JPH11100275A - Low thermal expansion ceramic and its preparation - Google Patents

Low thermal expansion ceramic and its preparation

Info

Publication number
JPH11100275A
JPH11100275A JP9262398A JP26239897A JPH11100275A JP H11100275 A JPH11100275 A JP H11100275A JP 9262398 A JP9262398 A JP 9262398A JP 26239897 A JP26239897 A JP 26239897A JP H11100275 A JPH11100275 A JP H11100275A
Authority
JP
Japan
Prior art keywords
thermal expansion
silicon nitride
cordierite
low thermal
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9262398A
Other languages
Japanese (ja)
Inventor
Masahiro Sato
政宏 佐藤
Hirohisa Sechi
啓久 瀬知
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP9262398A priority Critical patent/JPH11100275A/en
Publication of JPH11100275A publication Critical patent/JPH11100275A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide the ceramis having low thermal expansion as well as high stiffness, and to provide the method for preparing it. SOLUTION: The ceramics consisting of silicon nitride, wherein >=80% of the silicon nitride is α-type, and having a relative density of >=95%, a high young's modulus of >=200 GPa at room temp., and a low thermal expansion coefficient of <=1×10<-6> in the temp. range of 10-40 deg.C, is obtained by sintering the green body comprising 10-50 wt.% of cordierite, 0.5-10 wt.% of the oxides of rare-earth elements, and a residual amount of silicon nitride containing >=80% of an α-type, under inert atmosphere at 1,300-1,700 deg.C. It is possible to improve accuracy in forming highly fine circuit, quality of the product and productivity by applying the low thermal expansion ceramics to the parts for preparing semiconductors, e.g. the stage for an aligner etc.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、真空装置構造体、
サセプタ、静電チャックあるいはステージや半導体製造
プロセスにおける治具などに適した窒化珪素−コージェ
ライトを主体とする低熱膨張セラミックスとその製造方
法に関する。
TECHNICAL FIELD The present invention relates to a vacuum device structure,
The present invention relates to a low thermal expansion ceramic mainly composed of silicon nitride and cordierite suitable for a susceptor, an electrostatic chuck, a stage, a jig in a semiconductor manufacturing process, and a method for manufacturing the same.

【0002】[0002]

【従来技術】コージェライト系焼結体は、従来から低熱
膨張のセラミックスとして知られており、フィルター、
ハニカム、耐火物などに応用されている。このコージェ
ライト系焼結体は、コージェライト粉末、あるいはコー
ジェライトを形成するMgO、Al2 3 、SiO2
を配合して、これに焼結助剤として、希土類元素酸化物
や、SiO2 、CaO、MgOなどの添加し、所定形状
に成形後、1000〜1400℃の温度で焼成すること
によって製造される(特公昭57−3629号、特開平
2−229760号)。
2. Description of the Related Art Cordierite-based sintered bodies are conventionally known as ceramics having a low thermal expansion, and include filters,
It is applied to honeycombs and refractories. The cordierite-based sintered body is mixed with cordierite powder or MgO, Al 2 O 3 , and SiO 2 powder that forms cordierite, and as a sintering aid, a rare earth element oxide or SiO 2 , CaO, MgO, etc., molded into a predetermined shape, and fired at a temperature of 1000 to 1400 ° C. (JP-B-57-3629, JP-A-2-229760).

【0003】一方、LSIなどの半導体装置の製造工程
において、シリコンウエハに配線を形成する工程におい
て、ウエハを支持または保持するためのサセプタ、静電
チャックや絶縁リングとしてあるいはその他の治具等と
して、これまでアルミナや窒化珪素が比較的に安価で、
化学的にも安定であるため広く用いられている。また、
露光装置のXYテーブル等として従来よりアルミナや窒
化珪素などのセラミックスも用いられている。
On the other hand, in a process of manufacturing a semiconductor device such as an LSI, in a process of forming wiring on a silicon wafer, a susceptor for supporting or holding the wafer, an electrostatic chuck, an insulating ring, or other jigs, etc. So far, alumina and silicon nitride have been relatively inexpensive,
It is widely used because it is chemically stable. Also,
Conventionally, ceramics such as alumina and silicon nitride have been used as an XY table of an exposure apparatus.

【0004】また、最近では、コージェライトの低熱膨
張性を利用し、半導体製造装置部品として応用すること
が、特開平1−191422号や特公平6−97675
号にて提案されている。特開平1−191422号によ
れば、X線マスクにおけるマスク基板に接着する補強リ
ングとして、SiO2 、インバーなどに加え、コージェ
ライトによって形成し、メンブレンの応力を制御するこ
とが提案されている。
Recently, it has been proposed to use cordierite as a component of semiconductor manufacturing equipment by utilizing its low thermal expansion property, as disclosed in JP-A-1-191422 and Japanese Patent Publication No. 6-97675.
It is proposed in the issue. According to Japanese Patent Application Laid-Open No. 1-191422, it is proposed that a reinforcing ring bonded to a mask substrate in an X-ray mask is formed of cordierite in addition to SiO 2 , invar, and the like to control the stress of the membrane.

【0005】また、特公平6−97675号では、ウエ
ハを載置する静電チャック用基盤としてアルミナやコー
ジェライト系焼結体を使用することが提案されている。
In Japanese Patent Publication No. 6-97675, it is proposed to use an alumina or cordierite-based sintered body as a base for an electrostatic chuck on which a wafer is mounted.

【0006】[0006]

【発明が解決しようとする課題】近年、LSIなどにお
ける高集積化に伴い、回路の微細化が急速に進められ、
その線幅もサブミクロンオーダーのレベルまで高精密化
しつつある。そしてSiウエハに高精密回路を形成する
ための露光装置に対して高い精度が要求され、たとえば
露光装置のステージ用部材においては100nm(0.
1μm)以下の位置決め精度が要求され、露光の位置合
わせ誤差が製品の品質向上や歩留まり向上に大きな影響
を及ぼしているのが現状である。
In recent years, with high integration in LSIs and the like, circuit miniaturization has been rapidly advanced,
The line width is also being refined to a submicron order. High accuracy is required for an exposure apparatus for forming a high-precision circuit on a Si wafer. For example, a stage member of an exposure apparatus requires a 100 nm (0.
At present, a positioning accuracy of 1 μm or less is required, and a positioning error of exposure has a great influence on improvement of product quality and yield.

【0007】半導体製造用として一般に用いられてきた
アルミナ、窒化珪素などのセラミックスは、金属に比べ
て熱膨張率が小さいものの、10〜40℃の熱膨張率は
それぞれ5.2×10-6/℃、1.5×10-6/℃であ
り、雰囲気温度が0.1℃変化すると数100nm
(0.1μm)の変形が発生することになり、露光等の
精密な工程ではこの変化が大きな問題となり、従来のセ
ラミックスでは精度が低く生産性の低下をもたらしてい
る。
Ceramics such as alumina and silicon nitride which have been generally used for manufacturing semiconductors have a smaller coefficient of thermal expansion than metals, but each have a coefficient of thermal expansion of 5.2 × 10 -6 / 10 to 40 ° C. ° C, 1.5 × 10 -6 / ° C, and several hundred nm when the ambient temperature changes by 0.1 ° C.
(0.1 .mu.m), and this change becomes a serious problem in precise processes such as exposure, and the conventional ceramics have low accuracy and lower productivity.

【0008】これに対して、コージェライト系焼結体
は、熱膨張率が0.2×10-6/℃程度と、アルミナや
窒化珪素に比較して熱膨張率が低く、上記のような露光
精度に対する問題はある程度解決される。
On the other hand, the cordierite-based sintered body has a coefficient of thermal expansion of about 0.2 × 10 −6 / ° C., which is lower than that of alumina or silicon nitride. The problem of exposure accuracy is solved to some extent.

【0009】ところが、露光装置のステージのように、
Siウエハを載置した支持体が露光処理を施す位置まで
高速移動を伴うような場合には、移動後の支持体自体が
所定位置に停止後も振動しており、そのために、その振
動した状態で露光処理を施すと露光精度が低下するとい
う問題があった。これは、露光によって形成する配線幅
が細くなるほど顕著であり、高微細な配線回路を形成す
る上では致命的な問題となっていた。
However, like the stage of an exposure apparatus,
In the case where the support on which the Si wafer is mounted moves at a high speed to the position where the exposure processing is performed, the support itself after the movement is still vibrating even after stopping at a predetermined position. However, there is a problem that the exposure accuracy decreases when the exposure process is performed. This is more remarkable as the width of the wiring formed by exposure becomes narrower, and has been a fatal problem in forming a fine wiring circuit.

