JP2002284575A - Zirconia composite sintered compact, its manufacturing method and precise machinary part using it - Google Patents

Zirconia composite sintered compact, its manufacturing method and precise machinary part using it

Info

Publication number
JP2002284575A
JP2002284575A JP2001090029A JP2001090029A JP2002284575A JP 2002284575 A JP2002284575 A JP 2002284575A JP 2001090029 A JP2001090029 A JP 2001090029A JP 2001090029 A JP2001090029 A JP 2001090029A JP 2002284575 A JP2002284575 A JP 2002284575A
Authority
JP
Japan
Prior art keywords
sintered body
zirconia composite
composite sintered
powder
zirconium phosphate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001090029A
Other languages
Japanese (ja)
Inventor
Toshiyuki Ihara
俊之 井原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001090029A priority Critical patent/JP2002284575A/en
Publication of JP2002284575A publication Critical patent/JP2002284575A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a ceramic having low specific gravity, low thermal expansion coefficient, and high Young's modulus with excellent productivity. SOLUTION: One or more kinds among silicon nitride, boron carbide, and silicon carbide are contained in potassium zirconium phosphate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ジルコニア複合物
焼結体とその製造方法、並びにそれを用いた精密機器用
部品に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zirconia composite sintered body, a method for producing the same, and a component for precision equipment using the same.

【0002】[0002]

【従来の技術】従来より、精密機器用部品には、軽量
で、温度変化にともなう寸法変化や形状変化が小さい、
アルミナや窒化珪素等のセラミックスが多用されてい
た。
2. Description of the Related Art Conventionally, parts for precision equipment are lightweight, and have small dimensional and shape changes due to temperature changes.
Ceramics such as alumina and silicon nitride have been frequently used.

【0003】これらアルミナや窒化珪素等のセラミック
スは、金属に比し比重が3.0〜3.8と小さく軽量
で、かつ室温から80℃における熱膨張係数はそれぞれ
5.2×10-6/℃、1.5×10-6/℃と小さいもの
であった。
[0003] These ceramics such as alumina and silicon nitride have small specific gravities of 3.0 to 3.8 as compared with metals, are lightweight, and have a coefficient of thermal expansion from room temperature to 80 ° C of 5.2 × 10 -6 / cm. ° C and 1.5 × 10 -6 / ° C.

【0004】しかし、さらなる機器の小型化や精密機器
の高精度化にともない、より軽量で低熱膨張性を有する
材料が要求されている。
[0004] However, with further miniaturization of equipment and higher precision of precision equipment, there is a demand for lighter materials having low thermal expansion properties.

【0005】そこで、低熱膨張特性を有するコージェラ
イト系セラミックスを用いることが提案されている。
Therefore, it has been proposed to use cordierite ceramics having low thermal expansion characteristics.

【0006】かかるコージェライト系セラミックスは、
コージェライト粉末あるいはコージェライトを形成する
マグネシア、アルミナ、シリカ粉末を配合、合成し、焼
結助剤としてカルシア、シリカ、マグネシア等を添加
し、所定形状に成形した後、1000〜1400℃の温
度で焼成することによって得られ、得られたコージェラ
イト系セラミックスの比重は2.6〜2.7、熱膨張係
数は0.2×10-6/℃、ヤング率は70〜90GPa
を有していた(特公昭57−3629号、特開平2−2
29760号各公報参照)。
[0006] Such cordierite ceramics are:
After mixing and synthesizing magnesia, alumina, and silica powder to form cordierite powder or cordierite, adding calcia, silica, magnesia, etc. as a sintering aid and molding into a predetermined shape, at a temperature of 1000 to 1400 ° C. The cordierite ceramic obtained by calcination has a specific gravity of 2.6 to 2.7, a coefficient of thermal expansion of 0.2 × 10 −6 / ° C., and a Young's modulus of 70 to 90 GPa.
(Japanese Patent Publication No. 57-3629;
29760).

【0007】また、上記焼結助剤として希土類酸化物を
添加し、所定形状に成形した後、1300〜1350℃
の温度で焼成することによって得られるコージェライト
系セラミックスは、比重が2.7、熱膨張係数が0.5
×10-6/℃、ヤング率が130GPaを有し、精密機
器等の変形対策や固有振動数の向上に期待されている
(特開平11−255557号公報参照)。
Further, after adding a rare earth oxide as a sintering aid and forming it into a predetermined shape,
Has a specific gravity of 2.7 and a thermal expansion coefficient of 0.5.
It has a density of × 10 −6 / ° C. and a Young's modulus of 130 GPa, and is expected to prevent deformation of precision equipment and improve the natural frequency (see JP-A-11-255557).

【0008】[0008]

【発明が解決しようとする課題】近年、精密機器等にお
ける小型軽量化、高精度化が進み、特に、高い位置決め
精度を満たすためには、低熱膨張特性を有するコージェ
ライト系セラミックスが研究されている。
In recent years, miniaturization and precision of precision equipment and the like have progressed, and cordierite ceramics having low thermal expansion characteristics have been studied in order to satisfy particularly high positioning accuracy. .

