JP4912544B2 - Low thermal conductivity high rigidity ceramics - Google Patents

Low thermal conductivity high rigidity ceramics Download PDF

Info

Publication number
JP4912544B2
JP4912544B2 JP2001210292A JP2001210292A JP4912544B2 JP 4912544 B2 JP4912544 B2 JP 4912544B2 JP 2001210292 A JP2001210292 A JP 2001210292A JP 2001210292 A JP2001210292 A JP 2001210292A JP 4912544 B2 JP4912544 B2 JP 4912544B2
Authority
JP
Japan
Prior art keywords
thermal conductivity
young
ceramics
high rigidity
modulus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001210292A
Other languages
Japanese (ja)
Other versions
JP2003026470A (en
Inventor
守 石井
真仁 井口
昌子 片岡
真哉 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2001210292A priority Critical patent/JP4912544B2/en
Publication of JP2003026470A publication Critical patent/JP2003026470A/en
Application granted granted Critical
Publication of JP4912544B2 publication Critical patent/JP4912544B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、低熱伝導性で、かつ高剛性なセラミックスに関わるものである。
【0002】
【従来の技術】
近年、高い剛性、寸法安定性、化学的安定性などの特長を利用して、半導体製造装置用、精密機器用、計測機器用などの部品として、各種のセラミックスが使用されるようになってきた。例えば、半導体製造工程の露光装置におけるサセプタ、真空チャック、XYテーブル、ミラー等にはアルミナ、窒化珪素、炭化珪素などのセラミックスが用いられるようになってきている。
【0003】
これらは、高い剛性、寸法安定性、化学的安定性などの特長を利用しているものであるが、一方、半導体検査装置の中には検査部と他の部分との断熱性を確保するために低熱伝導性の素材であって、かつ、高精度を確保するためにたわまず高剛性を有する素材が要求されている。
【0004】
【発明が解決しようとする課題】
アルミナの場合、剛性は高いが、熱伝導率はセラミックスの中でも比較的大きい方であり、こういった断熱性を要求する用途には向かないのが現状である。一方、ジルコニアは優れた断熱性を有するが、焼成の際に約30%も収縮するため、焼成変形を起こしやすいという課題がある。さらに、ジルコニアは難削材であり、精密な形状付与に仕上げる焼結体加工には時間がかかり、コストも高くなるという問題もあった。次に、断熱性に富み、加工性の高いマシナブルセラミックスやガラス材料は剛性が低く、たわみが生じるため、この用途には向かないという課題があった。
本発明は、以上の点に鑑み成されたものであり、従来の技術では不可能であった、低熱伝導性を有するとともに、高いヤング率を示すセラミックスを提供することを目的としたものである。
【0005】
上記した本発明の目的は、ユークリプタイト60〜80体積%とTiO220〜40体積%とからなり、理論密度の95%以上の緻密体であり、室温における熱伝導率が3W/m・K未満であり、かつヤング率が140GPa以上であることを特徴とする低熱伝導高剛性セラミックスによって達成される。
【0006】
また、当該目的は、ユークリプタイト40〜70体積%とZrO230〜60体積%とからなり、理論密度の95%以上の緻密体であり、室温における熱伝導率が3W/m・K未満であり、かつヤング率が140GPa以上であることを特徴とする低熱伝導高剛性セラミックスによっても達成される。
【0007】
【発明の実施の形態】
本発明による低熱伝導高剛性セラミックスは、ユークリプタイトとTiO2またはZrO2との複合セラミックスである。ここで、ユークリプタイトをTiO2との複合化の場合には60〜80体積%、ZrO2との複合化の場合には40〜70体積%含有させる理由は、ユークリプタイトが複合セラミックスの熱伝導を低下させるための重要な成分であるが、ユークリプタイトの量が前記限定した体積%を越えて多いと今度はヤング率が低くなるため好ましくなくなり、逆に、ユークリプタイトの量が前記限定した体積%を越えて少ないと熱伝導性が高くなり好ましくないからである。
【0008】
また、本発明の複合セラミックスはTiO2であれば20〜40体積%、また、ZrO2であれば30〜60体積%の割合で含有するものである。
ここで、前記含有割合未満ではヤング率が低くなるため好ましくなく、前記含有割合を超えると、熱伝導率が大きくなるため好ましくない。また、TiO2の結晶系はルチル型、アナターゼ型いずれでも良い。また、ZrO2はY23、CaO、MgO等で安定化したものが望ましい。
【0009】
本発明のセラミックスは、熱伝導率が低い一方で、ヤング率の低いユークリプタイトと熱伝導率が比較的低いものの、ヤング率の高いTiO2またはZrO2を複合化して得られるものである。従って、セラミックスの断熱性を重視するには、ユークリプタイトの含有量を多くし、ヤング率のほうを重視するのであれば、TiO2またはZrO2の含有量を増やせば良い。
【0010】
本発明の複合セラミックスを作製するには、ユークリプタイト粉末と、TiO2またはZrO2を原料粉末として用意する。用いるユークリプタイト、及び、TiO2、ZrO2粉末は平均粒径0.1〜5μm程度であるのが均一混合されやすく、焼結しやすいので好ましい。また、これら原料中には緻密化を進めるために助剤の役割を果たす不純物、例えばアルカリ並びにアルカリ土類金属酸化物、あるいはそれらの化合物などが含有されていても構わないが、その含有量は焼結して得られた複合セラミックスの5重量%以下、特に2重量%以下が好ましい。なぜなら、これより多いとガラス相が形成されて、ヤング率が低下するため好ましくないからである。
【0011】
各原料を配合し、エタノール、水、トルエン等の溶媒を加え、別々にボールミルなどにより十分に混合し、乾燥して、出発原料粉を得る。得られた出発原料粉を所定形状に所望の成形手段、例えば、金型プレス、ラバープレス、冷間静水圧プレス等により任意の形状に成形後、焼成する。なお、これら乾式成形法の他に、押し出し成形法、鋳込み成形法、射出成形法などを適宜選択することが出来る。
【0012】
焼成は、空気中で1100〜1550℃、好ましくは1200〜1400℃の温度範囲で1〜10時間程度焼結することにより緻密化することができる。
ここで、焼成温度が1100℃よりも低いと緻密化が困難であり、1550℃を越えると成形体が溶融するため好ましくない。
【0013】
以上説明した本発明によれば、理論密度が95%以上と緻密体であり、室温における室温における熱伝導率が3W/m・K未満であり、かつヤング率が140GPa以上という優れた特性を有する複合セラミックスが得られる。
【0014】
以下、本発明の実施例と比較例とを具体的に挙げ、本発明をより詳細に説明するが、本発明はこれらにより何ら制限されるのものではない。
【0015】
(1)複合セラミックスの作製
平均粒径4μmの市販のユークリプタイト粉末と表1に示したTiO2またはZrO2粉末または比較例としてのAl23粉末とを、種々の配合割合となるよう精秤して配合原料とした。この配合原料粉末100重量部にエタノールを100重量部加えて、24時間混合粉砕した後、エバポレーターで乾燥した。得られた混合粉末を金型プレスにて50×50×10mmの大きさになるよう、10MPaで予備成形した上、冷間静水圧プレスにて100MPaの圧力で成形した。次に、成形体を空気中、1350℃で3時間焼成して、複合セラミックスを得た。
【0016】
【表1】