【0010】このような振動は、部材自体の剛性が低い
ことによって引き起こされるものであることから、これ
らの部材に対しては高い剛性、即ち高ヤング率が要求さ
れている。
Since such vibrations are caused by low rigidity of the members themselves, high rigidity, that is, high Young's modulus is required for these members.

【0011】従って、本発明は、それ自体低熱膨張を有
するとともに、高剛性を有する低熱膨張セラミックスと
その製造方法を提供することを目的とするものである。
また、本発明は、ステージなどの高速駆動される場合に
おいても振動が生じにくい半導体製造用部品を提供する
ことを目的とするものである。
Accordingly, an object of the present invention is to provide a low-thermal-expansion ceramic having low thermal expansion itself and high rigidity, and a method for producing the same.
It is another object of the present invention to provide a semiconductor manufacturing component that does not easily generate vibration even when driven at a high speed, such as a stage.

【0012】[0012]

【課題を解決するための手段】本発明者等は、上記課題
に対し鋭意研究を重ねた結果、コージェライトにヤング
率の高い、窒化珪素特にα窒化珪素粒子を所定の比率で
複合化することにより低熱膨張特性を阻害することなく
ヤング率を大幅に高めることができることを見いだし、
本発明に至った。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies on the above-mentioned problems and found that cordierite is compounded with silicon nitride particles having a high Young's modulus, especially α-silicon nitride particles at a predetermined ratio. Found that the Young's modulus can be significantly increased without impairing the low thermal expansion characteristics,
The present invention has been reached.

【0013】即ち、本発明の低熱膨張セラミックスは、
コージェライトを10〜50重量%、希土類元素酸化物
を0.5〜10重量%の割合で含み、残部がα型含有率
が窒化珪素からなり、相対密度が95%以上であること
を特徴とするものであり、室温でのヤング率が200G
Pa以上でかつ、10〜40℃における熱膨張率が1×
10-6/℃以下の低い熱膨張率を有している。かかるセ
ラミックスはコージェライトを10〜50重量%、希土
類元素酸化物を0.5〜10重量%の割合で含み、残部
がα型含有率が80%以上の窒化珪素からなる成形体
を、不活性ガス雰囲気中で1300〜1700℃の温度
で焼成することによって製造されるものである。
That is, the low thermal expansion ceramic of the present invention comprises:
It comprises cordierite in an amount of 10 to 50% by weight and a rare earth element oxide in an amount of 0.5 to 10% by weight, the balance being composed of silicon nitride having an α-type content of 95% or more. The Young's modulus at room temperature is 200G
Pa or more and the coefficient of thermal expansion at 10 to 40 ° C. is 1 ×
It has a low coefficient of thermal expansion of 10 −6 / ° C. or less. Such a ceramic contains 10 to 50% by weight of cordierite, 0.5 to 10% by weight of a rare-earth element oxide, and a balance formed of silicon nitride having an α-type content of 80% or more. It is manufactured by firing at a temperature of 1300 to 1700 ° C. in a gas atmosphere.

【0014】[0014]

【発明の実施の形態】本発明の低熱膨張セラミックス
は、コージェライトは、2MgO・2Al2 3 ・5S
iO2 で表される複合酸化物と窒化珪素を主体とするも
のであり、コージェライトおよび窒化珪素はいずれも平
均粒径が1〜10μmの結晶粒子として存在する。この
コージェライトは、焼結体中に、10〜50重量%、好
ましくは20〜40重量%の割合で存在する。また、こ
の焼結体中には、副成分として希土類元素酸化物の中か
ら選ばれる少なくとも1種を0.5〜10重量%、特に
2〜6重量%の割合で含有するものである。また、この
焼結体の上記コージエライトおよび希土類元素酸化物の
残部は窒化珪素からなり、焼結体中に50〜89.5重
量%、特に60〜80重量%の割合で存在することが望
ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The low thermal expansion ceramics of the present invention, cordierite is 2MgO.2Al 2 O 3 .5S
It is mainly composed of a composite oxide represented by iO 2 and silicon nitride, and both cordierite and silicon nitride exist as crystal particles having an average particle size of 1 to 10 μm. This cordierite is present in the sintered body at a rate of 10 to 50% by weight, preferably 20 to 40% by weight. In addition, the sintered body contains at least one selected from rare earth element oxides as an auxiliary component in a proportion of 0.5 to 10% by weight, particularly 2 to 6% by weight. The remainder of the cordierite and the rare earth element oxide of this sintered body is made of silicon nitride, and is desirably present in the sintered body at a ratio of 50 to 89.5% by weight, particularly 60 to 80% by weight.

【0015】コージェライトは、焼結体を低熱膨張化す
るための重要な成分であり、コージェライトの量が10
重量%より少ないと熱膨張率が高くなり、コージェライ
トが50重量%より多いとヤング率が低くなる。
Cordierite is an important component for lowering the thermal expansion of the sintered body.
If the amount is less than 50% by weight, the coefficient of thermal expansion increases, and if the amount of cordierite is more than 50% by weight, the Young's modulus decreases.

【0016】また、窒化珪素は、その窒化珪素全量中8
0%以上、特に90%以上がα型であることが重要であ
る。α型窒化珪素を残存させることにより低い熱膨張率
を有したまま、ヤング率をβ型窒化珪素の場合より向上
できるのである。従って、α型窒化珪素の含有率が80
%よりも少ないと、所望の高いヤング率が得られない。
Further, silicon nitride accounts for 8% of the total amount of silicon nitride.
It is important that 0% or more, particularly 90% or more, is α-type. By leaving the α-type silicon nitride, the Young's modulus can be improved as compared with the case of β-type silicon nitride while having a low coefficient of thermal expansion. Therefore, the content of α-type silicon nitride is 80%.
%, The desired high Young's modulus cannot be obtained.

【0017】さらに、希土類元素酸化物は、コージェラ
イトの一部と反応し、焼結助剤として働き、低温での焼
結を可能とすることができるために、α型の窒化珪素が
β型窒化珪素に転移するのを防ぐことができるのであ
る。従って、希土類元素酸化物量が0.5重量%よりも
少ないと、緻密化が阻害され、焼結温度を高くする必要
があり、窒化珪素のα−β転移を促進させる結果、焼結
体のヤング率が低くなってしまう。希土類元素酸化物量
が10重量%よりも大きいと、焼結体の熱膨張率が大き
くなり、コージェライトの優れた低熱膨張特性が発揮さ
れないためである。なお、希土類元素酸化物は、コージ
ェライトや窒化珪素の結晶粒子の粒界にガラス相または
結晶相として存在する。
Further, the rare-earth element oxide reacts with a part of cordierite, acts as a sintering aid, and enables sintering at a low temperature. It is possible to prevent the transition to silicon nitride. Therefore, when the amount of the rare earth element oxide is less than 0.5% by weight, densification is hindered, and the sintering temperature must be increased. As a result, the α-β transition of silicon nitride is promoted, and as a result, the Young The rate will be low. When the amount of the rare earth element oxide is more than 10% by weight, the coefficient of thermal expansion of the sintered body increases, and the cordierite does not exhibit excellent low thermal expansion characteristics. Note that the rare earth element oxide exists as a glass phase or a crystal phase at the grain boundaries of crystal grains of cordierite or silicon nitride.

【0018】なお、本発明の低熱膨張セラミックスは、
相対密度が95%以上、特に97%以上であり、10〜
40℃における熱膨張率が1×10-6/℃以下、特に
0.7×10-6/℃以下の特性を有するとともに、室温
でのヤング率が200GPa以上、特に220GPa以
上の優れた特性を有するものである。
The low thermal expansion ceramic of the present invention comprises:
The relative density is 95% or more, particularly 97% or more;
It has excellent properties such that the coefficient of thermal expansion at 40 ° C. is 1 × 10 −6 / ° C. or less, particularly 0.7 × 10 −6 / ° C. or less, and the Young's modulus at room temperature is 200 GPa or more, particularly 220 GPa or more. Have

【0019】上記のような焼結体を作製するには、平均
粒径が10μm以下のコージェライト粉末を10〜50
重量%、特に20〜40重量%、希土類元素酸化物粉末
を0.5〜10重量%、特に2〜6重量%の割合で含
み、残部をα型含有率が80%以上の窒化珪素粉末とな
るように秤量混合する。上記の比率で各成分を配合した
後、ボールミルなどにより十分に混合し、所定形状に所
望の成形手段、例えば、金型プレス、冷間静水圧プレ
ス、押出し成形等により任意の形状に成形後、焼成す
る。
In order to produce a sintered body as described above, cordierite powder having an average particle size of 10 μm or less is used
% By weight, particularly 20 to 40% by weight, containing 0.5 to 10% by weight, especially 2 to 6% by weight of the rare earth element oxide powder, and silicon nitride powder having α-type content of 80% or more. Weigh and mix as needed. After blending each component in the above ratio, thoroughly mixed by a ball mill or the like, desired molding means into a predetermined shape, for example, a mold press, cold isostatic press, after molding into an arbitrary shape by extrusion, etc., Bake.

【0020】焼成は、真空もしくはAr、N2 などの不
活性ガス雰囲気中で1300〜1700℃、好ましくは
1400〜1600℃の温度範囲で1〜10時間程度焼
結することにより相対密度95%以上、特に97重量%
以上に緻密化することができる。このときの温度が13
00℃よりも低いと緻密化できず、1700℃を越える
と、成形体が溶融したり、α−β転移が促進してしま
う。また、大気などの酸化性雰囲気で焼成すると、副成
分として配合した窒化珪素が酸化されてしまい、ヤング
率を高める効果が発揮されない。
The sintering is performed at a temperature of 1300 to 1700 ° C., preferably 1400 to 1600 ° C. for about 1 to 10 hours in a vacuum or in an atmosphere of an inert gas such as Ar or N 2 to obtain a relative density of 95% or more. Especially 97% by weight
It can be densified as described above. The temperature at this time is 13
If the temperature is lower than 00 ° C., densification cannot be achieved. If the temperature exceeds 1700 ° C., the molded body is melted or α-β transition is promoted. In addition, firing in an oxidizing atmosphere such as air oxidizes silicon nitride compounded as a sub-component, and does not exhibit the effect of increasing the Young's modulus.

【0021】[0021]

【実施例】平均粒径が3μmのコージェライト粉末に対
して、平均粒径が1μmの窒化珪素粉末を表1に示す割
合で添加し、さらに、焼結助剤成分として、Y2 3
Yb2 3 、Er2 3 、CeO2 の各粉末を表1に示
す割合で調合後、ボールミルで24時間混合した後、1
t/cm2 の圧力で金型成形した。そして、その成形体
を炭化珪素質の匣鉢に入れて表1の条件で焼成した。
EXAMPLE To a cordierite powder having an average particle diameter of 3 μm, a silicon nitride powder having an average particle diameter of 1 μm was added at a ratio shown in Table 1. Further, as a sintering aid component, Y 2 O 3 ,
After blending each powder of Yb 2 O 3 , Er 2 O 3 , and CeO 2 at the ratios shown in Table 1, mixing them with a ball mill for 24 hours,
Molding was performed at a pressure of t / cm 2 . Then, the compact was placed in a silicon carbide sagger and fired under the conditions shown in Table 1.

【0022】得られた焼結体を研磨し、3×4×15m
mの大きさに研削加工し、この試料の10〜40℃まで
の熱膨張係数を測定した。また、超音波パルス法によ
り、室温でのヤング率を測定した。また、アルキメデス
法により相対密度を算出した。
The obtained sintered body is polished and 3 × 4 × 15 m
The sample was ground to a size of m, and the coefficient of thermal expansion of the sample up to 10 to 40 ° C. was measured. The Young's modulus at room temperature was measured by the ultrasonic pulse method. The relative density was calculated by the Archimedes method.

【0023】結果は、表1に示した。The results are shown in Table 1.