【0009】しかしながら、従来のコージェライト系セ
ラミックスは、ヤング率が70〜90GPaと低いた
め、精密機器用部品として用いる場合、たわみによる変
形や部材の固有振動数低下に伴う共振発生による誤差の
影響が増加するという欠点を有していた。
However, since the conventional cordierite ceramics have a low Young's modulus of 70 to 90 GPa, when they are used as parts for precision equipment, the influence of errors due to deformation due to deflection and occurrence of resonance due to lowering of the natural frequency of the member is low. It had the disadvantage of increasing.

【0010】また、焼結助剤に希土類元素酸化物を用い
たコージェライト系セラミックスは、比重、熱膨張係数
が小さく、ヤング率も優れているものの、このコージェ
ライト系セラミックスは、焼結温度の幅が50℃程度と
非常に狭いことから、生産性が安定せず、コストがかか
るという欠点を有していた。
Further, cordierite ceramics using a rare earth element oxide as a sintering aid have a small specific gravity, a small coefficient of thermal expansion and an excellent Young's modulus, but the cordierite ceramics have a low sintering temperature. Since the width is as narrow as about 50 ° C., the productivity was not stable and the cost was high.

【0011】本発明は、上述の欠点に鑑み案出されたも
のであり、その目的は比重、熱膨張係数が小さく、高い
ヤング率を有するとともに、生産性の安定したセラミッ
クスを提供する。
The present invention has been made in view of the above-mentioned drawbacks, and has as its object to provide a ceramic which has a low specific gravity, a low coefficient of thermal expansion, a high Young's modulus and a stable productivity.

【0012】[0012]

【課題を解決するための手段】本発明は、リン酸ジルコ
ニウムカリウムに、窒化珪素、炭化ホウ素、炭化珪素の
うち少なくとも1種を含有させることを特徴とするもの
である。
SUMMARY OF THE INVENTION The present invention is characterized in that potassium zirconium phosphate contains at least one of silicon nitride, boron carbide and silicon carbide.

【0013】また、本発明は、上記リン酸ジルコニウム
カリウム100重量部に対して上記窒化珪素、炭化ホウ
素、炭化珪素のうち少なくとも1種を20〜70重量部
含有していることを特徴とするものである。
Further, the present invention is characterized in that at least one of silicon nitride, boron carbide and silicon carbide is contained in an amount of 20 to 70 parts by weight based on 100 parts by weight of the potassium zirconium phosphate. It is.

【0014】さらに、本発明のジルコニア複合物焼結体
は、粒径1μm以下のリン酸ジルコニウムカリウム粉末
に、窒化珪素、炭化ホウ素、炭化珪素のうち少なくとも
一種の粉末を添加、混合した後、得られた粉末を加圧成
形し、酸素分圧0.01MPa以下の雰囲気中、140
0〜1600℃の温度で焼成する工程からなることを特
徴とするものである。
Further, the zirconia composite sintered body of the present invention is obtained by adding and mixing at least one powder of silicon nitride, boron carbide and silicon carbide to potassium zirconium phosphate powder having a particle size of 1 μm or less. The obtained powder is subjected to pressure molding, and in an atmosphere having an oxygen partial pressure of 0.01 MPa or less, 140
And baking at a temperature of 0 to 1600 ° C.

【0015】またさらに、本発明は、精密機器用部品を
上記ジルコニア複合物を用いて形成することを特徴とす
るものである。
Still further, the present invention is characterized in that a component for precision equipment is formed using the zirconia composite.

【0016】本発明のジルコニア複合物焼結体によれ
ば、リン酸ジルコニウムカリウムに、窒化珪素、炭化ホ
ウ素、炭化珪素のうち少なくとも1種が含有することか
ら、比重、熱膨張係数が小さく、高ヤング率とすること
ができる。
According to the zirconia composite sintered body of the present invention, since specific potassium zirconium phosphate contains at least one of silicon nitride, boron carbide and silicon carbide, the specific gravity and the coefficient of thermal expansion are small and high. It can be a Young's modulus.

【0017】また、上記リン酸ジルコニウムカリウム1
00重量部に対して、上記窒化珪素、炭化ホウ素、炭化
珪素のうち少なくとも1種を20〜70重量部含有する
ことから、熱的安定性を備え、よりヤング率を向上させ
ることができる。
The above-mentioned potassium zirconium phosphate 1
Since at least one of silicon nitride, boron carbide and silicon carbide is contained in an amount of 20 to 70 parts by weight with respect to 00 parts by weight, thermal stability is provided and the Young's modulus can be further improved.