Figure 0004912544
【0017】
(2)評価
得られた複合セラミックスから試験片を切り出し、密度、熱伝導率、ヤング率を測定した。密度はアルキメデス法、熱伝導率はレーザーフラッシュ法(JISR1611「ファインセラミックスのレーザーフラッシュ法による熱拡散率・比熱容量・熱伝導率試験方法」)、ヤング率は共振法(JIS R1602「ファインセラミックスの弾性率試験方法」)を用いて測定した。それらの結果を表2にまとめて示した。(ここで、表中の配合量とは配合物の配合量を体積%で示したものであって、残部はユークリプタイトである。)
【0018】
【表2】
Figure 0004912544
【0019】
表2の結果より、本発明による複合セラミックス(実施例1〜5)はいずれも理論密度が95%以上であり、室温における室温における熱伝導率が3W/m・K未満であり、かつヤング率が140GPa以上であった。これは、比較例1〜3では得ることができない優れた特性を有するものである。
すなわち、熱伝導率はジルコニアの3.1W/m・Kより低く断熱性が高く、ヤング率はマシナブルセラミックスより高剛性であった。したがって、本発明の複合セラミックスであれば、既存のセラミックス材料より加重に対して変形の小さい断熱部材としての適用が可能であることが分かった。
【0020】
【発明の効果】
本発明のセラミックスは、上記したように低熱伝導性を維持しつつ、剛性の高いものである。従って、これにより検査部を断熱しながら効率的に測定を行うことができ、優れた検査精度が得られる。したがって、半導体素子製造の品質と量産性を格段に高めることができた。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to ceramics having low thermal conductivity and high rigidity.
[0002]
[Prior art]
In recent years, various ceramics have come to be used as parts for semiconductor manufacturing equipment, precision equipment, measuring equipment, etc. by utilizing features such as high rigidity, dimensional stability, and chemical stability. . For example, ceramics such as alumina, silicon nitride, and silicon carbide have been used for susceptors, vacuum chucks, XY tables, mirrors, and the like in exposure apparatuses in semiconductor manufacturing processes.
[0003]
These utilize features such as high rigidity, dimensional stability, and chemical stability. On the other hand, in semiconductor inspection equipment, in order to ensure heat insulation between the inspection part and other parts. In addition, a material having a low rigidity and a high rigidity is required to ensure high accuracy.
[0004]
[Problems to be solved by the invention]
In the case of alumina, the rigidity is high, but the thermal conductivity is relatively large among ceramics, so that it is not suitable for applications requiring such heat insulation. On the other hand, zirconia has excellent heat insulating properties, but shrinks as much as about 30% during firing, so that there is a problem that firing deformation is likely to occur. Furthermore, zirconia is a difficult-to-cut material, and there has been a problem that it takes time and costs to process the sintered body to give a precise shape. Next, machinable ceramics and glass materials, which are highly heat-insulating and have high workability, have a problem that they are not suitable for this application because of their low rigidity and deflection.
The present invention has been made in view of the above points, and an object thereof is to provide a ceramic having low thermal conductivity and high Young's modulus, which is impossible with conventional techniques. .
[0005]
An object of the present invention described above, eucryptite 60-80 vol% and Ri Do from the TiO 2 20 to 40 vol%, 95% or more dense body of theoretical density, thermal conductivity at room temperature is 3W / m It is achieved by a low thermal conductivity high rigidity ceramic characterized by being less than K and having a Young's modulus of 140 GPa or more .
[0006]
Furthermore, the object is Yuktobanian descriptor Ri Do from the tight 40-70 vol% and ZrO 2 30 to 60 vol%, 95% or more dense body of theoretical density, thermal conductivity at room temperature is 3W / m · K It is also achieved by a low-heat-conductivity and high-rigidity ceramic characterized by having a Young's modulus of 140 GPa or more .
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The low thermal conductivity high rigidity ceramic according to the present invention is a composite ceramic of eucryptite and TiO 2 or ZrO 2 . Here, 60 to 80% by volume of eucryptite in the case of composite with TiO 2 and 40 to 70% by volume in the case of composite with ZrO 2 are the reason why eucryptite is contained in the composite ceramic. Although it is an important component for lowering heat conduction, if the amount of eucryptite exceeds the limited volume%, the Young's modulus will be lowered this time. This is because if the amount exceeds the limited volume%, the thermal conductivity becomes high, which is not preferable.
[0008]
The composite ceramic of the present invention contains 20 to 40% by volume of TiO 2 and 30 to 60% by volume of ZrO 2 .
Here, if the content is less than the above-described content, the Young's modulus is low, which is not preferable. The crystal system of TiO 2 may be either a rutile type or an anatase type. ZrO 2 is preferably stabilized with Y 2 O 3 , CaO, MgO or the like.
[0009]
The ceramic of the present invention is obtained by combining eucryptite having a low Young's modulus with a low Young's modulus and TiO 2 or ZrO 2 having a high Young's modulus while having a relatively low thermal conductivity. Therefore, in order to emphasize the heat insulating property of ceramics, if the content of eucryptite is increased and the Young's modulus is more important, the content of TiO 2 or ZrO 2 may be increased.
[0010]
In order to produce the composite ceramic of the present invention, eucryptite powder and TiO 2 or ZrO 2 are prepared as raw material powders. The eucryptite and TiO 2 and ZrO 2 powders to be used preferably have an average particle size of about 0.1 to 5 μm because they are easily mixed and easily sintered. In addition, these raw materials may contain impurities that act as auxiliary agents to promote densification, such as alkali and alkaline earth metal oxides, or compounds thereof, but the content is The composite ceramic obtained by sintering is preferably 5% by weight or less, particularly preferably 2% by weight or less. This is because if it is more than this, a glass phase is formed and the Young's modulus is lowered, which is not preferable.
[0011]
Each raw material is blended, a solvent such as ethanol, water, toluene, etc. is added, separately mixed well by a ball mill or the like, and dried to obtain a starting raw material powder. The obtained starting raw material powder is formed into a desired shape by a desired forming means such as a die press, a rubber press, a cold isostatic press and the like, and then fired. In addition to these dry molding methods, extrusion molding methods, cast molding methods, injection molding methods, and the like can be selected as appropriate.
[0012]
Firing can be densified by sintering in air at a temperature of 1100 to 1550 ° C, preferably 1200 to 1400 ° C for about 1 to 10 hours.
Here, if the firing temperature is lower than 1100 ° C., densification is difficult, and if it exceeds 1550 ° C., the molded body is melted, which is not preferable.
[0013]
According to the present invention described above, the theoretical density is 95% or more, a dense body, the thermal conductivity at room temperature at room temperature is less than 3 W / m · K, and the Young's modulus is 140 GPa or more. A composite ceramic is obtained.
[0014]
Hereinafter, although the Example and comparative example of this invention are mentioned concretely and this invention is demonstrated in detail, this invention is not restrict | limited at all by these.
[0015]
(1) Production of composite ceramics Commercial eucryptite powder having an average particle diameter of 4 μm and TiO 2 or ZrO 2 powder shown in Table 1 or Al 2 O 3 powder as a comparative example are mixed in various proportions. It was precisely weighed and used as a blended raw material. 100 parts by weight of ethanol was added to 100 parts by weight of the blended raw material powder, mixed and ground for 24 hours, and then dried with an evaporator. The obtained mixed powder was preformed at 10 MPa so as to have a size of 50 × 50 × 10 mm by a mold press and then molded at a pressure of 100 MPa by a cold isostatic press. Next, the compact was fired in air at 1350 ° C. for 3 hours to obtain a composite ceramic.
[0016]
[Table 1]
Figure 0004912544
[0017]
(2) Evaluation A test piece was cut out from the obtained composite ceramic, and the density, thermal conductivity, and Young's modulus were measured. Density is Archimedes method, thermal conductivity is laser flash method (JISR1611 “Test method of thermal diffusivity, specific heat capacity, thermal conductivity of fine ceramics by laser flash method”), Young's modulus is resonance method (JIS R1602 “elasticity of fine ceramics”) Rate test method "). The results are summarized in Table 2. (Here, the blending amount in the table indicates the blending amount of the blend in volume%, and the balance is eucryptite.)
[0018]
[Table 2]
Figure 0004912544
[0019]
From the results of Table 2, the composite ceramics according to the present invention (Examples 1 to 5) all have a theoretical density of 95% or more, a thermal conductivity at room temperature at room temperature of less than 3 W / m · K, and a Young's modulus. Was 140 GPa or more. This has excellent characteristics that cannot be obtained in Comparative Examples 1 to 3.
That is, the thermal conductivity was lower than 3.1 W / m · K of zirconia and the heat insulation was high, and the Young's modulus was higher than that of machinable ceramics. Therefore, it was found that the composite ceramic of the present invention can be applied as a heat insulating member having a smaller deformation with respect to load than existing ceramic materials.
[0020]
【Effect of the invention】
As described above, the ceramic of the present invention has high rigidity while maintaining low thermal conductivity. Accordingly, it is possible to efficiently perform the measurement while insulating the inspection portion, and excellent inspection accuracy can be obtained. Therefore, the quality and mass productivity of semiconductor device manufacturing can be greatly improved.

Claims (2)

ユークリプタイト60〜80体積%とTiO220〜40体積%とからなり、理論密度の95%以上の緻密体であり、室温における熱伝導率が3W/m・K未満であり、かつヤング率が140GPa以上であることを特徴とする低熱伝導高剛性セラミックス。Eucryptite 60-80 vol% and Ri Do from the TiO 2 20 to 40 vol%, 95% or more dense body of theoretical density, a thermal conductivity of less than 3W / m · K at room temperature, and Young A low-heat-conductivity, high-rigidity ceramic having a rate of 140 GPa or more . ユークリプタイト40〜70体積%とZrO230〜60体積%とからなり、理論密度の95%以上の緻密体であり、室温における熱伝導率が3W/m・K未満であり、かつヤング率が140GPa以上であることを特徴とする低熱伝導高剛性セラミックス。Eucryptite 40-70 vol% and Ri Do from the ZrO 2 30 to 60 vol%, 95% or more dense body of theoretical density, a thermal conductivity of less than 3W / m · K at room temperature, and Young A low-heat-conductivity, high-rigidity ceramic having a rate of 140 GPa or more .
JP2001210292A 2001-07-11 2001-07-11 Low thermal conductivity high rigidity ceramics Expired - Fee Related JP4912544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001210292A JP4912544B2 (en) 2001-07-11 2001-07-11 Low thermal conductivity high rigidity ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001210292A JP4912544B2 (en) 2001-07-11 2001-07-11 Low thermal conductivity high rigidity ceramics

Publications (2)

Publication Number Publication Date
JP2003026470A JP2003026470A (en) 2003-01-29
JP4912544B2 true JP4912544B2 (en) 2012-04-11

Family

ID=19045787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001210292A Expired - Fee Related JP4912544B2 (en) 2001-07-11 2001-07-11 Low thermal conductivity high rigidity ceramics

Country Status (1)

Country Link
JP (1) JP4912544B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7696116B2 (en) 2006-03-23 2010-04-13 Colorado School Of Mines Implementing a pressure-induced phase transformation in beta-eucryptite to impart toughening
ES2362533B1 (en) * 2009-12-21 2012-05-17 Consejo Superior De Investigaciones Cientificas (Csic) COMPOSITE MATERIAL WITH THERMAL EXPANSION COEFFICIENT CONTROLLED WITH OXIDIC MICAS CERAMICS AND THEIR OBTAINING PROCEDURE.
FR2959506B1 (en) * 2010-04-30 2014-01-03 Thales Sa CERAMIC COMPOSITE MATERIAL BASED ON BETA-EUCRYPTITE AND OXIDE AND PROCESS FOR THE PRODUCTION OF SAID MATERIAL
WO2018008379A1 (en) * 2016-07-06 2018-01-11 日本電気硝子株式会社 Composite ceramic powder, sealing material, and composite ceramic powder production method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0829977B2 (en) * 1990-04-05 1996-03-27 岐阜県 High strength / low thermal expansion ceramic and method for manufacturing the same
JP4261631B2 (en) * 1998-03-11 2009-04-30 京セラ株式会社 Manufacturing method of ceramic sintered body
JP4658312B2 (en) * 2000-12-06 2011-03-23 京セラ株式会社 Lithium aluminosilicate ceramics

Also Published As

Publication number Publication date
JP2003026470A (en) 2003-01-29

Similar Documents

Publication Publication Date Title
CN100503507C (en) Low temperature sintered 99 aluminium oxide ceramic and its production method and use
JPS61197464A (en) Manufacture of sintered formed body
JPH07277814A (en) Alumina-based ceramic sintered compact
JPS6117468A (en) Ceramic products
JP2018537387A (en) Sintered zirconia mullite refractory composite, its production method and its use
JP2005314215A (en) Dense cordierite sintered body and method of manufacturing the same
JP4912544B2 (en) Low thermal conductivity high rigidity ceramics
KR20200078759A (en) Manufacturing method of the aluminum titanate ceramics
US4889834A (en) SiC-Al2 O3 composite sintered bodies and method of producing the same
TWI759081B (en) Machinable ceramic composite and method for preparing the same
JPS6077174A (en) Manufacture of silicon nitride sintered body
JP2002167268A (en) Cordierite sintered compact and method of manufacturing it
SE459494B (en) SEATED IN PREPARATION OF CERAMIC COMPOSITES CONTAINING SILICON OXYNITRIDE AND Zirconia Oxide
KR101925215B1 (en) Polycrystal zirconia compounds and preparing method of the same
JP3260340B2 (en) Composite ceramic and method for producing the same
JP2007031269A (en) Machinable glass ceramic and process for production thereof
JP5011609B2 (en) Dense cordierite ceramics and method for producing the same
JP2508511B2 (en) Alumina composite
JP2002160972A (en) High rigidity and low thermal expansion ceramic and its manufacturing method
US20030134737A1 (en) Silicon nitride substances containing sintering additives and sio2, method for producing them and use of the same
JP2961389B2 (en) High strength magnesia sintered body and method for producing the same
JP2002284575A (en) Zirconia composite sintered compact, its manufacturing method and precise machinary part using it
JPH0517210A (en) Production of alumina-based composite sintered body and the sintered body
JP2001058867A (en) Structure part
JPH07172925A (en) Silicon nitride-based sintered compact and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100215

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120118

R150 Certificate of patent or registration of utility model

Ref document number: 4912544

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees