JP2001302339A - Member for precise measuring instrument and manufacturing method thereof - Google Patents

Member for precise measuring instrument and manufacturing method thereof

Info

Publication number
JP2001302339A
JP2001302339A JP2000122548A JP2000122548A JP2001302339A JP 2001302339 A JP2001302339 A JP 2001302339A JP 2000122548 A JP2000122548 A JP 2000122548A JP 2000122548 A JP2000122548 A JP 2000122548A JP 2001302339 A JP2001302339 A JP 2001302339A
Authority
JP
Japan
Prior art keywords
modulus
young
thermal expansion
weight
eucryptite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000122548A
Other languages
Japanese (ja)
Inventor
Chiharu Wada
千春 和田
Makoto Sakamaki
誠 酒巻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2000122548A priority Critical patent/JP2001302339A/en
Publication of JP2001302339A publication Critical patent/JP2001302339A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a member for precise measuring instrument which has low thermal expansion property, high Young' s modulus and high specific rigid ity and is capable of satisfying the recent requirement for high precision, and the manufacturing method. SOLUTION: The member for precise measuring instrument is constituted of a composite ceramic consisting practically of eucryptite and silicon nitride and/or silicon carbide and has <=2×10-6/ deg.C coefficient of thermal expansion at 10-40 deg.C, >=1300 Pa Young's modulus at room temperature and >=50 GPa specific rigidity (Young's modulus/specific gravity).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、エアスライド、定
盤、スコヤ、ステージなどの精密測定機器用部材および
その製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a member for precision measuring equipment such as an air slide, a surface plate, a square, a stage and the like, and a method of manufacturing the same.

【0002】従来、エアスライド、定盤、スコヤ、ステ
ージなどの精密測定機器用治工具あるいはそれらを組み
合わせたXYステージなどの各種ステージ、測長機など
の各種検査装置部品(以下、これらを総称して精密測定
機器用部材と記す)には、ヤング率(剛性)が高いこ
と、比剛性(ヤング率/比重)が高いこと、高精度で面
粗度や平面度に優れること、熱膨張係数が小さいこと、
耐摩耗性に優れることなどの特性が必要とされている。
Conventionally, jigs and tools for precision measuring instruments such as air slides, surface plates, squares and stages, various stages such as XY stages combining them, and various inspection equipment parts such as length measuring machines (hereinafter collectively referred to as these) High precision Young's modulus (rigidity), high specific rigidity (Young's modulus / specific gravity), high accuracy, excellent surface roughness and flatness, thermal expansion coefficient Small,
Characteristics such as excellent wear resistance are required.

【0003】例えばエアスライドや定盤などの場合、基
本構造が梁構造であるためヤング率が低いと自重による
撓みが大きくなり、それを用いて製品の検査などを行お
うとする場合、高精度測定ができないという問題が生じ
る。
[0003] For example, in the case of an air slide or a surface plate, if the Young's modulus is low, the deflection due to its own weight increases because the basic structure is a beam structure. A problem arises that it is not possible

【0004】また、ヤング率が高くても、材料そのもの
の比重(=重量)が大きいと比剛性が小さくなるため、
やはり自重による撓みが大きくなる。比剛性が小さいこ
とによる不都合は、リブ構造にするなど設計による軽量
化である程度回避することはできるが、ヤング率が高い
ばかりでなく比剛性が高いことが望ましいのは言うまで
もない。
[0004] Even if the Young's modulus is high, the specific stiffness is reduced if the specific gravity (= weight) of the material itself is large.
Again, the deflection due to its own weight increases. The inconvenience due to the low specific rigidity can be avoided to some extent by reducing the weight by designing such as a rib structure, but it goes without saying that not only high Young's modulus but also high specific rigidity is desirable.

【0005】また、熱膨張係数が大きいと、製品精度が
比較的低い場合にはさほど問題とならないが、超精密な
製品を対象とする場合には、仮に上記精密測定機器用部
材が用いられる場所の温度が制御されていたとしても、
僅かな温度差による部材の延び縮みが製品精度の低下を
招くため、熱膨張係数が大きい材料はこのような精密測
定機器用部材に使用することができない。特に半導体製
品に代表されるような超微細化・精密化の流れの中で
は、熱膨張係数の重要性は極めて大きくなってきてい
る。
[0005] When the coefficient of thermal expansion is large, there is not much problem if the precision of the product is relatively low. Even if the temperature of was controlled,
A material having a large coefficient of thermal expansion cannot be used for such a member for a precision measuring device because the expansion and contraction of the member due to a slight temperature difference causes a decrease in product accuracy. In particular, in the flow of ultra-miniaturization and refinement typified by semiconductor products, the importance of the coefficient of thermal expansion has become extremely large.