【0018】さらに、本発明のジルコニア複合物焼結体
は、粒径1μm以下のリン酸ジルコニウムカリウム粉末
に、窒化珪素、炭化ホウ素、炭化珪素のうち少なくとも
一種の粉末を添加、混合した後、得られた粉末を加圧成
形し、酸素分圧0.01MPa以下の雰囲気中、140
0〜1600℃の温度で焼成する工程からなることか
ら、熱的安定性と高ヤング率を有するとともに、クラッ
クの発生を抑制し、気孔占有率の低い、高強度なジルコ
ニア複合物焼結体を得ることができる。
Further, the zirconia composite sintered body of the present invention is obtained by adding and mixing at least one powder of silicon nitride, boron carbide and silicon carbide to potassium zirconium phosphate powder having a particle size of 1 μm or less. The obtained powder is subjected to pressure molding, and in an atmosphere having an oxygen partial pressure of 0.01 MPa or less, 140
Since it comprises the step of firing at a temperature of 0 to 1600 ° C., it has high thermal stability and high Young's modulus, suppresses the occurrence of cracks, and has a low porosity and a high strength zirconia composite sintered body. Obtainable.

【0019】またさらに、本発明のジルコニア複合物焼
結体は、温度変化に対して寸法安定性に優れ、変形・振
動の影響を極めて少なくし、高精度な精密機器用部品と
して好適に使用することができる。
Furthermore, the zirconia composite sintered body of the present invention is excellent in dimensional stability against temperature changes, has very little influence of deformation and vibration, and is suitably used as a high-precision component for precision equipment. be able to.

【0020】[0020]

【発明の実施の形態】本発明は、リン酸ジルコニウムカ
リウムに、窒化珪素、炭化ホウ素、炭化珪素のうち少な
くとも1種を含有させることにより、比重、熱膨張係数
が小さく、且つ高いヤング率を有するジルコニア複合物
焼結体を得るものである。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention has a low specific gravity, a low coefficient of thermal expansion and a high Young's modulus by adding at least one of silicon nitride, boron carbide and silicon carbide to potassium zirconium phosphate. This is to obtain a zirconia composite sintered body.

【0021】上記リン酸ジルコニウムカリウムは、酸化
カリウム(K2O)、ジルコニア(ZrO2)および酸化
リン(P25)を重量比率でK2O:ZrO2:P25
1:4:3に配合することによって得られ、化学式でK
Zr2(PO4)3で示される。このリン酸ジルコニウムカ
リウムは、比重3.2、熱膨張係数−2.7〜−2.5
×10-6/℃、ヤング率120〜130GPaの材料特
性を有し、該リン酸ジルコニウムカリウムに窒化珪素、
炭化ホウ素、炭化珪素のうち少なくとも1種を含有させ
ることによって、比重、熱膨張係数が小さく、高いヤン
グ率を有するジルコニア複合物を得ることができる。
The potassium zirconium phosphate is obtained by mixing potassium oxide (K 2 O), zirconia (ZrO 2 ) and phosphorus oxide (P 2 O 5 ) in a weight ratio of K 2 O: ZrO 2 : P 2 O 5 =
1: 4: 3, and the chemical formula
It is represented by Zr 2 (PO 4 ) 3 . This potassium zirconium phosphate has a specific gravity of 3.2 and a thermal expansion coefficient of -2.7 to -2.5.
× 10 −6 / ° C., having a material property of Young's modulus of 120 to 130 GPa.
By containing at least one of boron carbide and silicon carbide, a zirconia composite having a small specific gravity and a small coefficient of thermal expansion and having a high Young's modulus can be obtained.

【0022】これは、セラミックスの複合では、材料特
性は配合比率に則った値を示すためであり、上記リン酸
ジルコニウムカリウムに、窒化珪素(比重3.0、熱膨
張係数1.5〜2.0×10-6/℃、ヤング率300G
Pa)、炭化ホウ素(比重3.5、熱膨張係数2.0〜
3.0×10-6/℃、ヤング率450GPa)、炭化珪
素(比重3.1、熱膨張係数2.0〜3.0×10-6
℃、ヤング率400GPa)を含有させることによっ
て、比重を2.8〜3.2、熱膨張係数を−1.5×1
-6〜1.5×10-6/℃、ヤング率を145〜230
GPaとすることができる。
This is because, in the composite of ceramics, the material properties show values in accordance with the compounding ratio. The potassium zirconium phosphate is added to silicon nitride (specific gravity 3.0, thermal expansion coefficient 1.5 to 2. 0 × 10 -6 / ° C, Young's modulus 300G
Pa), boron carbide (specific gravity 3.5, coefficient of thermal expansion 2.0 to
3.0 × 10 −6 / ° C., Young's modulus 450 GPa), silicon carbide (specific gravity 3.1, coefficient of thermal expansion 2.0 to 3.0 × 10 −6 /)
° C, Young's modulus 400 GPa), the specific gravity is 2.8 to 3.2, and the thermal expansion coefficient is -1.5 × 1.
0 -6 to 1.5 × 10 -6 / ° C, Young's modulus is 145 to 230
GPa.

