JP4458409B2 - Method for producing translucent ceramics and translucent ceramics - Google Patents
Method for producing translucent ceramics and translucent ceramics Download PDFInfo
- Publication number
- JP4458409B2 JP4458409B2 JP2003409970A JP2003409970A JP4458409B2 JP 4458409 B2 JP4458409 B2 JP 4458409B2 JP 2003409970 A JP2003409970 A JP 2003409970A JP 2003409970 A JP2003409970 A JP 2003409970A JP 4458409 B2 JP4458409 B2 JP 4458409B2
- Authority
- JP
- Japan
- Prior art keywords
- phase
- temperature
- powder
- mgo
- sintered body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Vessels And Coating Films For Discharge Lamps (AREA)
Description
本発明は、高圧ナトリウムランプ発光管、高温炉の窓、赤外線検出用窓材、耐熱性レンズ等のように、高温下(特に、1000℃以上)での耐久性と、紫外・可視・赤外領域波長の光に対する高い透光性とを必要とする部品の材料として好適な、透光性酸窒化アルミニウムマグネシウム焼結体に関するものである。 In the present invention, durability such as high pressure sodium lamp arc tube, high-temperature furnace window, infrared detection window material, heat-resistant lens, etc., durability at high temperatures (particularly 1000 ° C. or higher), ultraviolet / visible / infrared The present invention relates to a translucent aluminum magnesium oxynitride sintered body that is suitable as a material for parts that require high translucency with respect to light of a region wavelength.
近年、可視および赤外領域波長の光の透光性に優れ、かつ耐熱性や耐摩耗性にも優れた透光性材料に対する要求が高まっている。アルミナに窒化アルミニウムを添加し、高温で焼結すると単一相の酸窒化アルミニウムが得られることが知られている(特許文献1、2、非特許文献1)。酸窒化アルミニウムの結晶構造は、等方性の立方晶構造からなるものであり、この酸窒化アルミニウムを用いると、結晶粒界における複屈折による光散乱がなく、透光性の非常に高い酸窒化アルミニウム焼結体が得られる可能性がある。
これまで、上記酸窒化アルミニウムの均一な焼結体の製造方法として、一旦、酸窒化アルミニウム組成とした原料粉末を製造し、これを窒素中や真空中でホットプレスすることによって、透光性酸窒化アルミニウム焼結体を製造する方法が提案されている。しかし、この方法では、製造工程が複雑であり、高コストである。 Up to now, as a method for producing a uniform sintered body of aluminum oxynitride, a raw material powder once having an aluminum oxynitride composition is produced, and this is hot-pressed in nitrogen or in vacuum, thereby translucent acid. A method for producing an aluminum nitride sintered body has been proposed. However, in this method, the manufacturing process is complicated and expensive.
本発明の課題は、酸窒化アルミニウム相を主成分とする透光性の高い透光性セラミックスを常圧焼結によって得られるようにすることである。 An object of the present invention is to obtain a translucent ceramic having a high translucency mainly composed of an aluminum oxynitride phase by atmospheric pressure sintering.
本発明は、Al2O3およびAlNをモル比率で80〜60%:20〜40%の割合で含有し、かつ平均粒径0.6〜1.2μmのMgO粉末をAl2O3とAlNとの合計量を100重量部としたときに2〜10重量部含有する混合粉末を成形して成形体を得、この成形体を最高温度1950〜2050℃で焼結させ、前記最高温度への昇温時に1500〜1750℃の温度で保持し、少なくとも1700℃から前記最高温度までの昇温速度を0.5〜8℃/分とすることを特徴とする、AlON相を主相とする透光性セラミックスの製造方法に係るものである。
The present invention contains Al 2 O 3 and AlN at a molar ratio of 80 to 60%: 20 to 40%, and MgO powder having an average particle size of 0.6 to 1.2 μm is mixed with Al 2 O 3 and AlN. molding a mixed powder containing 2 to 10 parts by weight when the total amount was 100 parts by weight of the obtained molded body, and sintered the molded body at a maximum temperature of 1950-2050 ° C., to the maximum temperature It is maintained at a temperature of 1500 to 1750 ° C. at the time of temperature increase, and the rate of temperature increase from at least 1700 ° C. to the maximum temperature is 0.5 to 8 ° C./min. The present invention relates to a method for producing a photoceramic.