【0006】このように精密測定機器用部材に必要とさ
れる要件は多数あるが、従来精密測定機器用部材に適用
されている材料は必ずしもこれら要件を満足していな
い。
As described above, there are many requirements required for members for precision measuring instruments, but materials conventionally applied to members for precision measuring instruments do not always satisfy these requirements.

【0007】これら部材として、一般的には金属、天然
石材、セラミックスが用いられているケースが多い。金
属では鋳鉄などが広く用いられているが、熱膨張係数が
11×10-6/℃と大きいため、僅かな温度差による寸
法変化が大きい。また、ヤング率は110GPaと比較
的大きいものの比重も7.8と大きいため、結果として
比剛性が14GPaと小さく、撓みによる変形が大き
い。したがって、近時要求されている高精度の精密測定
機器用部材には適用が困難である。
In many cases, metals, natural stones, and ceramics are generally used as these members. Although cast iron is widely used as a metal, its dimensional change due to a slight temperature difference is large because its coefficient of thermal expansion is as large as 11 × 10 −6 / ° C. Although the Young's modulus is relatively large at 110 GPa, the specific gravity is also large at 7.8, and as a result, the specific rigidity is as small as 14 GPa, and the deformation due to bending is large. Therefore, it is difficult to apply the present invention to members for precision measuring instruments of high precision that have recently been required.

【0008】一方、天然石材からなるものは、天然石特
有の異方性や節理(一種の亀裂)などの問題があるた
め、所望の形状に加工しようとすると、形状・大きさに
制限が生じる。大型の部材を加工することは不可能では
ないが、歩留まりの問題等で結果として極めて高価なも
のにならざるを得ない。また、石材は金属とは逆に、比
重は2.5〜3.0程度と小さいが、ヤング率もまた2
5〜70GPaと小さく、比剛性もせいぜい10〜30
GPaと小さく、やはり高精度が要求される部材には適
用が困難である。
On the other hand, those made of natural stones have problems such as anisotropy and joints (a kind of crack) peculiar to natural stones, so that when they are processed into a desired shape, the shape and size are limited. Although it is not impossible to process a large member, it is inevitably extremely expensive due to a problem of yield and the like. Stone, contrary to metal, has a specific gravity as small as about 2.5 to 3.0, but also has a Young's modulus of 2 to 3.0.
5 to 70 GPa, small and specific rigidity at most 10 to 30
It is difficult to apply to a member having a small GPa and also requiring high accuracy.

【0009】また、セラミックスとしてはアルミナが知
られており、比剛性、耐摩耗性、精度、寸法安定性な
ど、あらゆる面で上記材料よりも優れている。しかしな
がら、アルミナの室温付近における熱膨張係数は4.5
〜5.0×10-6/℃であり、従来あまり問題にならな
かったものの、近時の超精密化の要求のもとでは精度的
に十分とは言えない。
Alumina is known as a ceramic, and is superior to the above materials in all aspects such as specific rigidity, wear resistance, accuracy, and dimensional stability. However, the coefficient of thermal expansion of alumina near room temperature is 4.5.
It is up to 5.0 × 10 −6 / ° C., and although it has not been a problem in the past, it cannot be said that the precision is sufficient under recent demands for ultra-precision.

【0010】[0010]

【発明が解決しようとする課題】以上のように、従来の
材料は、近時要求される高精度の部材に対し、熱膨張係
数、ヤング率、比剛性のいずれかの面で特性的に問題が
あり、精密測定機器用部材としては不十分である。
As described above, the conventional materials have a characteristic problem in terms of any one of the thermal expansion coefficient, the Young's modulus, and the specific rigidity with respect to recently required high-precision members. However, it is insufficient as a member for precision measuring instruments.

【0011】本発明はかかる事情に鑑みてなされたもの
であって、低熱膨張性で、高ヤング率かつ高比剛性であ
り、近時の高精度化の要求を満足することができる精密
測定機器用部材およびその製造方法を提供することを目
的とする。
The present invention has been made in view of the above circumstances, and has a low thermal expansion property, a high Young's modulus and a high specific rigidity, and is a precision measuring instrument capable of satisfying recent demands for high precision. It is an object to provide a member for use and a method for manufacturing the same.