【0023】また、上記窒化珪素、炭化ホウ素、炭化珪
素の中から選ばれる少なくとも1種は、その含有量がリ
ン酸ジルコニウム100重量部に対して20〜70重量
部であることが好ましい。この含有量が20重量部未満
となると、得られたジルコニア複合物のヤング率が低下
する恐れがあり、一方、70重量部を超えると、ジルコ
ニア複合物焼結体の緻密化が困難となる。したがって、
窒化珪素、炭化ホウ素、炭化珪素の中から選ばれる少な
くとも1種は、その含有量を20〜70重量部、さらに
は25〜60重量部とすることが好ましい。
The content of at least one selected from the group consisting of silicon nitride, boron carbide and silicon carbide is preferably 20 to 70 parts by weight based on 100 parts by weight of zirconium phosphate. If the content is less than 20 parts by weight, the Young's modulus of the obtained zirconia composite may decrease, while if it exceeds 70 parts by weight, it becomes difficult to densify the zirconia composite sintered body. Therefore,
The content of at least one selected from silicon nitride, boron carbide and silicon carbide is preferably 20 to 70 parts by weight, more preferably 25 to 60 parts by weight.

【0024】なお、ジルコニア複合物焼結体中の窒化珪
素、炭化ホウ素、炭化珪素の含有量は、蛍光X線分析に
より測定できる。
The contents of silicon nitride, boron carbide and silicon carbide in the zirconia composite sintered body can be measured by X-ray fluorescence analysis.

【0025】上記のような構成に基き、ジルコニア複合
物焼結体の比重を2.8〜3.2、室温から80℃にお
ける熱膨張係数が−1.3×10-6〜1.3×10-6
℃、ヤング率を150GPa以上とすることができ、よ
り比重、熱膨張係数が低く、高いヤング率を有するとと
もに、緻密で高強度なジルコニア複合物焼結体を得るこ
とができる。
Based on the above structure, the specific gravity of the zirconia composite sintered body is 2.8 to 3.2, and the coefficient of thermal expansion from room temperature to 80 ° C. is −1.3 × 10 −6 to 1.3 ×. 10 -6 /
C. and a Young's modulus of 150 GPa or more, and a dense, high-strength zirconia composite sintered body having a lower specific gravity, a lower coefficient of thermal expansion, a higher Young's modulus, and the like can be obtained.

【0026】次に、本発明のジルコニア複合物焼結体の
製造方法を説明する。
Next, a method for producing the zirconia composite sintered body of the present invention will be described.

【0027】先ず、比表面積10〜11m2/g、粒径
0.9〜1.1μmのジルコニア粉末、比表面積1〜2
2/g、粒径2〜3μmのリン酸二水素アンモニウム
粉末、及び比表面積1〜2m2/g、粒径2〜4μmの
炭酸カリウム粉末を組成比がK2O・4ZrO2・3P2
5となるように所定量配合する。
First, zirconia powder having a specific surface area of 10 to 11 m 2 / g and a particle size of 0.9 to 1.1 μm,
m 2 / g, ammonium dihydrogen phosphate powder having a particle size of 2 to 3 μm, and potassium carbonate powder having a specific surface area of 1 to 2 m 2 / g, and a particle size of 2 to 4 μm, the composition ratio of which is K 2 O.4ZrO 2 .3P 2
A predetermined amount is blended so as to be O 5 .

【0028】次いで、上記配合された粉末をボールミル
で混合し、200℃、900℃と段階的に加熱した後、
最終的に1400℃で4時間焼成し、リン酸ジルコニウ
ムカリウム原料粉末を得る。
Next, the above blended powder is mixed in a ball mill and heated stepwise at 200 ° C. and 900 ° C.
Finally, it is fired at 1400 ° C. for 4 hours to obtain a potassium zirconium phosphate raw material powder.

【0029】得られたリン酸ジルコニウムカリウム原料
粉末をボールミルで粒径1μm以下の微粉に粉砕し、得
られた微粉のリン酸ジルコニウムカリウム100重量部
に対して、酸化マグネシウムや酸化亜鉛等の焼結助剤を
2〜5重量部と、窒化珪素、炭化ホウ素、炭化珪素のう
ち少なくとも1種を所定の割合で添加、混合する。
The obtained potassium zirconium phosphate raw material powder is pulverized by a ball mill into fine powder having a particle size of 1 μm or less, and sintering of magnesium oxide, zinc oxide or the like is performed with respect to 100 parts by weight of the obtained fine powder of potassium zirconium phosphate. 2 to 5 parts by weight of an auxiliary agent and at least one of silicon nitride, boron carbide and silicon carbide are added and mixed in a predetermined ratio.

【0030】なお、得られる焼結体にマイクロクラック
が生じるのを防止するため、原料の混合には粉砕装置を
用いて混合した粉末の粒子径を1μm以下としておくこ
とが好ましい。
In order to prevent the occurrence of microcracks in the obtained sintered body, it is preferable to mix the raw materials with a pulverizer to reduce the particle diameter of the mixed powder to 1 μm or less.

【0031】しかる後、上記混合粉末を例えば、金型プ
レス、鋳込み成形、冷間静水圧成形、押し出し成形等に
よって、所望の形状に成形し、該成形体を脱脂した後、
酸素分圧0.01MPa以下の低酸素雰囲気中、140
0〜1600℃の温度で焼成する。
Thereafter, the mixed powder is formed into a desired shape by, for example, die pressing, casting, cold isostatic pressing, extrusion, or the like.
In a low oxygen atmosphere with an oxygen partial pressure of 0.01 MPa or less, 140
Baking at a temperature of 0 to 1600 ° C.

【0032】なお、上記焼成温度は、1400〜160
0℃の範囲にすることによって、気孔占有率を低下さ
せ、緻密で高強度な焼結体を得ることができるとともに
焼結温度幅が大きいため安定した生産性を有する。該焼
成温度が、1400℃未満となると、焼結体の気孔占有
率が0.2%を超え、一方、1600℃を超えると、リ
ン酸ジルコニウムとジルコニアの反応によってジルコン
が生成され、ジルコニアの相変態による応力緩和作用に
よって強度の低下を招く恐れがあるためである。従っ
て、上記焼成温度は1400〜1600℃、さらに14
50〜1580℃の範囲とすることが好ましい。
The firing temperature is 1400-160.
By setting the temperature in the range of 0 ° C., the pore occupancy can be reduced, and a dense and high-strength sintered body can be obtained. When the firing temperature is lower than 1400 ° C., the pore occupancy of the sintered body exceeds 0.2%. On the other hand, when the firing temperature exceeds 1600 ° C., zircon is generated by the reaction between zirconium phosphate and zirconia, and the zirconia phase is formed. This is because there is a possibility that the strength may be reduced by the stress relaxation effect due to the transformation. Therefore, the firing temperature is 1400-1600 ° C.,
The temperature is preferably in the range of 50 to 1580 ° C.

【0033】また、焼成時の雰囲気は、酸素分圧0.0
1MPa以下の低酸素雰囲気であることが好ましく、例
えば、窒素雰囲気、窒素・酸素混合雰囲気、アルゴン等
の不活性ガス雰囲気、真空雰囲気、カーボンや非酸化物
粉末中に成形体全体を埋めて焼成する埋め焼き等によっ
て、緻密な焼結体を得ることができる。上記酸素分圧が
0.01MPaを超えると、焼結体の気孔占有率が著し
く増加するため、酸素分圧0.01MPa以下、さらに
0.005MPa以下、0.001MPa以下が好まし
い。
The atmosphere during the firing is an oxygen partial pressure of 0.0
The atmosphere is preferably a low oxygen atmosphere of 1 MPa or less, for example, a nitrogen atmosphere, a nitrogen / oxygen mixed atmosphere, an inert gas atmosphere such as argon, a vacuum atmosphere, or a method in which the entire molded body is buried in carbon or non-oxide powder and fired. A dense sintered body can be obtained by burying or the like. If the oxygen partial pressure exceeds 0.01 MPa, the occupancy of pores in the sintered body increases significantly. Therefore, the oxygen partial pressure is preferably 0.01 MPa or less, more preferably 0.005 MPa or less, and 0.001 MPa or less.

【0034】このような低酸素濃度雰囲気中での低温焼
成により、ジルコニア複合物焼結体の気孔占有率を0.
2%以下、曲げ強度を150MPa以上及び破壊靱性を
2.0MPa・√m以上の緻密で、欠陥や溶融の少ない
ジルコニア複合物を得ることができ、表面のチッピング
を顕著に抑制して焼結体の表面の平滑性が向上し、鏡面
状態が得られやすくなる。
By firing at a low temperature in such a low oxygen concentration atmosphere, the porosity of the zirconia composite sintered body is reduced to 0.1%.
It is possible to obtain a zirconia composite having a density of 2% or less, a bending strength of 150 MPa or more, and a fracture toughness of 2.0 MPa · √m or more and a small number of defects and melting. The surface smoothness is improved, and a mirror surface state is easily obtained.

【0035】上述のように得られたジルコニア複合物焼
結体は、比重が2.8〜3.2、熱膨張係数が−1.5
〜1.5×10-6/℃と低く、ヤング率が145GPa
以上の高い値を有することから、軽量化が可能となり、
熱変形が極めて小さく、温度変化に対して寸法安定性に
優れ、変形、振動の影響が極めて少ないため、精密な位
置決め精度を必要とするスペーサー、3次元測定器のコ
ラム、支柱等の精密機器用部品として好適に用いること
ができる。
The zirconia composite sintered body obtained as described above has a specific gravity of 2.8 to 3.2 and a thermal expansion coefficient of -1.5.
~ 1.5 × 10 -6 / ° C, Young's modulus is 145 GPa
Since it has the above high value, weight reduction becomes possible,
Extremely small thermal deformation, excellent dimensional stability against temperature changes, and extremely little influence of deformation and vibration, for precision equipment such as spacers, columns and columns of three-dimensional measuring instruments that require precise positioning accuracy It can be suitably used as a part.