この方法によれば、酸窒化アルミニウム相を主成分とする透光性の高い透光性セラミックスを常圧焼結によって得ることができる。
透光性セラミックスのうち最も量の多い相はAlON相である必要がある。好ましくはX線回折測定において、AlON相のピーク強度と他の結晶相のピーク強度との合計値を100%としたとき、他の結晶相のピーク強度は10%以下であることが好ましく、5%以下であることが更に好ましい。
According to this method, a translucent ceramic having a high translucency mainly composed of an aluminum oxynitride phase can be obtained by atmospheric pressure sintering.
Of translucent ceramics, the most abundant phase needs to be an AlON phase. Preferably, in the X-ray diffraction measurement, when the total value of the peak intensity of the AlON phase and the peak intensity of the other crystal phase is 100%, the peak intensity of the other crystal phase is preferably 10% or less. % Or less is more preferable.
Al2O3およびAlNの割合は、モル比率で80〜60%:20〜40%の割合とする。これによって酸窒化アルミニウム相を主相として生成させることができる。Al2O3とAlNとの合計量を100重量部としたときにMgO粉末を2〜10重量部添加する。MgO粉末の添加量を2重量部以上とすることによって、結晶粒子径を大きくすることができ、直線透過率が向上する。この観点からは、MgO粉末の添加量を2重量部以上とすることが好ましい。また、MgO粉末の添加量が10重量部を超えると、焼結時の粒内気孔が多く存在し透光性が劣る。
The proportions of Al 2 O 3 and AlN are 80 to 60% and 20 to 40% in terms of molar ratio. Thereby, an aluminum oxynitride phase can be generated as a main phase. When the total amount of Al 2 O 3 and AlN is 100 parts by weight, 2 to 10 parts by weight of MgO powder is added. By making the addition amount of
MgO粉末の平均粒径は0.6〜1.2μmとする。例えば非特許文献1においてはMgO粉末の平均粒径は0.4μmと微細であるが、焼結温度によって直線透過率の変化が非常に大きく、焼結温度による特性変動が大きい。本発明のように若干平均粒径の大きいMgO粉末を使用することで、最終的な焼結体中にAl2O3相が残り易くなり、焼結温度による直線透過率の変化が小さく、従って安定して高い直線透過率を有する焼結体を量産可能となる。 The average particle diameter of MgO powder shall be 0.6-1.2 micrometers. For example, in Non-Patent Document 1, the average particle diameter of MgO powder is as fine as 0.4 μm, but the change in linear transmittance is very large depending on the sintering temperature, and the characteristic variation due to the sintering temperature is large. By using MgO powder having a slightly larger average particle diameter as in the present invention, the Al 2 O 3 phase tends to remain in the final sintered body, and the change in linear transmittance due to the sintering temperature is small. A sintered body having a stable and high linear transmittance can be mass-produced.
成形体の焼結時の最高温度は1950〜2050℃とする。この最高温度を1950℃以上、2050℃以下とすることによって、焼結体の直線透過率を高くすることができる。 The maximum temperature during sintering of the molded body is 1950-2050 ° C. By setting the maximum temperature to 1950 ° C. or more and 2050 ° C. or less, the linear transmittance of the sintered body can be increased.
本発明においては、常圧焼結で少なくとも1700℃から最高温度までの昇温速度を0.5〜8℃/分とする。このように固相反応から燒結までの昇温速度を低くし、反応を緩やかにすることによって、急激な緻密化を抑えながら、粒内気孔を拡散し、結晶粒子を成長させて透光性を高くすることができる。この観点からは、1700℃以上での昇温速度を2℃/分以下とすることが更に好ましい。
In the present invention, the rate of temperature increase from at least 1700 ° C. to the maximum temperature is 0.5-8 ° C./min in normal pressure sintering. In this way, by lowering the rate of temperature rise from the solid-phase reaction to sintering and slowing the reaction, while suppressing rapid densification, it diffuses intra-granular pores and grows crystal grains to increase translucency. Can be high. From this viewpoint, it is more preferable to set the rate of temperature rise at 1700 ° C. or higher to 2 ° C./min or lower.
また、本発明は、前記方法によって得られたことを特徴とする透光性セラミックスに係るものである。この透光性セラミックスは、好ましくはAl2O3相を含有している。特に好ましくは、AlON相とAl2O3相との各ピーク高さの相対比率が、実施例記載の条件で95.0〜99.5:5.0〜0.5である。 The present invention also relates to a translucent ceramic obtained by the above method. This translucent ceramic preferably contains an Al 2 O 3 phase. Particularly preferably, the relative ratio of the peak heights of the AlON phase and the Al 2 O 3 phase is 95.0 to 99.5: 5.0 to 0.5 under the conditions described in the examples.
以下本発明に係る透光性酸窒化アルミニウムマグネシウム焼結体の製造方法について、さらに詳細に説明する。まず、アルミナ粉末、窒化アルミニウム粉末および酸化マグネシウム粉末を所定の配合比で混合して混合粉末を調製する。アルミナ粉末の平均粒径は0.4μm以下であることが好ましく、窒化アルミニウム粉末の平均粒径は0.6μm以下であることが好ましい。酸化マグネシウム粉末の平均粒径は0.6μm以上、1.2μm以下とする。 Hereinafter, the manufacturing method of the translucent aluminum magnesium oxynitride sintered compact concerning this invention is demonstrated in detail. First, a mixed powder is prepared by mixing alumina powder, aluminum nitride powder and magnesium oxide powder at a predetermined blending ratio. The average particle size of the alumina powder is preferably 0.4 μm or less, and the average particle size of the aluminum nitride powder is preferably 0.6 μm or less. The average particle diameter of the magnesium oxide powder is 0.6 μm or more and 1.2 μm or less.
粉末混合方法は限定されない。例えば、エタノール等の溶媒中で各粉末をボールミル中で混合し、得られたスラリーをスプレードライなどの方法によって乾燥して調製することによって、混合状態の良い混合粉末が得られる。 The powder mixing method is not limited. For example, each powder is mixed in a ball mill in a solvent such as ethanol, and the obtained slurry is dried and prepared by a method such as spray drying, whereby a mixed powder having a good mixing state can be obtained.
次に、上記混合粉末を成形し、成形体を得る。この成形方法は限定されない。例えば、金型を用いた一軸加圧成形、ゴム型を用いた冷間等方加圧(CIP)成形を例示できる。上記のようにボールミルを用いて混合した場合には、前記スラリーを、石膏などの多孔質の型に直接に流し込み、混合粉末を型に着肉した後、離型および乾燥することによって、成形体を得ることができる。 Next, the mixed powder is molded to obtain a molded body. This forming method is not limited. For example, uniaxial pressure molding using a mold and cold isostatic pressing (CIP) molding using a rubber mold can be exemplified. When mixed using a ball mill as described above, the slurry is poured directly into a porous mold such as gypsum, and after the mixed powder is placed in the mold, the molded product is released and dried. Can be obtained.
そして、成形体を大気圧あるいは減圧下で所定の最高温度まで昇温させることによって、固相反応および焼結を行わせる。この際、最高温度までゆっくりと昇温することによって、固相反応を生じさせ、次いで焼結を生じさせることができる。最高温度よりも低い温度において一定時間保持することによって、アルミナ粉末、窒化アルミニウム粉末および酸化マグネシウム粉末の固相反応を進行させ、酸窒化アルミニウムマグネシウム(Mg−Al−O−N)相を生成させることができる。この後に保持温度から最高温度へと昇温し、焼結を生じさせる。
Then, the molded body is heated to a predetermined maximum temperature under atmospheric pressure or reduced pressure to cause solid phase reaction and sintering. At this time, by slowly raising the temperature to the maximum temperature, a solid phase reaction can be caused, and then sintering can be caused. By maintaining the temperature at a temperature lower than the maximum temperature for a certain period of time, the solid phase reaction of the alumina powder, the aluminum nitride powder and the magnesium oxide powder proceeds to produce an aluminum magnesium oxynitride (Mg—Al—O—N) phase. Can do. Thereafter, the temperature is raised from the holding temperature to the maximum temperature to cause sintering.
前記保持温度は、1500〜1750℃の温度範囲が好適である。上記保持温度が1750℃を超えると、以降の処理で除去できない閉気孔が焼結体中に残留しやすく、最終製品の透光性を下げるおそれがある。 The holding temperature is preferably in a temperature range of 1500 to 1750 ° C. When the holding temperature exceeds 1750 ° C., closed pores that cannot be removed by the subsequent treatment are likely to remain in the sintered body, which may reduce the translucency of the final product.
固相反応および焼結時の雰囲気ガスには、窒素ガス、水素ガス、又はアルゴンなどの不活性ガスを用いることができる。また、焼結中の成形体の還元を防ぐために、上記窒素ガス等や不活性ガス中に0.1〜5%程度の酸素ガスを混合したガスを用いてもよい。 An inert gas such as nitrogen gas, hydrogen gas, or argon can be used as the atmospheric gas during the solid phase reaction and sintering. Moreover, in order to prevent the reduction | restoration of the molded object during sintering, you may use the gas which mixed about 0.1-5% oxygen gas in the said nitrogen gas etc. or inert gas.
成形体の固相反応が進行すると、更に最高温度へと昇温し、焼結体とする。最高温度での保持時間は3〜10時間が適当である。 When the solid-phase reaction of the molded body proceeds, the temperature is further raised to the maximum temperature to obtain a sintered body. The holding time at the maximum temperature is suitably 3 to 10 hours.
以下のようにして、表1のTー1〜13に示す各例の焼結体を作製した。
(粉末) 具体的には、Al2O3粉末(住友化学株式会社製「AKP−30」:平均粒径0.4μm、AlN粉末(徳山ソーダ株式会社製「FグレードAlN粉末」:平均粒径0.6μm)、およびMgO粉末(宇部マテリアルズ株式会社製「高純度超微紛」:平均粒径1.0μm)を使用した。
The sintered body of each example shown to T-1-13 of Table 1 was produced as follows.
(Powder) Specifically, Al 2 O 3 powder (“AKP-30” manufactured by Sumitomo Chemical Co., Ltd .: average particle size 0.4 μm, AlN powder (“F grade AlN powder” manufactured by Tokuyama Soda Co., Ltd.): average particle size 0.6 μm), and MgO powder (“Upure Materials Co., Ltd.“ High-purity ultrafine powder ”: average particle size 1.0 μm) were used.
(調合条件) 1リットルポリ容器内に径φ5mmのアルミナ玉石1kg(純度99.9%)、前記原料粉末およびエタノール(500cc)を加え、ポットミル中で24時間混合・解砕し(70〜80rpm),調合物を得た。各粉末の混合比率は、表1に示すように変更した。
(溶媒除去・乾燥)
ステンレスバットに調合物を収容し、N2ガス乾燥機内で、1050℃で12時間乾燥した。
(粉砕・篩通し)
乾燥後の調合物を、純度99.9%アルミナ乳鉢を用いて粉砕し、ポリエステル篩(#80)に通した。
(ペレット成形)
ハンドプレスφ20金型に調合物を収容し、圧力200kg/cm2で成形し、ペレット状の成形体を得た。このペレット状成形体を、CIPで2000kg/cm2で加圧した。
(焼成)
図1に模式的に示すようなカーボン製の匣鉢1を準備した。3は匣鉢本体であり、2は蓋である。匣鉢1の寸法は、縦300mm、横300mm、高さ200mmである。匣鉢1内に窒化ホウ素製のルツボ5を収容した。図2に模式的に示すように、ルツボ5の本体7の空間8内に窒化ホウ素粉末9を充填し、窒化ホウ素粉末9内にペレット状成形体10を埋設する。そして窒化ホウ素製の蓋6をする。ルツボの寸法は、直径80mm、高さ70mmである。
(研磨)
各例の焼結体を、厚さ1.2mmになるまで研磨加工し、次いで焼結体の両面を鏡面研磨加工した。
(Mixing conditions) Add 1 kg of alumina cobblestone (purity 99.9%) with a diameter of 5 mm in a 1 liter plastic container, the raw material powder and ethanol (500 cc), mix and disintegrate in a pot mill for 24 hours (70-80 rpm), and mix I got a thing. The mixing ratio of each powder was changed as shown in Table 1.
(Solvent removal / drying)
The preparation was placed in a stainless steel vat and dried at 1050 ° C. for 12 hours in an N 2 gas dryer.
(Crushing and sieving)
The dried formulation was pulverized using an alumina mortar with a purity of 99.9% and passed through a polyester sieve (# 80).
(Pellet molding)
The preparation was housed in a hand press φ20 mold and molded at a pressure of 200 kg / cm 2 to obtain a pellet-shaped molded body. The pellet-like molded body was pressurized with CIP at 2000 kg / cm 2 .
(Baking)
A carbon bowl 1 as schematically shown in FIG. 1 was prepared. 3 is a mortar body, and 2 is a lid. The dimensions of the mortar 1 are 300 mm in length, 300 mm in width, and 200 mm in height. A
(Polishing)
The sintered body of each example was polished until the thickness became 1.2 mm, and then both surfaces of the sintered body were mirror-polished.
表1に示す各例においては、以下のような昇温−焼成−降温スケジュールを採用した。
(T−1、T−2)
室温から2000℃まで10℃/分で昇温し、2000℃で10時間保持した。予備加熱工程は設けていない。
(T−3、T−4)
室温から保持温度1750℃まで10℃/分で昇温し、1750℃で3時間保持し、更に最高温度2050℃まで10℃/分で昇温した。そして2050℃で6時間保持した。
(T−5、6、7、8)
室温から保持温度1700℃まで10℃/分で昇温し、1700℃で1時間保持し、更に最高温度2000℃まで2℃/分で昇温した。そして2000℃10時間保持した。
(T−9、10、11、11)
室温から保持温度1700℃まで10℃/分で昇温し、1700℃で1時間保持し、更に最高温度2050℃まで2℃/分で昇温した。そして2050℃3時間保持した。
(T−13)
室温から保持温度1700℃まで10℃/分で昇温し、1700℃で1時間保持し、更に最高温度2050℃まで1.3℃/分で昇温した。そして2050℃で3時間保持した。
In each example shown in Table 1, the following temperature increase-firing-temperature decrease schedule was adopted.
(T-1, T-2)
The temperature was raised from room temperature to 2000 ° C. at a rate of 10 ° C./min, and kept at 2000 ° C. for 10 hours. There is no preheating step.
(T-3, T-4)
The temperature was raised from room temperature to a holding temperature of 1750 ° C. at 10 ° C./min, held at 1750 ° C. for 3 hours, and further raised to a maximum temperature of 2050 ° C. at 10 ° C./min. And it hold | maintained at 2050 degreeC for 6 hours.
(T-5, 6, 7, 8)
The temperature was raised from room temperature to a holding temperature of 1700 ° C. at 10 ° C./min, held at 1700 ° C. for 1 hour, and further raised to a maximum temperature of 2000 ° C. at 2 ° C./min. And it hold | maintained at 2000 degreeC for 10 hours.
(T-9, 10, 11, 11)
The temperature was raised from room temperature to a holding temperature of 1700 ° C. at 10 ° C./min, held at 1700 ° C. for 1 hour, and further raised to a maximum temperature of 2050 ° C. at 2 ° C./min. And it hold | maintained at 2050 degreeC for 3 hours.
(T-13)
The temperature was raised from room temperature to a holding temperature of 1700 ° C. at 10 ° C./min, held at 1700 ° C. for 1 hour, and further raised to a maximum temperature of 2050 ° C. at 1.3 ° C./min. And it hold | maintained at 2050 degreeC for 3 hours.
得られた各例の焼結体について、以下の特性を測定した。
(生成相)
以下の条件で各焼結体のX線回折チャートを得た。
CuKα、50kV、300mA 、2 θ=10〜70°
回転対陰極型X 線回折装置「理学電機製「RINT」」
この結果、いずれの例においても、AlON相とAl2O3相との各ピークを検出した。更に、各ピークの高さを合計し、ピーク高さの合計値を100%とした。そしてAlON相、Al2O3相の各ピーク高さ比率(%)を測定した。
(粒径)
焼結した試料断面をSEMで粒径サイズを観察した。
(密度、相対密度)
アルキメデス法によって測定した。
(直線透過率)
焼成した試料を13mm×13mm×1.2mmtの寸法に加工し、試料両面をダイヤモンドペーストで鏡面研磨した試料を,直線透過率測定器で波長600nmの透過率を測定した。
The following characteristics were measured for the obtained sintered bodies of the respective examples.
(Generation phase)
An X-ray diffraction chart of each sintered body was obtained under the following conditions.
CuKα, 50kV, 300mA, 2θ = 10-70 °
Rotating anti-cathode X-ray diffractometer "RINT" manufactured by Rigaku Corporation
As a result, in each example, each peak of the AlON phase and the Al2O3 phase was detected. Furthermore, the height of each peak was totaled and the total value of the peak height was set to 100%. And each peak height ratio (%) of the AlON phase and the Al 2 O 3 phase was measured.
(Particle size)
The particle size of the sintered sample cross section was observed by SEM.
(Density, relative density)
Measured by Archimedes method.
(Linear transmittance)
The fired sample was processed into a size of 13 mm × 13 mm × 1.2 mmt, and the sample whose both surfaces were mirror-polished with diamond paste was measured for transmittance at a wavelength of 600 nm with a linear transmittance meter.