【0024】なお、焼結体中のα型窒化珪素の含有率
(α/α+β)は、X線回折測定から、α−Si3 4
の(102)と(210)との合計ピーク強度を2で割
った値をピーク強度X1 とし、β−Si3 4 の(10
1)と(210)との合計ピーク強度を2で割った値を
ピーク強度X2 とし、その強度比{X1 /(X1
2)}×100(%)で算出した。
The content of α-type silicon nitride (α / α + β) in the sintered body was determined by X-ray diffraction measurement as α-Si 3 N 4
Of (102) and the total peak intensity of the (210) was divided by the peak intensity X 1 in 2, β-Si 3 of N 4 (10
A value obtained by dividing the total peak intensity of 1) and (210) by 2 is defined as a peak intensity X 2 , and an intensity ratio ΔX 1 / (X 1 +
X 2 )} 100 (%).

【0025】[0025]

【表1】 [Table 1]

【0026】表1の結果から明らかなように、コージェ
ライトに希土類元素酸化物を添加した従来のコージェラ
イト焼結体である試料No.25では、熱膨張率が0.2
×10-6/℃と非常に低熱膨張であるが、ヤング率が1
20GPaと低い。
As is clear from the results shown in Table 1, the sample No. 25 which is a conventional cordierite sintered body obtained by adding a rare earth element oxide to cordierite has a coefficient of thermal expansion of 0.2.
Very low thermal expansion of × 10 -6 / ° C, but Young's modulus of 1
It is as low as 20 GPa.

【0027】これに対して、本発明に基づき、コージェ
ライト、窒化珪素、希土類元素酸化物を所定比率で添加
することによりヤング率を200GPa以上に高めるこ
とができるとともに、10〜40℃の熱膨張率を1×1
-6/℃以下に低減することができる。
On the other hand, according to the present invention, the Young's modulus can be increased to 200 GPa or more by adding cordierite, silicon nitride and rare earth element oxide at a predetermined ratio, and the thermal expansion of 10 to 40 ° C. Rate 1 × 1
0 −6 / ° C. or less.

【0028】しかし、コージェライトの含有量が10重
量%よりも少ない試料No.1では、熱膨張率が高く、5
0重量%よりも多い試料No.7ではヤング率が低くなっ
た。
However, in Sample No. 1 having a cordierite content of less than 10% by weight, the coefficient of thermal expansion was high, and
Sample No. 7 having more than 0% by weight had a low Young's modulus.

【0029】また、希土類元素酸化物量が0.5重量%
よりも少ない試料No.20では、ヤング率が低く、10
重量%よりも多い試料No.24では熱膨張率が高くなっ
た。さらに、窒化珪素におけるα型含有率が80%より
も少ない試料No.8ではヤング率が低いものであった。
The rare earth element oxide content is 0.5% by weight.
Sample No. 20 having a lower Young's modulus
In the sample No. 24 having more than the weight%, the coefficient of thermal expansion was high. Sample No. 8 in which the α-type content in silicon nitride was less than 80% had a low Young's modulus.

【0030】また、焼成温度について、1300℃より
も低い試料No.12では、緻密化することができず、1
700℃よりも高い試料No.16では、α−Si3 4
からβ−Si3 4 への転移が進み、α−Si3 4
が少なくなり、ヤング率が低くなった。
Further, with respect to the firing temperature, the sample No. 12 lower than 1300 ° C. cannot be densified,
In sample No. 16 higher than 700 ° C., α-Si 3 N 4
The transition from to β-Si 3 N 4 progressed, the amount of α-Si 3 N 4 decreased, and the Young's modulus decreased.

【0031】[0031]