【0036】また、緻密で、平滑な焼結体表面と高い破
壊靱性、曲げ強度を有することから、例えば、格子状の
構造体のような複雑形状の構造材量としての応用範囲が
広がり、製品の設計自由度が増し、軽量化、中空化等の
省力化・省スペース化が可能となる。
In addition, since it has a dense and smooth sintered body surface and high fracture toughness and bending strength, the range of application as a structural material having a complicated shape such as a lattice-like structure is widened, and The degree of freedom of design is increased, and labor and space savings such as weight reduction and hollowing are possible.

【0037】なお、本発明のジルコニア複合物焼結体
は、上述の実施形態に限定されるものではなく、本発明
の要旨を逸脱しない範囲であれば種々の変更は可能であ
る。
The zirconia composite sintered body of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the gist of the present invention.

【0038】[0038]

【実施例】先ず、比表面積10m2/g、粒径0.9μ
mのジルコニア粉末、比表面積1.5m2/g、粒径3
μmのリン酸二水素アンモニウム粉末、及び比表面積
1.2m2/g、粒径4μmの炭酸カリウム粉末を組成
比がK2O・4ZrO2・3P25となるように所定量配
合し、ボールミルで混合した後、200℃、900℃と
段階的に加熱した後、最終的に1400℃で4時間焼成
してリン酸ジルコニウムカリウム原料粉末を得る。
EXAMPLE First, the specific surface area was 10 m 2 / g, and the particle size was 0.9 μm.
m zirconia powder, specific surface area 1.5 m 2 / g, particle size 3
A predetermined amount of μm ammonium dihydrogen phosphate powder and potassium carbonate powder having a specific surface area of 1.2 m 2 / g and a particle size of 4 μm are blended so that the composition ratio becomes K 2 O.4ZrO 2 .3P 2 O 5 , After mixing in a ball mill, the mixture is heated stepwise to 200 ° C. and 900 ° C., and finally fired at 1400 ° C. for 4 hours to obtain a potassium zirconium phosphate raw material powder.

【0039】次に、得られたリン酸ジルコニウムカリウ
ム原料粉末をボールミルで粒径0.3〜1μmの微粉に
粉砕し、この微粉に表1に示す如く割合で窒化珪素(S
34)、炭化ホウ素(B4C)、炭化珪素(SiC)
の中から選ばれる少なくとも1種と、酸化亜鉛(Zn
O)または酸化マグネシウム(MgO)の焼結助剤を配
合し、振動ミルにより72時間混合してジルコニア複合
物粉末を得た。造粒後、乾式プレス成形により抗折試験
片形状の成形体を得た。
Next, the obtained potassium zirconium phosphate raw material powder was pulverized by a ball mill into fine powder having a particle size of 0.3 to 1 μm, and this fine powder was mixed with silicon nitride (S) at a ratio shown in Table 1.
i 3 N 4 ), boron carbide (B 4 C), silicon carbide (SiC)
And at least one selected from the group consisting of zinc oxide (Zn
A sintering aid of O) or magnesium oxide (MgO) was blended and mixed for 72 hours by a vibration mill to obtain a zirconia composite powder. After the granulation, a compact in the shape of a bending test specimen was obtained by dry press molding.

【0040】また、比較例として、上記リン酸ジルコニ
ウムカリウム原料粉末に焼結助剤のみを配合した成形体
も準備した。
As a comparative example, a compact was prepared by mixing only the sintering aid with the above-mentioned potassium zirconium phosphate raw material powder.

【0041】しかる後、各成形体を表1に示す如く焼成
条件にて焼成し、焼結体の特性を評価した。
Thereafter, each compact was fired under the firing conditions shown in Table 1, and the characteristics of the sintered body were evaluated.

【0042】なお、比重はアルキメデス法で、熱膨張係
数はJIS R 1618(1994)に準じ測定し、
ヤング率はJIS R 1602(1995)に準じ測
定した。また、気孔占有率は上記焼結体の任意の一表面
を鏡面に加工した後、その鏡面を200倍で観察し、観
察面積に対する気孔面積の比率で表し、気孔面積は気孔
を円と仮定して算出し、曲げ強度はJIS R 160
1(1995)に準じ4点曲げ試験法で、破壊靱性はJ
IS R 1607(1995)に準じIF法で評価し
た。
The specific gravity was measured by Archimedes' method, and the coefficient of thermal expansion was measured according to JIS R 1618 (1994).
The Young's modulus was measured according to JIS R 1602 (1995). Further, the pore occupancy ratio is obtained by processing any one surface of the sintered body into a mirror surface, observing the mirror surface at a magnification of 200 times, and expressing the ratio of the pore area to the observation area, and assuming that the pore area is a circle. The bending strength is calculated according to JIS R 160
1 (1995), the four-point bending test method, and the fracture toughness
It was evaluated by the IF method according to IS R 1607 (1995).

【0043】その結果を表1に示す。Table 1 shows the results.