比較例のT−1においては、MgOを添加しておらず、2000℃まで10℃/分で昇温し、2000℃で焼結させている。得られた焼結体のX線回折分析を行うと、AlON単相の結晶が得られず、僅かにAl2O3(Corudum)が残存している複合相であった。Al2O3相のピーク高さ比率は2%であった。試料の直線透過率は1%と低かった。本発明外のT−2においては、MgOを3.0重量%添加し、T−1と同じ焼成条件を採用している。得られた焼結体のX線回折分析を行うと、AlON単相の結晶が得られず、僅かにAl2O3 (Corudum)が残存している複合相であった。Al2O3相のピーク高さ比率は1.7%であった。相対密度は96.0%と若干低く、試料の直線透過率は21%に達していた。
In T-1 of the comparative example, MgO is not added, the temperature is increased to 2000 ° C. at 10 ° C./min, and sintering is performed at 2000 ° C. When the X-ray diffraction analysis of the obtained sintered body was performed, AlON single-phase crystals were not obtained, and it was a composite phase in which Al 2 O 3 (Corudum) remained slightly. The peak height ratio of the Al 2 O 3 phase was 2%. The linear transmittance of the sample was as low as 1%. In T-2 outside the present invention, MgO is added in an amount of 3.0% by weight, and the same firing conditions as T-1 are employed. When the X-ray diffraction analysis of the obtained sintered body was performed, AlON single-phase crystals were not obtained, and it was a composite phase in which Al 2 O 3 (Corudum) remained slightly. The peak height ratio of the Al 2 O 3 phase was 1.7%. The relative density was slightly low as 96.0%, and the linear transmittance of the sample reached 21%.
比較例のT−3においては、MgOを添加しておらず、1750℃で3時間保持しており,また2050℃まで10℃/分で昇温している。得られた焼結体のX線回折分析を行うと、AlON単相の結晶が得られず、僅かにAl2O3(Corudum)が残存している複合相であった。Al2O3相のピーク高さ比率は2%であった。試料の直線透過率は1%と低かった。本発明外のT−4においては、MgOを3.0重量%添加し、T−3と同じ条件で焼結している。得られた焼結体のX線回折分析を行うと、AlON単相の結晶が得られず、僅かにAl2O3 (Corudum)が残存している複合相であった。Al2O3相のピーク高さ比率は1.5%であった。相対密度は96.4%と若干低く、試料の直線透過率は9%であった。
In T-3 of the comparative example, MgO was not added, the temperature was maintained at 1750 ° C. for 3 hours, and the temperature was increased to 2050 ° C. at 10 ° C./min. When the X-ray diffraction analysis of the obtained sintered body was performed, AlON single-phase crystals were not obtained, and it was a composite phase in which Al 2 O 3 (Corudum) remained slightly. The peak height ratio of the Al 2 O 3 phase was 2%. The linear transmittance of the sample was as low as 1%. In T-4 outside the present invention, 3.0 wt% of MgO is added and sintered under the same conditions as T-3. When the X-ray diffraction analysis of the obtained sintered body was performed, AlON single-phase crystals were not obtained, and it was a composite phase in which Al 2 O 3 (Corudum) remained slightly. The peak height ratio of the Al 2 O 3 phase was 1.5%. The relative density was slightly low as 96.4%, and the linear transmittance of the sample was 9%.
本発明例のT−5においては、MgOを3.0重量%添加しており、1700℃で1時間保持しており,また2000℃まで2℃/分で昇温している。得られた焼結体のX線回折分析を行うと、AlON単相の結晶が得られず、僅かにAl2O3(Corudum)が残存している複合相であった。Al2O3相のピーク高さ比率は4.3%であった。試料の相対密度は98.5%と高く、試料の直線透過率は41%と高かった。比較例のT−6、7、8においては、MgOを添加しておらず、T−5と同じ条件で焼結している。得られた焼結体のX線回折分析を行うと、AlON単相の結晶が得られず、僅かにAl2O3 (Corudum)が残存している複合相であった。Al2O3相のピーク高さ比率は2.5%であった。試料の相対密度は高いが、比較例の試料T−1、3とほとんど変わらない。これに対して、MgO粉末を添加している本発明例T−2、4、5においては、最高温度への昇温速度が試料の相対密度に対して大きく影響しており、この点で比較例とまったく異なっている。比較例T−6、7、8の直線透過率は、それぞれ、5、2、2%であった。 In T-5 of the example of the present invention, 3.0 wt% of MgO is added, held at 1700 ° C. for 1 hour, and heated up to 2000 ° C. at 2 ° C./min. When the X-ray diffraction analysis of the obtained sintered body was performed, AlON single-phase crystals were not obtained, and it was a composite phase in which Al 2 O 3 (Corudum) remained slightly. The peak height ratio of the Al 2 O 3 phase was 4.3%. The relative density of the sample was as high as 98.5%, and the linear transmittance of the sample was as high as 41%. In Comparative Examples T-6, 7, and 8, MgO was not added, and sintering was performed under the same conditions as T-5. When the X-ray diffraction analysis of the obtained sintered body was performed, AlON single-phase crystals were not obtained, and it was a composite phase in which Al 2 O 3 (Corudum) remained slightly. The peak height ratio of the Al 2 O 3 phase was 2.5%. Although the relative density of the sample is high, it is almost the same as the samples T-1 and 3 of the comparative example. On the other hand, in the present invention examples T-2, 4 and 5 in which MgO powder is added, the temperature increase rate to the maximum temperature has a great influence on the relative density of the sample. It is completely different from the example. The linear transmittances of Comparative Examples T-6, 7, and 8 were 5, 2, and 2%, respectively.