【0012】[0012]

【課題を解決するための手段】本発明者等は、上記課題
を解決すべく鋭意研究を重ねた結果、低熱膨張のユーク
リプタイトにヤング率の高い窒化ケイ素および/または
炭化ケイ素を複合することにより優れた低熱膨張特性を
維持しつつヤング率を大幅に高めることができ、しかも
高比剛性となり、優れた特性の精密測定機器用部材が得
られることを見出し、本発明を完成するに至った。
Means for Solving the Problems The present inventors have made intensive studies to solve the above-mentioned problems, and as a result, have found that a low thermal expansion eucryptite is combined with silicon nitride and / or silicon carbide having a high Young's modulus. It has been found that the Young's modulus can be significantly increased while maintaining excellent low thermal expansion characteristics, and that high specific rigidity can be obtained, and a member for precision measurement equipment having excellent characteristics can be obtained, and the present invention has been completed. .

【0013】すなわち、本発明は、第1に、ユークリプ
タイトと窒化ケイ素および/または炭化ケイ素とから実
質的になる複合セラミックスで構成され、10〜40℃
における熱膨張係数が2×10-6/℃以下、室温でのヤ
ング率が130GPa以上、比剛性(ヤング率/比重)
が50GPa以上であることを特徴とする精密測定機器
用部材を提供する。
That is, the present invention firstly comprises a composite ceramic consisting essentially of eucryptite and silicon nitride and / or silicon carbide at 10 to 40 ° C.
Coefficient of thermal expansion is 2 × 10 −6 / ° C. or less, Young's modulus at room temperature is 130 GPa or more, specific rigidity (Young's modulus / specific gravity)
Is not less than 50 GPa.

【0014】本発明は、第2に、上記第1において、ユ
ークリプタイト5〜90重量%、窒化ケイ素および/ま
たは炭化ケイ素10〜95重量%から実質的になること
を特徴とする精密測定機器用部材を提供する。
A second aspect of the present invention is a precision measuring instrument, which is substantially composed of 5 to 90% by weight of eucryptite and 10 to 95% by weight of silicon nitride and / or silicon carbide in the first aspect. A member for use is provided.

【0015】本発明は、第3に、ユークリプタイト5〜
90重量%、窒化ケイ素および/または炭化ケイ素10
〜95重量%から実質的になる成形体を、真空または不
活性ガス雰囲気中で1100〜1700℃の温度で焼成
することを特徴とする精密測定機器用部材の製造方法を
提供する。
[0015] Third, the present invention relates to eucryptite 5
90% by weight, silicon nitride and / or silicon carbide 10
A method for producing a member for a precision measuring instrument, characterized in that a molded body substantially consisting of 9595% by weight is fired at a temperature of 1100 to 1700 ° C. in a vacuum or an inert gas atmosphere.

【0016】[0016]

【発明の実施の形態】以下、本発明について詳細に説明
する。本発明の精密測定機器用部材は、ユークリプタイ
トと窒化ケイ素および/または炭化ケイ素とから実質的
になる複合セラミックスで構成され、10〜40℃にお
ける熱膨張係数が2×10-6/℃以下、室温でのヤング
率が130GPa以上、比剛性(ヤング率/比重)が5
0GPa以上である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. The member for a precision measurement device of the present invention is composed of a composite ceramic substantially consisting of eucryptite and silicon nitride and / or silicon carbide, and has a coefficient of thermal expansion at 10 to 40 ° C. of 2 × 10 −6 / ° C. or less. The Young's modulus at room temperature is 130 GPa or more and the specific rigidity (Young's modulus / specific gravity) is 5
0 GPa or more.

【0017】熱膨張係数が2×10-6/℃を超えると、
僅かな温度差によっても膨張量や収縮量が要求を満たす
ことができなくなる。より好ましくは1.5×10-6
℃、さらに好ましくは1×10-6/℃である。
When the coefficient of thermal expansion exceeds 2 × 10 −6 / ° C.,
Even a slight temperature difference makes it impossible for the expansion amount and the contraction amount to satisfy the requirements. More preferably, 1.5 × 10 −6 /
° C, more preferably 1 × 10 -6 / ° C.

【0018】ヤング率が130GPa未満では、たとえ
比剛性が高くても自重による撓み変形が大きくなって、
要求される精度を満たすことが困難となり、セラミック
スを用いる利点が損なわれる。より好ましくは150G
Pa以上、さらに好ましくは170GPa以上である。
If the Young's modulus is less than 130 GPa, even if the specific rigidity is high, the bending deformation due to its own weight increases,
It becomes difficult to satisfy the required accuracy, and the advantage of using ceramics is lost. More preferably 150G
Pa or more, more preferably 170 GPa or more.