【0044】[0044]

【表1】 [Table 1]

【0045】表1からわかるように、リン酸ジルコニウ
ムカリウムに窒化珪素、炭化ホウ素、炭化珪素の中から
選ばれる少なくとも1種を含有した本発明の試料(N
o.1〜35)は、比重3.2以下、熱膨張係数−1.
5×10-6〜1.5×10-6/℃、ヤング率145GP
a以上を有し、また、気孔占有率0.1%以下、4点曲
げ強度150MPa以上、破壊靱性が2.0MPa・√
m以上と、低い比重、熱膨張係数、高いヤング率を有す
るとともに、緻密で高強度な焼結体を得ることができ
た。
As can be seen from Table 1, the sample of the present invention in which potassium zirconium phosphate contains at least one selected from silicon nitride, boron carbide and silicon carbide (N
o. 1 to 35) have a specific gravity of 3.2 or less and a thermal expansion coefficient of -1.
5 × 10 -6 to 1.5 × 10 -6 / ° C, Young's modulus 145GP
a, a pore occupancy of 0.1% or less, a four-point bending strength of 150 MPa or more, and a fracture toughness of 2.0 MPa · √.
m and a low specific gravity, a coefficient of thermal expansion, a high Young's modulus, and a dense and high-strength sintered body could be obtained.

【0046】特に、窒化珪素、炭化ホウ素、炭化珪素の
含有量の合計が、リン酸ジルコニウムカリウム100重
量%に対して、20〜70重量%である試料(No.2
〜14、17〜22、25〜32、34、35)は、熱
膨張係数が−1.3×10-6〜1.3×10-6/℃、ヤ
ング率が150GPa以上と、より熱膨張係数が低く、
高いヤング率を有することが判った。
Particularly, a sample (No. 2) in which the total content of silicon nitride, boron carbide and silicon carbide is 20 to 70% by weight based on 100% by weight of potassium zirconium phosphate.
, 14, 17 to 22, 25 to 32, 34, and 35) have a thermal expansion coefficient of −1.3 × 10 −6 to 1.3 × 10 −6 / ° C. and a Young's modulus of 150 GPa or more. Coefficient is low,
It was found to have a high Young's modulus.

【0047】これに対し、窒化珪素、炭化ホウ素、炭化
珪素のいずれも含有しない試料(No.36)は、熱膨
張係数が−2.6×10-6/℃、ヤング率が127GP
aと著しく低いことが判った。
On the other hand, the sample containing no silicon nitride, boron carbide or silicon carbide (No. 36) has a coefficient of thermal expansion of -2.6 × 10 −6 / ° C. and a Young's modulus of 127 GP.
a was found to be extremely low.

【0048】[0048]

【発明の効果】本発明のジルコニア複合物焼結体によれ
ば、リン酸ジルコニウムカリウムに、窒化珪素、炭化ホ
ウ素、炭化珪素のうち少なくとも1種を含有させたこと
から、比重、熱膨張係数が低く、高いヤング率を有する
焼結体を得ることができる。
According to the zirconia composite sintered body of the present invention, the specific gravity and the coefficient of thermal expansion are increased because potassium zirconium phosphate contains at least one of silicon nitride, boron carbide and silicon carbide. A sintered body having a low and high Young's modulus can be obtained.

【0049】また、本発明のジルコニア複合物焼結体に
よれば、上記リン酸ジルコニウムカリウム100重量部
に対して、上記窒化珪素、炭化ホウ素、炭化珪素のうち
少なくとも1種を20〜70重量部含有していることか
ら、より一層熱膨張係数が低く、高いヤング率を有する
ことができる。
According to the zirconia composite sintered body of the present invention, at least one of silicon nitride, boron carbide, and silicon carbide is added in an amount of 20 to 70 parts by weight based on 100 parts by weight of the potassium zirconium phosphate. Due to the inclusion, the thermal expansion coefficient can be further reduced and a high Young's modulus can be obtained.

【0050】さらに、本発明のジルコニア複合物焼結体
は、粒径1μm以下のリン酸ジルコニウムカリウム粉末
に、窒化珪素、炭化ホウ素、炭化珪素のうち少なくとも
一種の粉末を添加、混合した後、得られた粉末を加圧成
形し、酸素分圧0.01MPa以下の雰囲気で、140
0〜1600℃の温度で焼成する工程からなることか
ら、緻密で、高い強度、破壊靭性を有する焼結体を得る
ことができる。
Further, the zirconia composite sintered body of the present invention is obtained by adding and mixing at least one powder of silicon nitride, boron carbide and silicon carbide to potassium zirconium phosphate powder having a particle size of 1 μm or less. The powder thus obtained was pressed and formed under an atmosphere having an oxygen partial pressure of 0.01 MPa or less.
Since it comprises the step of firing at a temperature of 0 to 1600 ° C., a dense sintered body having high strength and fracture toughness can be obtained.