【発明の効果】以上詳述した通り、本発明の低熱膨張セ
ラミックスは、コージェライトの優れた低熱膨張特性を
維持しつつ、剛性、即ち、ヤング率を高めることができ
る。その結果、この低熱膨張セラミックスを高微細な回
路を形成するためのウエハに露光処理を行うなどの半導
体製造用部品、例えば、露光装置用ステージなどとして
用いることにより、雰囲気の温度変化に対しても寸法の
変化がなく、優れた精度が得られるとともに、振動に伴
う精度の低下をも防止することができ、半導体素子製造
の品質と量産性を高めることができる。
As described above in detail, the low thermal expansion ceramic of the present invention can increase rigidity, that is, Young's modulus, while maintaining excellent low thermal expansion characteristics of cordierite. As a result, by using this low thermal expansion ceramic as a part for semiconductor manufacturing such as performing exposure processing on a wafer for forming a fine circuit, for example, a stage for an exposure apparatus, it can be used even for a temperature change of an atmosphere. There is no change in dimensions, excellent accuracy can be obtained, and a decrease in accuracy due to vibration can be prevented, so that the quality and mass productivity of semiconductor device manufacturing can be improved.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】コージェライトを10〜50重量%、希土
類元素酸化物を0.5〜10重量%の割合で含み、残部
がα型含有率が80%以上の窒化珪素からなり、且つ相
対密度が95%以上であることを特徴とする低熱膨張セ
ラミックス。
1. A silicon nitride containing 10 to 50% by weight of cordierite and 0.5 to 10% by weight of a rare-earth element oxide, the balance being silicon nitride having an α-type content of 80% or more, and a relative density of Is 95% or more.
【請求項2】室温でのヤング率が200GPa以上、1
0〜40℃における熱膨張率が1×10-6以下であるこ
と特徴とする請求項1記載の低熱膨張セラミックス。
2. Young's modulus at room temperature is 200 GPa or more.
2. The low thermal expansion ceramic according to claim 1, wherein the coefficient of thermal expansion at 0 to 40 [deg.] C. is 1 * 10 <-6> or less.
【請求項3】コージェライトを10〜50重量%、希土
類元素酸化物を0.5〜10重量%の割合で含み、残部
がα型含有率が80%以上の窒化珪素からなる成形体
を、不活性ガス雰囲気中で1300〜1700℃の温度
で焼成することを特徴とする低熱膨張セラミックスの製
造方法。
3. A molded article comprising 10 to 50% by weight of cordierite, 0.5 to 10% by weight of a rare earth element oxide, and the remainder comprising silicon nitride having an α-type content of 80% or more, A method for producing low thermal expansion ceramics, comprising firing at a temperature of 1300 to 1700C in an inert gas atmosphere.
JP9262398A 1997-09-26 1997-09-26 Low thermal expansion ceramic and its preparation Pending JPH11100275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9262398A JPH11100275A (en) 1997-09-26 1997-09-26 Low thermal expansion ceramic and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9262398A JPH11100275A (en) 1997-09-26 1997-09-26 Low thermal expansion ceramic and its preparation

Publications (1)

Publication Number Publication Date
JPH11100275A true JPH11100275A (en) 1999-04-13

Family

ID=17375225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9262398A Pending JPH11100275A (en) 1997-09-26 1997-09-26 Low thermal expansion ceramic and its preparation

Country Status (1)

Country Link
JP (1) JPH11100275A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001058867A (en) * 1999-08-23 2001-03-06 Taiheiyo Cement Corp Structure part
WO2002024600A1 (en) * 2000-09-20 2002-03-28 Sumitomo Metal Industries, Ltd. Low thermal expansion ceramic and member for exposure system
WO2004074939A1 (en) * 2003-02-21 2004-09-02 Nihon Ceratec Co., Ltd. Exposure apparatus for liquid crystal panel and exposure apparatus
JP2005203537A (en) * 2004-01-15 2005-07-28 Taiheiyo Cement Corp Lightweight high rigid ceramic member
JP2007254205A (en) * 2006-03-23 2007-10-04 Kyocera Corp Silicon nitride joined body, its production method and member for semiconductor production apparatus using the joined body

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5832063A (en) * 1981-08-13 1983-02-24 工業技術院長 Heat impact resistant anticorrosive ceramic material
JPS59174572A (en) * 1983-03-23 1984-10-03 工業技術院長 Manufacture of minute cordierite-silicon nitride sintered body
JPS60502053A (en) * 1983-08-09 1985-11-28 ジ−テイ−イ− ラボラトリズ インコ−ポレイテツド Silicon nitride-cordierite ceramic article and method for manufacturing the same
JPH02116679A (en) * 1988-10-26 1990-05-01 Japan Metals & Chem Co Ltd Production of high-density sintered silicon nitride body
JPH02221160A (en) * 1989-02-23 1990-09-04 Japan Metals & Chem Co Ltd Production of high-density silicon nitride sintered body
JPH0680470A (en) * 1992-07-17 1994-03-22 Sumitomo Electric Ind Ltd Production of silicon nitride sintered compact
JPH09165264A (en) * 1995-12-15 1997-06-24 Kyocera Corp Silicon nitride sintetred product and its production

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5832063A (en) * 1981-08-13 1983-02-24 工業技術院長 Heat impact resistant anticorrosive ceramic material
JPS59174572A (en) * 1983-03-23 1984-10-03 工業技術院長 Manufacture of minute cordierite-silicon nitride sintered body
JPS60502053A (en) * 1983-08-09 1985-11-28 ジ−テイ−イ− ラボラトリズ インコ−ポレイテツド Silicon nitride-cordierite ceramic article and method for manufacturing the same
JPH02116679A (en) * 1988-10-26 1990-05-01 Japan Metals & Chem Co Ltd Production of high-density sintered silicon nitride body
JPH02221160A (en) * 1989-02-23 1990-09-04 Japan Metals & Chem Co Ltd Production of high-density silicon nitride sintered body
JPH0680470A (en) * 1992-07-17 1994-03-22 Sumitomo Electric Ind Ltd Production of silicon nitride sintered compact
JPH09165264A (en) * 1995-12-15 1997-06-24 Kyocera Corp Silicon nitride sintetred product and its production

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001058867A (en) * 1999-08-23 2001-03-06 Taiheiyo Cement Corp Structure part
WO2002024600A1 (en) * 2000-09-20 2002-03-28 Sumitomo Metal Industries, Ltd. Low thermal expansion ceramic and member for exposure system
WO2004074939A1 (en) * 2003-02-21 2004-09-02 Nihon Ceratec Co., Ltd. Exposure apparatus for liquid crystal panel and exposure apparatus
JP2005203537A (en) * 2004-01-15 2005-07-28 Taiheiyo Cement Corp Lightweight high rigid ceramic member
JP2007254205A (en) * 2006-03-23 2007-10-04 Kyocera Corp Silicon nitride joined body, its production method and member for semiconductor production apparatus using the joined body

Similar Documents

Publication Publication Date Title
JP4416191B2 (en) Low thermal expansion ceramics, manufacturing method thereof, and semiconductor manufacturing component
JPH11343168A (en) Low thermal expansion black ceramics, its production and member for semiconductor producing apparatus
JP4261631B2 (en) Manufacturing method of ceramic sintered body
JPH11209171A (en) Dense low thermal expansion ceramics, its production and member for semiconductor producing device
JP3676552B2 (en) Low thermal expansion ceramics and method for producing the same
EP2581354A1 (en) Oxide ceramics sintered compact and method of manufacturing the same
JPH11100275A (en) Low thermal expansion ceramic and its preparation
JP4429288B2 (en) Low thermal expansion ceramics and members for semiconductor manufacturing equipment using the same
JP4025455B2 (en) Composite oxide ceramics
JPH11236262A (en) Low thermal expansion ceramic structural member and member for semiconductor device producing apparatus using the same
JP3805119B2 (en) Method for producing low thermal expansion ceramics
JP3574560B2 (en) Semiconductor exposure apparatus support member and semiconductor exposure apparatus
JP3537241B2 (en) Method for producing silicon nitride sintered body
JPH06100306A (en) Sialon crystal particle and sintered compact of complex ceramics
JP2000182945A (en) Member for semiconductor aligner
JP3260340B2 (en) Composite ceramic and method for producing the same
JP2001302338A (en) Composite ceramic and manufacturing method thereof
JP4761617B2 (en) Aluminum nitride sintered body, method for producing the same, and electronic component using the same
JP2001302340A (en) High density low thermal expansion ceramic and manufacturing method thereof and member for semiconductor manufacturing device
JP5011609B2 (en) Dense cordierite ceramics and method for producing the same
JP2004140132A (en) Testpiece mounting stage
JP3677360B2 (en) Method for producing silicon nitride sintered body
JP4907791B2 (en) Low thermal expansion ceramics and method for producing the same
JP2000247732A (en) Low-resistance ceramic, its production and member for semiconductor producing apparatus
JP2003137644A (en) Low thermal expansion ceramic, members for ultra- precise machine structure, measuring instrument and semiconductor manufacturing equipment using the same, and method of producing low thermal expansion ceramic

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060711

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070403