【0019】比剛性が50GPa未満の場合には、たと
えヤング率が上記範囲を満足していてもやはり撓み変形
が大きくなるため好ましくない。より好ましい比剛性の
範囲は60GPa以上、さらに好ましくは70GPa以
上である。
If the specific stiffness is less than 50 GPa, even if the Young's modulus satisfies the above range, the bending deformation is still large, which is not preferable. A more preferable range of the specific rigidity is 60 GPa or more, and further preferably 70 GPa or more.

【0020】ユークリプタイトは、一般式Li2O・A
23・2SiO2で表され、焼結体を低熱膨張化する
ための重要な成分であり、窒化ケイ素、炭化ケイ素は、
焼結体の剛性(ヤング率)を向上させる成分であるか
ら、これらを複合化することにより、優れた低熱膨張特
性を維持しつつヤング率を大幅に高めることができ、し
かも高比剛性となる。
Eucryptite has the general formula Li 2 O · A
l 2 O 3 · 2SiO 2 and is an important component for lowering the thermal expansion of the sintered body. Silicon nitride and silicon carbide are:
Since it is a component that improves the rigidity (Young's modulus) of the sintered body, by compounding them, the Young's modulus can be significantly increased while maintaining excellent low thermal expansion characteristics, and the specific rigidity is increased. .

【0021】本発明の精密測定機器用部材は、ユークリ
プタイト5〜90重量%、窒化ケイ素および/または炭
化ケイ素10〜95重量%から実質的になることが好ま
しい。
It is preferable that the member for a precision measuring instrument of the present invention is substantially composed of 5 to 90% by weight of eucryptite and 10 to 95% by weight of silicon nitride and / or silicon carbide.

【0022】焼結体を低熱膨張化するユークリプタイト
の量が5重量%より少ないと熱膨張係数が高くなり、逆
にユークリプタイトが90重量%を超えるとヤング率が
低くなり好ましくない。より好ましいユークリプタイト
量の範囲は25〜80重量%であり、さらに好ましくは
45〜75重量%である。
When the amount of eucryptite for lowering the thermal expansion of the sintered body is less than 5% by weight, the thermal expansion coefficient increases, and when the amount of eucryptite exceeds 90% by weight, the Young's modulus decreases, which is not preferable. A more preferable range of the amount of eucryptite is 25 to 80% by weight, and further preferably 45 to 75% by weight.

【0023】また、窒化ケイ素、炭化ケイ素は、焼結体
の剛性(ヤング率)を向上させる成分であり、窒化ケイ
素および/または炭化ケイ素の量が10重量%未満では
室温でのヤング率130GPa以上を得ることが困難と
なる。一方、窒化ケイ素および/または炭化ケイ素の量
が多くなると熱膨張係数が大きくなり、その量が95重
量%を超えると上記範囲の熱膨張係数を得ることが困難
となる。なお、上述したように、10〜40℃における
窒化ケイ素の熱膨張係数は1.5×10-6/℃程度であ
るから、窒化ケイ素単体でも2×10-6/℃以下となる
が、本発明では複合セラミックスを対象としており、窒
化ケイ素単体の場合は含まない。また、炭化ケイ素の熱
膨張係数は2.5×10-6/℃程度であるから、10〜
40℃における熱膨張係数が2×10-6/℃以下の範囲
になる量は窒化ケイ素の場合とは異なっており、炭化ケ
イ素単独で添加する場合にはその量が80重量%を超え
ると2×10-6/℃以下の値は困難となる。
Further, silicon nitride and silicon carbide are components for improving the rigidity (Young's modulus) of the sintered body. Is difficult to obtain. On the other hand, when the amount of silicon nitride and / or silicon carbide increases, the coefficient of thermal expansion increases, and when the amount exceeds 95% by weight, it becomes difficult to obtain a coefficient of thermal expansion in the above range. As described above, since the thermal expansion coefficient of silicon nitride at 10 to 40 ° C. is about 1.5 × 10 −6 / ° C., even silicon nitride alone is 2 × 10 −6 / ° C. or less. The invention is directed to composite ceramics and does not include silicon nitride alone. Further, since the thermal expansion coefficient of silicon carbide is about 2.5 × 10 −6 / ° C.,
The amount at which the coefficient of thermal expansion at 40 ° C. is in the range of 2 × 10 −6 / ° C. or less is different from that of silicon nitride, and when silicon carbide alone is added, the amount exceeds 2% by weight. A value of × 10 −6 / ° C. or less becomes difficult.

【0024】本発明の精密測定機器用部材を構成する複
合セラミックスにおいて、ユークリプタイト粒子と窒化
ケイ素粒子との界面および/またはユークリプタイト粒
子と炭化ケイ素粒子との界面にはガラス相または結晶相
として粒界相が存在してもよい。ただし、このような粒
界相が量的に多すぎると、焼結体の熱膨張率が大きくな
り、ユークリプタイトの優れた低熱膨張特性が発揮され
ないため好ましくない。
In the composite ceramics constituting the member for precision measuring equipment of the present invention, the interface between eucryptite particles and silicon nitride particles and / or the interface between eucryptite particles and silicon carbide particles may have a glass phase or a crystalline phase. May exist as a grain boundary phase. However, when the amount of such a grain boundary phase is too large, the coefficient of thermal expansion of the sintered body increases, and the excellent low thermal expansion characteristics of eucryptite cannot be exhibited, which is not preferable.

【0025】本実施形態の複合セラミックスを製造する
ためには、ユークリプタイト粉末を10〜90重量%
と、窒化ケイ素および/または炭化ケイ素粉末を10〜
90重量%の割合で秤量し配合する。このような比率で
各粉末を配合した後、ボールミルなどにより十分に混合
し、所定形状に所望の成形手段、例えば、金型プレス、
冷間静水圧プレス、押出し成形等により任意の形状に成
形後、焼成する。
In order to manufacture the composite ceramic of the present embodiment, the eucryptite powder is added in an amount of 10 to 90% by weight.
And silicon nitride and / or silicon carbide powder in 10 to
It is weighed and blended at a ratio of 90% by weight. After blending the respective powders in such a ratio, they are sufficiently mixed by a ball mill or the like and formed into a desired shape by a desired molding means, for example, a die press,
After being formed into an arbitrary shape by cold isostatic pressing, extrusion molding or the like, firing is performed.

【0026】焼成は、真空中またはAr、N2 などの不
活性ガス雰囲気中で1100〜1700℃、好ましくは
1200〜1500℃の温度範囲で1〜10時間程度行
う。このようにして焼結することにより焼結体を緻密化
することができる。焼成温度が1100℃よりも低いと
緻密化できず、1700℃を越えると成形体が溶融する
おそれがある。また、大気などの酸化性雰囲気で焼成す
ると、窒化ケイ素および/または炭化ケイ素が酸化され
てしまい、ヤング率を高める効果が発揮されない。な
お、適正焼成温度は組成に応じて変化し、窒化ケイ素お
よび/または炭化ケイ素の量が増加するに従って上昇す
る。
The calcination is carried out in a vacuum or in an atmosphere of an inert gas such as Ar or N 2 at a temperature of 1100 to 1700 ° C., preferably 1200 to 1500 ° C., for about 1 to 10 hours. By sintering in this way, the sintered body can be densified. If the firing temperature is lower than 1100 ° C., densification cannot be achieved, and if it exceeds 1700 ° C., the molded article may be melted. In addition, when firing in an oxidizing atmosphere such as air, silicon nitride and / or silicon carbide is oxidized, and the effect of increasing the Young's modulus is not exhibited. The appropriate firing temperature varies depending on the composition, and increases as the amount of silicon nitride and / or silicon carbide increases.

【0027】[0027]

【実施例】以下、本発明の実施例について説明する。ま
ず、市販のユークリプタイト粉末を成形し、表1に示す
ように、1350℃で焼成することで直径50mm、板
厚4mmの焼結体を得た。このセラミックスから3×4
×15mmのサンプルを取り出し、−40〜100℃の
範囲で熱膨張係数を測定した(測定装置:真空理工社製
RIX−1)。このサンプルの10〜40℃における熱
膨張係数は表1に示すように−0.53×10-6/℃で
あり、その結晶相はβユークリプタイトであった。ま
た、超音波パルス法により、室温でのヤング率を測定し
たところ、ヤング率は表1に示すように100GPaで
あり低剛性のものであった(試料No.1)。
Embodiments of the present invention will be described below. First, a commercially available eucryptite powder was molded and fired at 1350 ° C. to obtain a sintered body having a diameter of 50 mm and a plate thickness of 4 mm as shown in Table 1. 3 × 4 from this ceramic
A sample of × 15 mm was taken out, and the coefficient of thermal expansion was measured in the range of −40 to 100 ° C. (measuring device: RIX-1 manufactured by Vacuum Riko Co., Ltd.). As shown in Table 1, the thermal expansion coefficient of this sample at 10 to 40 ° C. was −0.53 × 10 −6 / ° C., and its crystal phase was β-eucryptite. In addition, when the Young's modulus at room temperature was measured by the ultrasonic pulse method, the Young's modulus was 100 GPa as shown in Table 1 and the rigidity was low (Sample No. 1).

【0028】また、窒化ケイ素、炭化ケイ素のそれぞれ
の粉末を用い、成形体を表1の条件で焼成し同様の焼結
体を得た。同様にして熱膨張係数およびヤング率を測定
した結果、表1に示すように何れもヤング率は大きいも
のの、熱膨張係数は窒化ケイ素が1.5×10-6/℃で
あり炭化ケイ素が2.5×10-6/℃であった(試料N
o.2、3)。
Using the respective powders of silicon nitride and silicon carbide, the compact was fired under the conditions shown in Table 1 to obtain a similar sintered body. The thermal expansion coefficient and the Young's modulus were measured in the same manner. As shown in Table 1, although the Young's modulus was large as shown in Table 1, the thermal expansion coefficient was 1.5 × 10 −6 / ° C. for silicon nitride and 2 for silicon carbide. 0.5 × 10 −6 / ° C. (Sample N
o. 2, 3).

【0029】次に、試料No.1のユークリプタイト粉
末に、試料No.2の窒化ケイ素粉末または試料No.
3の炭化ケイ素粉末またはこれらの両方を表1に示す割
合で添加し、ボールミルで24時間混合した後、1to
nf/cm2 の圧力で金型成形した。そして、その成形
体を表1の条件で焼成して、10〜40℃での熱膨張係
数、室温でのヤング率を測定し、さらに比剛性を求め
た。その結果を表1に示す。
Next, sample no. Sample No. 1 was added to the eucryptite powder of No. 1. No. 2 silicon nitride powder or sample no.
3 or both were added at the ratios shown in Table 1 and mixed for 24 hours in a ball mill.
Molding was performed at a pressure of nf / cm 2 . Then, the molded body was fired under the conditions shown in Table 1, and the coefficient of thermal expansion at 10 to 40 ° C. and the Young's modulus at room temperature were measured to further determine the specific rigidity. Table 1 shows the results.

【0030】また、以上の試料の組成のセラミックスに
ついて630×400×150mmの定盤を形成し、定
盤下部の四つ角を四点支持し、上面の中心に30kgの
錘を負荷し、その際の撓み量を測定した。その結果も表
1に合わせて示す。
A 630 × 400 × 150 mm platen was formed of the ceramic having the composition of the sample described above, the four corners at the lower part of the platen were supported at four points, and a 30 kg weight was loaded at the center of the upper surface. The amount of deflection was measured. The results are also shown in Table 1.

【0031】表1の結果から明らかなように、ユークリ
プタイトが5〜90重量%で窒化ケイ素が95〜10重
量%の試料No.4〜15、ユークリプタイトが20〜
90重量%で炭化ケイ素が80〜10重量%の試料N
o.17〜24、ユークリプタイトが20〜90重量%
で窒化ケイ素および炭化ケイ素が同量でそれぞれ40〜
5重量%の試料No.26〜33は、いずれも10〜4
0℃における熱膨張係数が2×10-6/℃以下、室温で
のヤング率が130GPa以上、比剛性が50GPa以
上を満足し、定盤の撓み量も小さかった。これに対し
て、本発明の組成を外れるものは、熱膨張係数が大きく
て膨張・収縮が大きいか、またはヤング率や比剛性が小
さく、撓み量が大きくなった。
As is clear from the results shown in Table 1, the sample No. containing 5 to 90% by weight of eucryptite and 95 to 10% by weight of silicon nitride. 4-15, eucryptite 20-
Sample N having 90% by weight and 80 to 10% by weight of silicon carbide
o. 17 to 24, 20 to 90% by weight of eucryptite
In the same amount of silicon nitride and silicon carbide are each 40 ~
5% by weight of sample no. 26 to 33 are all 10 to 4
The coefficient of thermal expansion at 0 ° C. was 2 × 10 −6 / ° C. or less, the Young's modulus at room temperature was 130 GPa or more, the specific rigidity was 50 GPa or more, and the amount of deflection of the surface plate was small. On the other hand, those deviating from the composition of the present invention had a large coefficient of thermal expansion and large expansion and contraction, or had a low Young's modulus and specific rigidity and a large amount of deflection.

【0032】次に、ユークリプタイト粉末55重量%に
それぞれ窒化ケイ素および炭化ケイ素を45重量%を加
えた成形体を1300℃、1050℃および1750℃
で焼成した(試料No.34〜39)。その結果を表2
に示す。
Next, a molded body obtained by adding 45% by weight of silicon nitride and 45% by weight of silicon carbide to 55% by weight of eucryptite powder was used at 1300 ° C., 1050 ° C. and 1750 ° C.
(Sample Nos. 34 to 39). Table 2 shows the results.
Shown in

【0033】表2に示すように1300℃で焼成した試
料No.34,35は精密計測機器用部材として適した
特性を示したが、1050℃で焼成した試料No.3
6,37は緻密化することができずヤング率が低い値と
なった。一方、1750℃で焼成したNo.38,39
は成形体は溶融が見られ、熱膨張係数およびヤング率の
測定を行うことができなかった。
As shown in Table 2, Sample No. baked at 1300 ° C. Samples Nos. 34 and 35 exhibited characteristics suitable as members for precision measuring instruments. Three
6, 37 could not be densified and had a low Young's modulus. On the other hand, No. 1 fired at 1750 ° C. 38,39
The molded product was found to have melted, and the thermal expansion coefficient and the Young's modulus could not be measured.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【表2】 [Table 2]

【0036】[0036]

【発明の効果】以上詳述した通り、本発明によれば、低
熱膨張のユークリプタイトにヤング率の高い窒化ケイ素
および/または炭化ケイ素を複合することにより、優れ
た低熱膨張特性と高ヤング率および高比剛性とを有し、
近時の高精度化の要求を満足することができる精密測定
機器用部材を得ることができる。
As described in detail above, according to the present invention, by combining low thermal expansion eucryptite with silicon nitride and / or silicon carbide having high Young's modulus, excellent low thermal expansion characteristics and high Young's modulus are obtained. And high specific rigidity,
It is possible to obtain a member for a precision measuring instrument that can satisfy the recent demand for higher precision.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C04B 35/58 102Y Fターム(参考) 4G001 BA22 BA32 BA65 BB22 BB32 BB65 BC52 BD05 BD13 4G030 AA02 AA36 AA37 AA47 AA52 BA20 BA24 GA24 GA27 HA25──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C04B 35/58 102Y F-term (Reference) 4G001 BA22 BA32 BA65 BB22 BB32 BB65 BC52 BD05 BD13 4G030 AA02 AA36 AA37 AA47 AA52 BA20 BA24 GA24 GA27 HA25

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ユークリプタイトと窒化ケイ素および/
または炭化ケイ素とから実質的になる複合セラミックス
で構成され、10〜40℃における熱膨張係数が2×1
-6/℃以下、室温でのヤング率が130GPa以上、
比剛性(ヤング率/比重)が50GPa以上であること
を特徴とする精密測定機器用部材。
1. A method according to claim 1, wherein the eucryptite and silicon nitride and / or
Or a composite ceramic substantially consisting of silicon carbide and having a coefficient of thermal expansion of 2 × 1 at 10 to 40 ° C.
0 −6 / ° C. or less, Young's modulus at room temperature is 130 GPa or more,
A member for precision measuring equipment, wherein the specific rigidity (Young's modulus / specific gravity) is 50 GPa or more.
【請求項2】 ユークリプタイト5〜90重量%、窒化
ケイ素および/または炭化ケイ素10〜95重量%から
実質的になることを特徴とする請求項1に記載の精密測
定機器用部材。
2. The member for a precision measuring instrument according to claim 1, wherein the member substantially consists of 5 to 90% by weight of eucryptite and 10 to 95% by weight of silicon nitride and / or silicon carbide.
【請求項3】 ユークリプタイト5〜90重量%、窒化
ケイ素および/または炭化ケイ素10〜95重量%から
実質的になる成形体を、真空または不活性ガス雰囲気中
で1100〜1700℃の温度で焼成することを特徴と
する精密測定機器用部材の製造方法。
3. A molded body consisting essentially of 5 to 90% by weight of eucryptite, 10 to 95% by weight of silicon nitride and / or silicon carbide, at a temperature of 1100 to 1700 ° C. in a vacuum or inert gas atmosphere. A method for producing a member for precision measuring equipment, characterized by firing.
JP2000122548A 2000-04-24 2000-04-24 Member for precise measuring instrument and manufacturing method thereof Pending JP2001302339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000122548A JP2001302339A (en) 2000-04-24 2000-04-24 Member for precise measuring instrument and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000122548A JP2001302339A (en) 2000-04-24 2000-04-24 Member for precise measuring instrument and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2001302339A true JP2001302339A (en) 2001-10-31

Family

ID=18633011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000122548A Pending JP2001302339A (en) 2000-04-24 2000-04-24 Member for precise measuring instrument and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2001302339A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1298104A1 (en) * 2000-06-06 2003-04-02 Nippon Steel Corporation Electrically conductive ceramic sintered compact exhibiting low thermal expansion
US7696116B2 (en) 2006-03-23 2010-04-13 Colorado School Of Mines Implementing a pressure-induced phase transformation in beta-eucryptite to impart toughening
FR2959507A1 (en) * 2010-04-30 2011-11-04 Thales Sa METHOD FOR MANUFACTURING CERAMIC COMPOSITE MATERIAL BASED ON SILICON NITRIDE AND BETA-EUCRYPTITE

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1298104A1 (en) * 2000-06-06 2003-04-02 Nippon Steel Corporation Electrically conductive ceramic sintered compact exhibiting low thermal expansion
EP1298104A4 (en) * 2000-06-06 2005-11-23 Nippon Steel Corp Electrically conductive ceramic sintered compact exhibiting low thermal expansion
US7696116B2 (en) 2006-03-23 2010-04-13 Colorado School Of Mines Implementing a pressure-induced phase transformation in beta-eucryptite to impart toughening
FR2959507A1 (en) * 2010-04-30 2011-11-04 Thales Sa METHOD FOR MANUFACTURING CERAMIC COMPOSITE MATERIAL BASED ON SILICON NITRIDE AND BETA-EUCRYPTITE
CN102234196A (en) * 2010-04-30 2011-11-09 泰勒斯公司 Method for making a composite ceramic material based on silicon nitride and beta-eucryptite
US8486851B2 (en) 2010-04-30 2013-07-16 Thales Process for manufacturing a ceramic composite based on silicon nitride and β-eucryptite
EP2383243A3 (en) * 2010-04-30 2015-01-21 Thales Method of making a composite ceramic material based on silicon nitride and beta-eucryptite

Similar Documents

Publication Publication Date Title
US20080096758A1 (en) Low-thermal expansion ceramics bonding body and manufacturing method of the same
JPH11343168A (en) Low thermal expansion black ceramics, its production and member for semiconductor producing apparatus
JP2001302339A (en) Member for precise measuring instrument and manufacturing method thereof
JPH11209171A (en) Dense low thermal expansion ceramics, its production and member for semiconductor producing device
JP4446611B2 (en) Black low thermal expansion ceramics and exposure apparatus components
TWI232853B (en) Electroconductive low thermal expansion ceramics sintered compact
KR101852040B1 (en) Machinable ceramic composite material and manufacturing method of the same
JP3744703B2 (en) Reference device
JPS6077174A (en) Manufacture of silicon nitride sintered body
JP4460804B2 (en) Low thermal expansion ceramics and exposure device components
JP2001302338A (en) Composite ceramic and manufacturing method thereof
JP2592223B2 (en) Alumina ceramics for bonding capillaries and method for producing the same
JP4588379B2 (en) Method for manufacturing member for semiconductor manufacturing apparatus
JP3890915B2 (en) Free-cutting ceramics and manufacturing method thereof
JP4912544B2 (en) Low thermal conductivity high rigidity ceramics
JP6179026B2 (en) Low thermal expansion ceramics and method for producing the same
JP5011609B2 (en) Dense cordierite ceramics and method for producing the same
JP2001058866A (en) Composite ceramic and production thereof
JP2007031269A (en) Machinable glass ceramic and process for production thereof
JPH11100275A (en) Low thermal expansion ceramic and its preparation
JP4062059B2 (en) Low thermal expansion ceramic member, method for manufacturing the same, and member for semiconductor manufacturing apparatus
JP2002160972A (en) High rigidity and low thermal expansion ceramic and its manufacturing method
JP4907791B2 (en) Low thermal expansion ceramics and method for producing the same
JP2002283244A (en) Finishing grinding wheel and method of manufacture
JP2001151563A (en) Dense cordierite sintered compact and method of producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090918

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091215