【0051】またさらに、精密機器用部品として上記ジ
ルコニア複合物焼結体を用いることから、軽量化が可能
で、温度変化に対する寸法安定性に優れ、変形、振動の
影響が極めて少ないため、精密な位置決め精度を達成す
ることができる。
Further, since the zirconia composite sintered body is used as a component for precision equipment, it is possible to reduce the weight, to have excellent dimensional stability against temperature changes, and to minimize the influence of deformation and vibration. Positioning accuracy can be achieved.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】リン酸ジルコニウムカリウムに、窒化珪
素、炭化ホウ素、炭化珪素のうち少なくとも1種を含有
させたジルコニア複合物焼結体。
1. A zirconia composite sintered body in which potassium zirconium phosphate contains at least one of silicon nitride, boron carbide and silicon carbide.
【請求項2】上記リン酸ジルコニウムカリウム100重
量部に対して、上記窒化珪素、炭化ホウ素、炭化珪素の
うち少なくとも1種を20〜70重量部含有しているこ
とを特徴とする請求項1に記載のジルコニア複合物焼結
体。
2. The method according to claim 1, wherein at least one of silicon nitride, boron carbide and silicon carbide is contained in an amount of 20 to 70 parts by weight based on 100 parts by weight of the potassium zirconium phosphate. The zirconia composite sintered body according to the above.
【請求項3】粒径1μm以下のリン酸ジルコニウムカリ
ウム粉末に、窒化珪素、炭化ホウ素、炭化珪素のうち少
なくとも一種の粉末を添加、混合した後、得られた粉末
を加圧成形し、酸素分圧0.01MPa以下の雰囲気
で、1400〜1600℃の温度で焼成する工程からな
る請求項1または2に記載のジルコニア複合物焼結体の
製造方法。
3. Addition and mixing of at least one powder of silicon nitride, boron carbide, and silicon carbide to potassium zirconium phosphate powder having a particle size of 1 μm or less, followed by compression molding of the resulting powder, The method for producing a zirconia composite sintered body according to claim 1 or 2, comprising a step of firing at a temperature of 1400 to 1600 ° C in an atmosphere having a pressure of 0.01 MPa or less.
【請求項4】請求項1または2に記載のジルコニア複合
物焼結体を用いた精密機器用部品。
4. A component for precision equipment using the zirconia composite sintered body according to claim 1.
JP2001090029A 2001-03-27 2001-03-27 Zirconia composite sintered compact, its manufacturing method and precise machinary part using it Withdrawn JP2002284575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001090029A JP2002284575A (en) 2001-03-27 2001-03-27 Zirconia composite sintered compact, its manufacturing method and precise machinary part using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001090029A JP2002284575A (en) 2001-03-27 2001-03-27 Zirconia composite sintered compact, its manufacturing method and precise machinary part using it

Publications (1)

Publication Number Publication Date
JP2002284575A true JP2002284575A (en) 2002-10-03

Family

ID=18944869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001090029A Withdrawn JP2002284575A (en) 2001-03-27 2001-03-27 Zirconia composite sintered compact, its manufacturing method and precise machinary part using it

Country Status (1)

Country Link
JP (1) JP2002284575A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009260000A (en) * 2008-04-16 2009-11-05 Panasonic Corp Manufacturing method of laminated ceramic capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009260000A (en) * 2008-04-16 2009-11-05 Panasonic Corp Manufacturing method of laminated ceramic capacitor

Similar Documents

Publication Publication Date Title
Deng et al. Effect of agglomeration on mechanical properties of porous zirconia fabricated by partial sintering
JPH07277814A (en) Alumina-based ceramic sintered compact
JP4951753B2 (en) Method for producing sintered silicon carbide
US20080096758A1 (en) Low-thermal expansion ceramics bonding body and manufacturing method of the same
Li et al. Effect of magnesium titanate content on microstructures, mechanical performances and dielectric properties of Si3N4-based composite ceramics
JP2002167268A (en) Cordierite sintered compact and method of manufacturing it
JP2002284575A (en) Zirconia composite sintered compact, its manufacturing method and precise machinary part using it
Krstic et al. Young's modulus, density and phase composition of pressureless sintered self-sealed Si3N4/BN laminated structures
JPS6077174A (en) Manufacture of silicon nitride sintered body
JP2671929B2 (en) Zirconia-based ceramic material and its manufacturing method
JP4912544B2 (en) Low thermal conductivity high rigidity ceramics
KR19980073543A (en) Surface-modified sialon complexes and method for preparing the same
JP3121996B2 (en) Alumina sintered body
JPH0640765A (en) Spinel ceramics and its production
JP4243514B2 (en) Composite ceramics and manufacturing method thereof
US5324693A (en) Ceramic composites and process for manufacturing the same
JP3124865B2 (en) Silicon nitride sintered body and method for producing the same
JP2000247748A (en) High-toughness silicon nitride-based sintered compact
JP2925089B2 (en) Ceramic composite sintered body and method of manufacturing the same
JP4651330B2 (en) Method for producing ceramic sintered body and ceramic sintered body
JP2002173365A (en) Lithium alumino-silicate-base ceramic
JP2001302339A (en) Member for precise measuring instrument and manufacturing method thereof
JPH09286660A (en) High strength alumina ceramic and its production
JP2961389B2 (en) High strength magnesia sintered body and method for producing the same
JP3456585B2 (en) β-type silicon nitride sintered body and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071217

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100601