass. 1% by mass to 15% by mass with respect to the amount of added graphite, and the content of 45 μm or less in particle size is 85% by mass or more. Boron carbide is contained in an amount of 1% by mass or more and 50% by mass or less with respect to the amount of added metal Al , and the particle size of the magnesia raw material is a proportion of the total amount of the magnesia raw material and graphite, and the particle size is 0.075 mm or more and 1 mm or less. A magnesia raw material containing 35 mass% or more and a magnesia raw material having a particle size of less than 0.075 mm is blended in an amount of 15 mass% or less, and the magnesia raw material has a particle size of less than 0.075 mm. MgO-C bricks having a mass ratio of magnesia raw material having a particle size of 0.075 mm to 1 mm of 4.2 or more .
(2) The MgO-C brick according to (1), wherein the apparent porosity after heat treatment in a reducing atmosphere at 1400 ° C. for 3 hours is 7.8% or less.
( 3 ) The MgO-C brick according to (1) or (2) , wherein metal Si having a particle size of 45 μm or less is contained in an amount of 85% by mass or less with respect to the amount of added graphite.
( 4 ) The MgO-C brick according to any one of (1) to (3) , wherein a phenol resin having a residual carbon ratio of 48% or more is used as a binder.

なお、上記(2)に関し、従来においてもMgO−Cれんがを還元焼成して見かけ気孔率を測定した例は散見されるが、それらは殆どが焼成温度は1200℃以下であり、1400℃という高熱負荷下において7.8%以下の低気孔率を達成した例はない。本発明者らは、高熱負荷後のMgO−Cれんがの見かけ気孔率を7.8%以下へと更に低くさせることによって、従来にない優れた耐食性や耐酸化性を得ることが可能であるという知見を得た。   Regarding (2) above, there are some examples of the apparent porosity measured by reducing and firing MgO—C bricks in the past, but most of them have a firing temperature of 1200 ° C. or less and a high heat of 1400 ° C. There is no example that has achieved a low porosity of 7.8% or less under load. The inventors of the present invention are able to obtain excellent corrosion resistance and oxidation resistance that are not conventionally obtained by further reducing the apparent porosity of the MgO-C brick after high heat load to 7.8% or less. Obtained knowledge.

本発明によれば、酸化防止材として添加した金属Alの膨張反応によるれんが組織の緩みの発生が抑制され、実炉使用時における長期間に亘る熱履歴に曝される条件下で使用されても、れんが組織の劣化が小さく緻密性の維持が可能となりれんがの耐用性向上、ひいては炉寿命の延長に貢献できる。これにより炉のメンテナンス周期を延ばすことが可能となり、炉材原単位の削減や、炉修スパン延長により生産性の向上に寄与できる。   According to the present invention, the occurrence of loosening of the brick structure due to the expansion reaction of the metal Al added as an antioxidant is suppressed, and even if it is used under conditions where it is exposed to a long-term heat history during actual furnace use. As a result, the deterioration of the brick structure is small and the denseness can be maintained, which contributes to the improvement of the durability of the brick and the extension of the life of the furnace. This makes it possible to extend the maintenance period of the furnace and contribute to productivity improvement by reducing the furnace material unit and extending the furnace repair span.

本発明は、マグネシア原料と黒鉛とを含有するMgO−Cれんがにおいて、れんが組織を構成する金属Alの粒度と含有量、及び炭化硼素の粒度と含有量を調整することで、長期間に亘る熱履歴の暴露に対し組織劣化を抑制し、緻密性を維持させることを特徴としている。   The present invention relates to a MgO-C brick containing a magnesia raw material and graphite, and by adjusting the particle size and content of metallic Al constituting the brick structure and the particle size and content of boron carbide, It is characterized by suppressing the tissue deterioration and maintaining the denseness against the history exposure.

マグネシア原料としては、電融マグネシア、海水マグネシア、天然マグネシアのうちいずれか一種又は二種以上を使用できる。また、純度に関しては本発明の効果に顕著には影響はしないが、不純物に伴う耐食性の低下や過焼結の影響を回避するためには90%以上の純度のマグネシア原料を用いることが好ましい。   As the magnesia raw material, one or more of electrofused magnesia, seawater magnesia, and natural magnesia can be used. Further, the purity does not significantly affect the effect of the present invention, but it is preferable to use a magnesia raw material having a purity of 90% or more in order to avoid the deterioration of corrosion resistance and oversintering due to impurities.

マグネシア原料の粒度構成としては、マグネシア原料と黒鉛との合量に占める割合で、粒径0.075mm以上1mm以下のマグネシア原料が35質量%以上、粒径0.075mm未満のマグネシア原料が15質量%以下配合され、かつ粒径0.075mm未満のマグネシア原料に対する粒径0.075mm以上1mm以下のマグネシア原料の質量比が4.2以上であることが好ましい。   As the particle size constitution of the magnesia raw material, the proportion of the magnesia raw material and graphite is the proportion of the total amount of magnesia raw material having a particle size of 0.075 mm or more and 1 mm or less, 35 mass% or more, and magnesia raw material having a particle size of less than 0.075 mm, 15 mass %, And the mass ratio of the magnesia raw material having a particle size of 0.075 mm to 1 mm to the magnesia raw material having a particle size of less than 0.075 mm is preferably 4.2 or more.

すなわち、粒径0.075mm未満の微粒が多すぎるとマグネシア原料同士の接触が増え成形性が低下するので、成形後の充填性を向上させるためにはより少ないほうが好ましい。具体的には、粒径0.075mm未満の微粒の配合量は15質量%以下であることが好ましい。この微粒の配合量が15質量%を超えると成形性が低下するうえ、熱履歴に曝された後に組織劣化が生じやすく、気孔率が増大する傾向となるので好ましくない。   That is, when there are too many fine particles having a particle size of less than 0.075 mm, the contact between magnesia raw materials increases and the moldability deteriorates. Therefore, the smaller one is preferable in order to improve the fillability after molding. Specifically, the blending amount of fine particles having a particle size of less than 0.075 mm is preferably 15% by mass or less. If the blending amount of the fine particles exceeds 15% by mass, the moldability is deteriorated, the structure is easily deteriorated after being exposed to the heat history, and the porosity tends to increase, which is not preferable.

また、マグネシア原料は加熱、冷却の過程で膨張、収縮するが、周囲の黒鉛よりも膨張率が大きいため収縮する際にその周囲に空隙が生成する。特に粒径1mm超の粗粒の周囲には比較的大きな空隙が生成し、容易に開放気孔化してしまい見かけ気孔率の上昇が大きい。したがって、粒径0.075mm以上1mm以下の中粒の配合量を増量し、粒径1mm超の粗粒は減量したほうが好ましい。具体的には粒径0.075mm以上1mm以下の中粒の配合量は35質量%以上であることが好ましく、43質量%以上であることがより好ましい。また、粒径0.075mm未満の微粒に対する粒径0.075mm以上1mm以下の中粒の質量比(中粒の質量/微粒の質量)は4.2以上であることが好ましい。   In addition, the magnesia raw material expands and contracts in the process of heating and cooling. However, since the expansion coefficient is larger than that of the surrounding graphite, voids are generated around it when contracting. In particular, relatively large voids are generated around coarse particles having a particle diameter of more than 1 mm, and easily open pores, resulting in a large increase in apparent porosity. Therefore, it is preferable to increase the blending amount of medium grains having a particle size of 0.075 mm or more and 1 mm or less and to reduce coarse particles having a particle diameter of more than 1 mm. Specifically, the blending amount of medium grains having a particle size of 0.075 mm or more and 1 mm or less is preferably 35% by mass or more, and more preferably 43% by mass or more. Moreover, it is preferable that the mass ratio (mass of middle grain / mass of fine grain) of medium grains having a particle diameter of 0.075 mm to 1 mm with respect to fine grains having a particle diameter of less than 0.075 mm is 4.2 or more.

黒鉛としては、通常の鱗状黒鉛を使用できるが、これに換えて又はこれと併用して膨張黒鉛、人造黒鉛、キッシュグラファイトなどを使用してもよい。その組成は特に規定されるものではないが、より高い耐食性を得るためにはC純度が高い黒鉛を使用したほうがよく、C純度は好ましくは85%以上、より好ましくは98%以上である。粒度は極端に細粒なものでは緻密性の維持が難しいため、粒径0.04mm以上の、更に好ましくは粒径0.15mm以上の黒鉛をその配合量の40質量%以上使用したほうがよい。   As the graphite, normal scaly graphite can be used, but expanded graphite, artificial graphite, quiche graphite, or the like may be used instead of or in combination with this. Although the composition is not particularly defined, it is better to use graphite having high C purity in order to obtain higher corrosion resistance, and the C purity is preferably 85% or more, more preferably 98% or more. Since it is difficult to maintain denseness when the particle size is extremely fine, it is better to use graphite having a particle size of 0.04 mm or more, more preferably 0.15 mm or more of the compounding amount of 40% by mass or more.

黒鉛の含有量は、マグネシア原料と黒鉛との合量に占める割合で8質量%以上25質量%以下とする。黒鉛の含有量が8質量%未満では、マグネシア原料の比率が増大し、組織安定性が低下する。すなわち、長期間熱履歴暴露後の気孔率増大を招く。黒鉛の含有量が25質量%を超えると、気孔率の上昇と耐食性の低下が懸念される。この黒鉛の含有量の残分として、マグネシア原料の含有量は、マグネシア原料と黒鉛との合量に占める割合で75質量%以上92質量%以下とする。   The graphite content is 8% by mass or more and 25% by mass or less in terms of the proportion of the total amount of the magnesia raw material and graphite. When the content of graphite is less than 8% by mass, the ratio of the magnesia raw material increases, and the structure stability decreases. That is, the porosity increases after long-term heat history exposure. If the graphite content exceeds 25% by mass, the porosity and the corrosion resistance may be lowered. As the remainder of the graphite content, the content of the magnesia raw material is set to 75% by mass or more and 92% by mass or less in the proportion of the total amount of the magnesia raw material and graphite.

金属Alの添加量は添加黒鉛量に対して1質量%以上15質量%以下が適当であり、更には10質量%以下であることが好ましい。このように金属Alの添加量を比較的少量に留めることにより、金属Alによる膨張反応を抑制でき、また金属Alが揮発して生じる気孔を少なくでき、結果としてMgO−Cれんがの緻密性を確保することができる。また、その粒径も小さいほうが見かけ気孔率を低減するためには好ましい。これは金属Alが昇温過程で溶融、揮発して生じる気孔径を小さくでき、開放気孔化する確率が小さくなるためである。更にこのことはMgO−Cれんがの組織を早期に形成するためにも有効と考えられる。金属Alを1質量%以上添加する理由は、これ未満の添加量では耐酸化性が不十分であるためである。金属Alによる効果は、粒径75μm以下の含有率が85質量%以上の金属Alを使用することで顕著に発現される。   The addition amount of metal Al is suitably 1% by mass or more and 15% by mass or less, and more preferably 10% by mass or less, with respect to the added graphite amount. In this way, by keeping the amount of metal Al added to a relatively small amount, expansion reaction due to metal Al can be suppressed, and pores generated by volatilization of metal Al can be reduced, and as a result, the denseness of MgO-C brick is ensured. can do. In addition, it is preferable that the particle size is small in order to reduce the apparent porosity. This is because the metal Al can be melted and volatilized during the temperature rising process to reduce the pore diameter, and the probability of opening to open pores is reduced. Furthermore, this is considered to be effective for forming an MgO—C brick structure at an early stage. The reason why 1% by mass or more of metallic Al is added is that oxidation resistance is insufficient with an addition amount less than this. The effect by metal Al is remarkably exhibited by using metal Al having a particle size of 75 μm or less and a content of 85% by mass or more.

炭化硼素の添加量は添加金属Al量に対して1質量%以上50質量%以下が適当であり、更には25質量%以下であることが好ましい。炭化硼素の添加量が50質量%を超えると、熱履歴暴露の際、酸化によりBが過多に生成し、Alと反応しきれない余分なBがマグネシア原料と反応して低融点物を多量に生成してしまい、ひいては耐食性低下の原因となる。炭化硼素の添加量が1質量%未満では、その効果が得られない。また、炭化硼素による効果は、粒径45μm以下の含有率が85質量%以上の炭化硼素を使用することで顕著に発現される。なお、炭化硼素としては、耐火れんがに一般的に使用されている市販の原料を使用することができる。 The addition amount of boron carbide is suitably 1% by mass or more and 50% by mass or less, and more preferably 25% by mass or less, with respect to the added metal Al amount. If the amount of boron carbide is more than 50 mass%, when the thermal history exposure, B 2 O 3 is generated excessively by oxidation, Al 2 O 3 can not be reacted with excess B 2 O 3 and a magnesia raw material It reacts to produce a large amount of a low melting point, which in turn causes a decrease in corrosion resistance. If the amount of boron carbide added is less than 1% by mass, the effect cannot be obtained. The effect of boron carbide is remarkably manifested by using boron carbide having a particle size of 45 μm or less and a content of 85% by mass or more. As boron carbide, commercially available raw materials generally used for refractory bricks can be used.

本発明のMgO−Cれんがにおいては、上述の金属Al及び炭化硼素に加えて金属Siを添加することができる。金属Siはその昇温過程でMgO−Cれんが内でSiC、続いてSiOを生成する。このSiOはMgOと反応し比較的融点の低いEnstatite,Forsteriteを生成するが、この反応過程の液相がMgO−Cれんがの微細気孔を埋め低気孔率化が図られる。更に金属Alとの共存下では、更に低融点であるCordieriteも生成し、より効率よく液相が気孔を埋める効果が発現される。また、金属Siの粒度も小さいほうが低気孔率化には有効であり、これは金属Alの場合と同様に昇温過程で溶融、揮発して生じる気孔径を小さくでき開放気孔化する確率が小さくなるためである。 In the MgO-C brick of the present invention, metal Si can be added in addition to the above-mentioned metal Al and boron carbide. The metal Si generates SiC and then SiO 2 in the MgO-C brick during the temperature rising process. This SiO 2 reacts with MgO to produce Enstatite and Forsterite having a relatively low melting point, but the liquid phase of this reaction process fills the fine pores of MgO—C brick and lowers the porosity. Further, in the presence of metal Al, cordierite having a lower melting point is also generated, and the effect of the liquid phase filling the pores more efficiently is exhibited. Also, the smaller the particle size of the metal Si is, the more effective for lowering the porosity. This is the same as the case of the metal Al, and it is possible to reduce the pore diameter generated by melting and volatilization in the temperature rising process, and the probability of open pore formation is small. It is to become.

金属Siの添加量は添加黒鉛量に対して5質量%以下と極微量で充分であり、粒径45μm以下の細かい金属Si、具体的には粒度構成として粒径45μm以下の含有量が85質量%以上の金属Siを使用することで一層の効果が発現される。これ以上の過多な添加はMgO−Cれんが内での低融物生成量を増大させ、耐食性低下の原因となり耐用性を低下させる。金属Siの添加量の下限は特に限定されないが、金属Siの効果を顕著に発現させるには添加黒鉛量に対して1質量%以上であることが好ましい。   The addition amount of metal Si is 5% by mass or less with respect to the amount of added graphite, and it is sufficient, and fine metal Si having a particle size of 45 μm or less, specifically, the content of particle size of 45 μm or less is 85 mass as the particle size constitution. By using more than 1% of metal Si, further effects are exhibited. Excessive addition beyond this increases the amount of low-melt material generated in the MgO-C brick, causing a reduction in corrosion resistance and reducing the durability. The lower limit of the amount of addition of metal Si is not particularly limited, but it is preferably 1% by mass or more with respect to the amount of added graphite in order to significantly express the effect of metal Si.

結合材としてはフェノール樹脂を使用することが好ましい。フェノール樹脂はノボラック型、レゾール型、及びこの混合型のいずれでもよいが、MgO−Cれんがにおいては経時変化をおこし難いノボラック型がより好ましい。粉末又は適当な溶剤に溶かした液状、更に液状と粉末の併用のいずれも使用でき、通常はヘキサメチレンテトラミンなどの硬化材を適量添加して残炭率を確保する。その残炭率は34%以上であることが好ましく、より好ましくは48%以上であるが、必ずしもこれに限定されるものではない。通常市販されている耐火物用のフェノール樹脂でこのような高残炭率のものはあまり知られていないが、例えば特開2010−105891号公報に開示されているようにピッチを相溶させたり溶媒種、量を調整したりすることにより50%以上の残炭率を達成することが可能である。   As the binder, it is preferable to use a phenol resin. The phenolic resin may be any of a novolak type, a resol type, and a mixed type thereof, but in the case of MgO-C brick, a novolak type that hardly changes with time is more preferable. Either powder or liquid dissolved in an appropriate solvent, or a combination of liquid and powder can be used. Usually, an appropriate amount of a curing material such as hexamethylenetetramine is added to ensure a residual carbon ratio. The residual carbon ratio is preferably 34% or more, more preferably 48% or more, but is not necessarily limited thereto. There are not many known phenol resins for refractories that are commercially available with such a high residual carbon ratio. For example, as disclosed in Japanese Patent Application Laid-Open No. 2010-105891, It is possible to achieve a residual carbon ratio of 50% or more by adjusting the solvent type and amount.

以下、本発明の実施例を説明する。なお、本実施例は本発明の一様態を示すものであってこれら実施例に限定されるものではない。   Examples of the present invention will be described below. In addition, a present Example shows the one aspect | mode of this invention, and is not limited to these Examples.

試料作製は転炉用製品製造ラインを用いた。表1、2に記載の割合にて原料秤量を行い、混練はハイスピードミキサーを使用し、成形は長さ810mmの側壁用標準形状において真空フリクションにより最高180MPaの成形圧力で成形した。乾燥はバッチ炉において最高280℃で5時間保持した。   Sample preparation was performed using a product line for converters. Raw materials were weighed at the ratios shown in Tables 1 and 2, and kneading was performed using a high speed mixer. Molding was performed at a molding pressure of 180 MPa at maximum with vacuum friction in a standard shape for a side wall having a length of 810 mm. Drying was held in a batch furnace at a maximum of 280 ° C. for 5 hours.

Figure 0006194257
Figure 0006194257

Figure 0006194257
Figure 0006194257

これから物性測定用試料を切り出して見かけ気孔率を測定するとともに、耐酸化性及び耐食性を評価した。   From this, a sample for measuring physical properties was cut out to measure the apparent porosity, and the oxidation resistance and corrosion resistance were evaluated.

見かけ気孔率の測定においては形状60×60×60mmの試料を使用した。この見かけ気孔率の測定は1400℃で3時間の還元雰囲気での熱処理後に行った。熱処理温度が1400℃未満では、MgO−Cれんが内部での反応が完了しきれず、熱負荷も十分でないため緻密性の評価として適当ではない。また1400℃を超える温度では焼結が進行し、緻密性の評価として焼結の効果を分離して評価することが困難になるうえ、熱処理を行う炉への負荷が大きく定常的な測定法として好ましくなくなる。熱処理の時間は3時間未満ではMgO−Cれんが内部での反応が完了しきれず適当ではない。更にこれよりも長時間の熱処理では焼結が進行してその効果を分離して評価することが困難になる。本実施例では、1400℃で3時間の還元雰囲気での熱処理後の試料を、媒液を白灯油としたアルキメデス法(JIS R 2205)に準じて見かけ気孔率を測定した。   In measuring the apparent porosity, a sample having a shape of 60 × 60 × 60 mm was used. The apparent porosity was measured after heat treatment in a reducing atmosphere at 1400 ° C. for 3 hours. When the heat treatment temperature is less than 1400 ° C., the reaction inside the MgO—C brick cannot be completed, and the heat load is not sufficient, so that it is not suitable for evaluation of denseness. In addition, sintering proceeds at a temperature exceeding 1400 ° C., and it becomes difficult to separate and evaluate the effect of sintering as an evaluation of denseness, and the load on the furnace for heat treatment is large and a steady measurement method. Unpreferable. If the heat treatment time is less than 3 hours, the reaction inside the MgO-C brick cannot be completed, which is not suitable. Furthermore, if the heat treatment is longer than this, sintering proceeds and it becomes difficult to evaluate the effect separately. In this example, the apparent porosity of a sample after heat treatment in a reducing atmosphere at 1400 ° C. for 3 hours was measured according to the Archimedes method (JIS R 2205) using white kerosene as a liquid medium.

耐酸化性の評価は乾燥後試料からφ50×50mmに切り出し、大気雰囲気下で電気炉中1400℃で5時間焼成した。この後試料の高さ方向の中央を切断し、炭素成分が脱炭して変色した部分の厚さを4方向計測してこの値の平均値を脱炭層厚さとした。   Evaluation of oxidation resistance was cut out from the sample after drying to φ50 × 50 mm and fired in an electric furnace at 1400 ° C. for 5 hours in an air atmosphere. Thereafter, the center in the height direction of the sample was cut, and the thickness of the portion where the carbon component was decarburized and discolored was measured in four directions, and the average value of these values was taken as the decarburized layer thickness.

耐食性は、回転侵食試験にて評価した。回転侵食試験では、水平の回転軸を有するドラムの内面に供試れんがでライニングし、スラグを投入、加熱してれんが表面を侵食させた。加熱源は酸素−プロパンバーナーとし、試験温度は1700℃、スラグ組成はCaO/SiO=3.4、FeO=20質量%、MgO=3質量%とし、スラグの排出、投入を30分毎に10回繰り返した。試験終了後、各れんがの最大溶損部の寸法を測定して侵食量を算出し、表1に記載の「比較例1」の侵食量を100とする耐食性指数で表示した。この耐食性指数は数値が大きいものほど耐食性が優れることを示す。 Corrosion resistance was evaluated by a rotational erosion test. In the rotary erosion test, a test brick was lined on the inner surface of a drum having a horizontal rotation axis, slag was added, and the brick surface was eroded by heating. The heating source is an oxygen-propane burner, the test temperature is 1700 ° C., the slag composition is CaO / SiO 2 = 3.4, FeO = 20 mass%, MgO = 3 mass%, and slag is discharged and charged every 30 minutes. Repeated 10 times. After the test was completed, the size of the maximum melted portion of each brick was measured to calculate the erosion amount, and the corrosion resistance index of “Comparative Example 1” shown in Table 1 with the erosion amount being 100 was displayed. This corrosion resistance index indicates that the larger the value, the better the corrosion resistance.

参考例1〜3及び比較例1〜3は黒鉛含有量(マグネシア原料と黒鉛との合量に占める割合をいう。以下同じ。)が13質量%のMgO−Cれんがにおいて、金属Alの添加量を変化させたときの炭化硼素の併用効果を調査した結果である。参考例1では、粒径75μm以下の金属Alを0.13質量%、粒径45μm以下の炭化硼素を0.065質量%添加した場合であるが、見かけ気孔率7.7%が達成され、耐酸化性、耐食性ともに優れる結果となった。これに対し比較例1は炭化硼素が無添加であるため、見かけ気孔率が上昇し、耐酸化性、耐食性も劣る結果となった。 In Reference Examples 1 to 3 and Comparative Examples 1 to 3, in the MgO-C brick having a graphite content (referred to as a proportion of the total amount of the magnesia raw material and graphite; the same shall apply hereinafter) of 13% by mass, the addition amount of metal Al It is the result of investigating the combined use effect of boron carbide when changing. In Reference Example 1, 0.13% by mass of metal Al having a particle size of 75 μm or less and 0.065% by mass of boron carbide having a particle size of 45 μm or less were added, and an apparent porosity of 7.7% was achieved. Both oxidation resistance and corrosion resistance were excellent. On the other hand, in Comparative Example 1, since boron carbide was not added, the apparent porosity was increased, and the oxidation resistance and corrosion resistance were inferior.

また、参考例2、3はそれぞれ、金属Al添加量を1.0質量%、1.9質量%、炭化硼素添加量を0.5質量%、0.95質量%とした場合であるが、参考例1と比較して更に見かけ気孔率が低減し、耐酸化性に優れる結果となった。これに対し比較例2は炭化硼素が無添加であるため、参考例3と比較すると見かけ気孔率が増大する結果となった。比較例3は添加した添加金属Al量に対する炭化硼素の添加量が過多であるため見かけ気孔率が増大し、耐食性が低下した。 Reference Examples 2 and 3 are cases where the addition amount of metal Al is 1.0 mass%, 1.9 mass%, and the boron carbide addition amount is 0.5 mass% and 0.95 mass%, Compared with Reference Example 1, the apparent porosity was further reduced, and the oxidation resistance was excellent. On the other hand, in Comparative Example 2, since boron carbide was not added, the apparent porosity increased as compared with Reference Example 3. In Comparative Example 3, the amount of boron carbide added to the amount of added metal Al was excessive, so the apparent porosity increased and the corrosion resistance decreased.

参考例4は、添加金属Al量に対する炭化硼素の添加量を1.0質量%にした場合であり、見かけ気孔率7.6%を達成している。参考例5は、添加金属Al量に対する炭化硼素の添加量を20質量%にした場合であり、更に見かけ気孔率が低減し、耐酸化性及び耐食性が向上する結果が得られた。 Reference Example 4 is a case where the amount of boron carbide added to the amount of added metal Al is 1.0% by mass, and an apparent porosity of 7.6% is achieved. Reference Example 5 was a case where the amount of boron carbide added relative to the amount of added metal Al was 20% by mass, and the result was that the apparent porosity was further reduced and the oxidation resistance and corrosion resistance were improved.

比較例4は、添加金属Al量に対する炭化硼素の添加量は適正であるが、炭化硼素を粒径75μm以下の比較的粗い粒(粒径45μm以下の含有量は15質量%)として添加したため、見かけ気孔率が上昇している。   In Comparative Example 4, the addition amount of boron carbide relative to the added metal Al amount is appropriate, but boron carbide was added as relatively coarse particles having a particle size of 75 μm or less (content of particle size of 45 μm or less is 15% by mass). Apparent porosity has increased.

実施例6、7は、粒径0.075mm未満のマグネシア原料に対する粒径0.075mm以上1mm以下のマグネシア原料の質量比を5.38、6.63に調整し評価した結果であるが、更に見かけ気孔率は低減し、耐酸化性及び耐食性は向上した。   Examples 6 and 7 are results of adjusting and evaluating the mass ratio of the magnesia raw material having a particle size of 0.075 mm to 1 mm to the magnesia raw material having a particle size of less than 0.075 mm to 5.38 and 6.63. Apparent porosity was reduced, and oxidation resistance and corrosion resistance were improved.

実施例8、9、10は黒鉛含有量をそれぞれ8、18、25質量%としたMgO−Cれんがである。いずれも、低見かけ気孔率であり、良好な耐酸化性及び耐食性を示した。これに対し比較例5は黒鉛含有量を7質量%としたMgO−Cれんがであるが、見かけ気孔率が増大し、それに伴い耐酸化性が低下した。また、黒鉛含有量が26質量%の比較例6においても見かけ気孔率は増大し、耐食性が低下することが確認された。   Examples 8, 9, and 10 are MgO-C bricks having a graphite content of 8, 18, and 25% by mass, respectively. All of them had a low apparent porosity and showed good oxidation resistance and corrosion resistance. On the other hand, Comparative Example 5 is an MgO—C brick having a graphite content of 7% by mass, but the apparent porosity increased and the oxidation resistance decreased accordingly. It was also confirmed that the apparent porosity increased and the corrosion resistance decreased in Comparative Example 6 having a graphite content of 26% by mass.

実施例11は、金属Alを細粒化することで更なる低気孔率化を達成している。これに対し比較例7は0.15mm以下の比較的粗粒の金属Al(粒径75μm以下の含有量は10質量%)を1.0質量%添加した結果、十分な気孔率低減効果が得られず、実施例6や11に比べ耐酸化性及び耐食性に劣る結果となった。   In Example 11, a further reduction in porosity is achieved by refining metal Al. On the other hand, in Comparative Example 7, as a result of adding 1.0% by mass of relatively coarse metal Al of 0.15 mm or less (content of particle size of 75 μm or less is 10% by mass), a sufficient porosity reduction effect is obtained. The results were inferior in oxidation resistance and corrosion resistance compared to Examples 6 and 11.

実施例12は、粒径75μm以下の金属Siを併用した場合である。金属Siを併用することで、低気孔率化することが確認された。また、実施例13は粒径45μm以下の金属Siを使用したものであり、更なる低気孔率化が達成された。   Example 12 is a case where metal Si having a particle size of 75 μm or less is used in combination. It was confirmed that the porosity was lowered by using metal Si together. In Example 13, metal Si having a particle size of 45 μm or less was used, and a further reduction in porosity was achieved.

実施例14は粒径45μm以下の細粒化した金属Alと粒径45μm以下の細粒化した金属Siを併用した場合であり、細粒化された金属を併用することで更なる低気孔率化が達成された。   Example 14 is a case in which finely divided metal Al having a particle diameter of 45 μm or less and a finely divided metal Si having a particle diameter of 45 μm or less are used in combination, and by further using the finely divided metal, a further low porosity is achieved. Was achieved.

実施例15は残炭率が48%のフェノール樹脂を結合材として使用したMgO−Cれんがである。実施例14の残炭率が42%のそれを使用した場合と比較して特性が改善された。   Example 15 is an MgO-C brick using a phenol resin having a residual carbon ratio of 48% as a binder. The characteristics were improved as compared with the case where the residual carbon ratio of Example 14 was 42%.

実施例16、17は、残炭率が30%のフェノール樹脂を結合材として使用するとともにピッチ系原料の含有量を1又は2質量%とした例であるが、本発明の範囲内であり緻密な組織となっている。   Examples 16 and 17 are examples in which a phenol resin having a residual carbon ratio of 30% is used as the binder and the content of the pitch-based raw material is 1 or 2% by mass, but is within the scope of the present invention and is dense. Organization.

Claims (4)

マグネシア原料と黒鉛とを含有するマグネシアカーボンれんがにおいて、マグネシア原料と黒鉛との合量に占める割合で、黒鉛を8質量%以上25質量%以下、マグネシア原料を75質量%以上92質量%以下含有し、更に、粒径75μm以下の含有量が85質量%以上の金属Alを添加黒鉛量に対して1質量%以上15質量%以下、粒径45μm以下の含有量が85質量%以上の炭化硼素を添加金属Al量に対して1質量%以上50質量%以下含有し、マグネシア原料の粒度構成として、マグネシア原料と黒鉛との合量に占める割合で、粒径0.075mm以上1mm以下のマグネシア原料が35質量%以上、粒径0.075mm未満のマグネシア原料が15質量%以下配合され、かつ粒径0.075mm未満のマグネシア原料に対する粒径0.075mm以上1mm以下のマグネシア原料の質量比が4.2以上であるマグネシアカーボンれんが。 The magnesia carbon brick containing the magnesia raw material and graphite contains 8% by mass or more and 25% by mass or less of graphite and 75% by mass or more and 92% by mass or less of magnesia raw material in the proportion of the total amount of the magnesia raw material and graphite. Furthermore, a metal Al having a particle size of 75 μm or less is added to 85% by mass or more of metal Al. The boron carbide having a content of 1 to 15% by mass and a particle size of 45 μm or less of 85% by mass or more is added to the amount of graphite. A magnesia raw material having a particle size of 0.075 mm or more and 1 mm or less is contained in a proportion of the total amount of the magnesia raw material and graphite as a particle size constitution of the magnesia raw material. A particle size of 35% by mass or more and a magnesia raw material having a particle size of less than 0.075 mm is blended in an amount of 15% by mass or less and a magnesia raw material having a particle size of less than 0.075 mm. The magnesia carbon brick whose mass ratio of the magnesia raw material of 0.075 mm or more and 1 mm or less is 4.2 or more . 1400℃で3時間の還元雰囲気での熱処理後の見かけ気孔率が7.8%以下である請求項1に記載のマグネシアカーボンれんが。   The magnesia carbon brick according to claim 1, wherein an apparent porosity after heat treatment in a reducing atmosphere at 1400 ° C for 3 hours is 7.8% or less. 粒径45μm以下の含有量が85質量%以上の金属Siを添加黒鉛量に対して5質量%以下含有する請求項1又は2に記載のマグネシアカーボンれんが。 The magnesia carbon brick according to claim 1 or 2 , wherein the metal Si having a particle size of 45 µm or less contains 85 mass% or more of metal Si with respect to the amount of added graphite. 結合材として、残炭率が48%以上のフェノール樹脂を使用した請求項1乃至のいずれかに記載のマグネシアカーボンれんが。 The magnesia carbon brick according to any one of claims 1 to 3 , wherein a phenol resin having a residual carbon ratio of 48% or more is used as a binder.
JP2014014609A 2013-03-06 2014-01-29 Magnesia carbon brick Active JP6194257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014014609A JP6194257B2 (en) 2013-03-06 2014-01-29 Magnesia carbon brick

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013044450 2013-03-06
JP2013044450 2013-03-06
JP2014014609A JP6194257B2 (en) 2013-03-06 2014-01-29 Magnesia carbon brick

Publications (2)

Publication Number Publication Date
JP2014196229A JP2014196229A (en) 2014-10-16
JP6194257B2 true JP6194257B2 (en) 2017-09-06

Family

ID=52357362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014014609A Active JP6194257B2 (en) 2013-03-06 2014-01-29 Magnesia carbon brick

Country Status (1)

Country Link
JP (1) JP6194257B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108580867A (en) * 2018-07-26 2018-09-28 河南海格尔高温材料有限公司 A kind of safe ladle liner
JP7329156B1 (en) 2023-01-11 2023-08-17 黒崎播磨株式会社 Manufacturing method of magnesia carbon brick
CN116332661A (en) * 2023-03-29 2023-06-27 营口富宏耐材制造有限公司 Magnesia carbon brick for electric furnace and preparation method thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57118067A (en) * 1981-01-09 1982-07-22 Nippon Crucible Co Refractories for refinement out of furnace
JPS58208173A (en) * 1982-05-28 1983-12-03 品川炉材株式会社 Non-baked magnesia carbon refractories
JPH01305849A (en) * 1988-05-31 1989-12-11 Kawasaki Refract Co Ltd Magnesia-carbon brick
JP2994097B2 (en) * 1991-06-25 1999-12-27 品川白煉瓦株式会社 Corrosion resistant magnesia carbon brick
JPH0717758A (en) * 1993-06-17 1995-01-20 Kyushu Refract Co Ltd Magnesia-carbon brick for inner lining of vessel for molten metal
JPH0733513A (en) * 1993-07-26 1995-02-03 Kurosaki Refract Co Ltd Magnesia-carbon brick and its production
JPH0881256A (en) * 1994-07-11 1996-03-26 Kyushu Refract Co Ltd Brick containing compressed and pulverized expanded graphite
JP2002249371A (en) * 2001-02-20 2002-09-06 Nippon Steel Corp Magnesia carbon refractory and furnace utilizing it
US8093169B2 (en) * 2006-11-06 2012-01-10 Krosakiharima Corporation High-durability sleeve bricks
JP2008151425A (en) * 2006-12-18 2008-07-03 Kurosaki Harima Corp Repair method of magnesia carbon brick
JP5208676B2 (en) * 2008-10-31 2013-06-12 リグナイト株式会社 Refractory composition
JP2010132516A (en) * 2008-12-08 2010-06-17 Nippon Steel Corp Magnesia carbon brick and method for producing the same

Also Published As

Publication number Publication date
JP2014196229A (en) 2014-10-16

Similar Documents

Publication Publication Date Title
WO2014112493A1 (en) Magnesia-carbon brick
JP4681456B2 (en) Low carbon magnesia carbon brick
TWI558683B (en) Magnesium oxide carbon brick
JP6215109B2 (en) Magnesia carbon brick
WO2018079324A1 (en) Magnesia carbon brick and production method therefor
JP5777561B2 (en) Brick for stainless steel refining ladle and stainless steel refining ladle
JP5697210B2 (en) Converter operating method, magnesia carbon brick used in the converter, manufacturing method of the brick, and lining structure of the converter lining
JP6194257B2 (en) Magnesia carbon brick
JP6219729B2 (en) Magnesia carbon brick
JP6154772B2 (en) Alumina-silicon carbide-carbon brick
JP6600729B1 (en) Spinel-magnesia-carbon brick for vacuum degassing apparatus and vacuum degassing apparatus lining this on the side wall of lower tank
WO2011058811A1 (en) Sliding nozzle plate
JP6190730B2 (en) Magnesia carbon brick
JP5663122B2 (en) Castable refractories for non-ferrous metal smelting containers and precast blocks using the same
JP2009242122A (en) Brick for blast furnace hearth and blast furnace hearth lined with the same
JP7389352B2 (en) Spinel-magnesia-carbon bricks for vacuum degassing equipment and vacuum degassing equipment
JP7350830B2 (en) Unfired low carbon maguro brick
JP5578680B2 (en) Carbon-containing refractories
JP2006076863A (en) Magnesia-chrome-boron nitride unfired refractory
JP2014091633A (en) Carbon-containing brick
JP6464831B2 (en) Immersion nozzle for continuous casting and method for continuous casting of steel
JP2004107124A (en) Low-carbon refractory and its manufacturing process
JP2000095556A (en) Magnesia-carbon refractory material
JPH11209169A (en) Firebrick excellent in spalling resistance and bottom of converter
JP2006111501A (en) Method of manufacturing non-fired carbon-containing brick

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170814

R150 Certificate of patent or registration of utility model

Ref document number: 6194257

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250