本発明例のT−9においては、MgOを3.0重量%添加しており、1700℃で1時間保持しており,また2050℃まで2℃/分で昇温している。得られた焼結体のX線回折分析を行うと、AlON単相の結晶が得られず、僅かにAl2O3(Corudum)が残存している複合相であった。Al2O3相のピーク高さ比率は4.3%であった。試料の相対密度は99.2%と高く、試料の直線透過率は43%と高かった。比較例のT−10、11、12においては、MgOを添加しておらず、T−9と同じ条件で焼結している。得られた焼結体のX線回折分析を行うと、AlON単相の結晶が得られず、僅かにAl2O3 (Corudum)が残存している複合相であった。試料の相対密度は高いが、比較例の試料T−1、3、6、7、8とほとんど変わらない。比較例T−10、11、12の直線透過率は、それぞれ、5、3、3%であった。比較例の試料T−10、T−11、T−12において、Al2O3相のピーク高さ比率は4.3%、2.5%、2.5%であった。
更に、MgOを3重量%添加したT−9では試料の粒径が大きく、MgO無添加のT−10、11、12では試料の粒径は約1/5まで小さくなった。
In T-9 of the present invention example, 3.0% by weight of MgO was added, held at 1700 ° C. for 1 hour, and increased to 2050 ° C. at 2 ° C./min. When the X-ray diffraction analysis of the obtained sintered body was performed, AlON single-phase crystals were not obtained, and it was a composite phase in which Al 2 O 3 (Corudum) remained slightly. The peak height ratio of the Al 2 O 3 phase was 4.3%. The relative density of the sample was as high as 99.2%, and the linear transmittance of the sample was as high as 43%. In Comparative Examples T-10, 11, and 12, MgO was not added, and sintering was performed under the same conditions as T-9. When the X-ray diffraction analysis of the obtained sintered body was performed, AlON single-phase crystals were not obtained, and it was a composite phase in which Al 2 O 3 (Corudum) remained slightly. Although the relative density of the sample is high, it is almost the same as the samples T-1, 3, 6, 7, and 8 of the comparative example. The linear transmittances of Comparative Examples T-10, 11, and 12 were 5, 3, and 3%, respectively. In Comparative Samples T-10, T-11, and T-12, the Al 2 O 3 phase peak height ratios were 4.3%, 2.5%, and 2.5%.
Furthermore, the particle size of the sample was large in T-9 to which 3% by weight of MgO was added, and the particle size of the sample was reduced to about 1/5 in T-10, 11 and 12 to which MgO was not added.
本発明例のT−13においては、MgOを3.0重量%添加しており、1700℃で1時間保持しており,また2050℃まで1.3℃/分で昇温している。得られた焼結体のX線回折分析を行うと、AlON単相の結晶が得られず、僅かにAl2O3(Corudum)が残存している複合相であった。Al2O3相のピーク高さ比率は4.1%であった。試料の直線透過率は31%と高かった。 In T-13 of the present invention example, 3.0% by weight of MgO was added, held at 1700 ° C. for 1 hour, and increased to 2050 ° C. at 1.3 ° C./min. When the X-ray diffraction analysis of the obtained sintered body was performed, AlON single-phase crystals were not obtained, and it was a composite phase in which Al 2 O 3 (Corudum) remained slightly. The peak height ratio of the Al 2 O 3 phase was 4.1%. The linear transmittance of the sample was as high as 31%.
以上述べたように、本発明によれば、酸窒化アルミニウム相を主成分とする透光性の高い透光性セラミックスを常圧焼結によって得ることができる。 As described above, according to the present invention, a highly transparent translucent ceramic mainly composed of an aluminum oxynitride phase can be obtained by atmospheric pressure sintering.
1 匣鉢 2 蓋 3 匣鉢本体 5 ルツボ 7 ルツボ本体 9 窒化ホウ素粉末 10 成形体
DESCRIPTION OF SYMBOLS 1
Claims (4)
The relative proportion of each peak heights of the AlON phase and the Al 2 O 3 phase is 95.0 to 99.5: characterized in that it is a 5.0 to 0.5, according to claim 3, wherein the translucent ceramics .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003409970A JP4458409B2 (en) | 2003-12-09 | 2003-12-09 | Method for producing translucent ceramics and translucent ceramics |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003409970A JP4458409B2 (en) | 2003-12-09 | 2003-12-09 | Method for producing translucent ceramics and translucent ceramics |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005170703A JP2005170703A (en) | 2005-06-30 |
JP4458409B2 true JP4458409B2 (en) | 2010-04-28 |
Family
ID=34731164
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003409970A Expired - Fee Related JP4458409B2 (en) | 2003-12-09 | 2003-12-09 | Method for producing translucent ceramics and translucent ceramics |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4458409B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008047955A1 (en) * | 2006-10-16 | 2008-04-24 | Industry-Academic Cooperation Foundation, Yeungnam University | Method for manufacturing transparent polycrystalline aluminum oxynitride |
KR20120098118A (en) * | 2011-02-28 | 2012-09-05 | 영남대학교 산학협력단 | Manufacturing method of polycrystalline aluminum oxynitride with improved transparency |
KR101575561B1 (en) | 2015-07-20 | 2015-12-09 | 영남대학교 산학협력단 | Manufacturing Method of Polycrystalline Aluminum Oxynitride with Improved Transparency |
JP6981465B2 (en) * | 2017-03-13 | 2021-12-15 | Agc株式会社 | Translucent ceramic sintered body and its manufacturing method |
CN114133252B (en) * | 2021-12-21 | 2023-04-28 | 厦门钜瓷科技有限公司 | AlON transparent ceramic conformal infrared head cover and preparation method thereof |
CN114538931B (en) * | 2022-03-11 | 2022-11-29 | 北京理工大学 | High-performance AlON transparent ceramic and low-temperature rapid preparation method thereof |
-
2003
- 2003-12-09 JP JP2003409970A patent/JP4458409B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2005170703A (en) | 2005-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5819992B2 (en) | Method for producing polycrystalline aluminum oxynitride with improved transparency | |
CN102875147B (en) | Zirconia ceramic material and preparation method thereof | |
JP4995920B2 (en) | Method for producing transparent polycrystalline aluminum oxynitride | |
CN102596850B (en) | Mullite ceramic and method for producing same | |
US9546114B2 (en) | SiAlON bonded silicon carbide material | |
JP2939535B2 (en) | Manufacturing method of transparent yttrium oxide sintered body | |
JP2008001556A (en) | Translucent rare earth-gallium-garnet sintered compact, its production method, and optical device | |
JP4033451B2 (en) | Translucent rare earth oxide sintered body and method for producing the same | |
JP4458409B2 (en) | Method for producing translucent ceramics and translucent ceramics | |
KR101575561B1 (en) | Manufacturing Method of Polycrystalline Aluminum Oxynitride with Improved Transparency | |
JP4251649B2 (en) | Translucent lutetium oxide sintered body and method for producing the same | |
JP2010126430A (en) | Translucent yag polycrystal body and method of manufacturing the same | |
AU698611B2 (en) | Ceramic production process | |
JP3000685B2 (en) | Translucent yttria sintered body and method for producing the same | |
JP3883106B2 (en) | Translucent scandium oxide sintered body and method for producing the same | |
JP2000203933A (en) | Production of transparent yttrium/aluminum/garnet sintered body by dry mixing method | |
CN109748575A (en) | A kind of graphene ceramic material and preparation method thereof | |
JP2844100B2 (en) | Zirconia refractory and method for producing the same | |
JP2566737B2 (en) | Method for producing translucent aluminum magnesium oxynitride sintered body | |
JP2641149B2 (en) | Manufacturing method of thermal shock resistant ceramics | |
JP4666640B2 (en) | Translucent magnesium oxide sintered body and method for producing the same | |
JP2671539B2 (en) | Method for producing silicon nitride sintered body | |
JP4452810B2 (en) | Manufacturing method of transparent magnesia sintered body | |
JPH04104944A (en) | Al2o3-sic-zro2 composite sinter | |
CN109095933A (en) | A kind of dedicated bending resistance ceramic rod of chilling band and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060825 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090828 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090904 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091006 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100204 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100204 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130219 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |