JP3676552B2 - Low thermal expansion ceramics and method for producing the same - Google Patents

Low thermal expansion ceramics and method for producing the same Download PDF

Info

Publication number
JP3676552B2
JP3676552B2 JP29276597A JP29276597A JP3676552B2 JP 3676552 B2 JP3676552 B2 JP 3676552B2 JP 29276597 A JP29276597 A JP 29276597A JP 29276597 A JP29276597 A JP 29276597A JP 3676552 B2 JP3676552 B2 JP 3676552B2
Authority
JP
Japan
Prior art keywords
thermal expansion
cordierite
low thermal
rare earth
earth element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29276597A
Other languages
Japanese (ja)
Other versions
JPH11130520A (en
Inventor
啓久 瀬知
政宏 佐藤
豊 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Nikon Corp
Original Assignee
Kyocera Corp
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp, Nikon Corp filed Critical Kyocera Corp
Priority to JP29276597A priority Critical patent/JP3676552B2/en
Priority to US09/177,977 priority patent/US6265334B1/en
Priority to DE19849340A priority patent/DE19849340B4/en
Priority to DE19861434A priority patent/DE19861434B4/en
Publication of JPH11130520A publication Critical patent/JPH11130520A/en
Priority to US10/124,067 priority patent/USRE39120E1/en
Application granted granted Critical
Publication of JP3676552B2 publication Critical patent/JP3676552B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、真空装置構造体、サセプタ、静電チャックあるいはステージや半導体製造プロセスにおける治具などに適したコージェライトを主体とする低熱膨張セラミックスとその製造方法に関する。
【0002】
【従来技術】
従来より、コージェライト系焼結体は、従来から低熱膨張のセラミックスとして知られており、フィルター、ハニカム、耐火物などに応用されている。このコージェライト系焼結体は、コージェライト粉末、あるいはコージェライトを形成するMgO、Al2 3 、SiO2 粉末を配合して、これに焼結助剤として、希土類元素酸化物や、SiO2 、CaO、MgOなどを添加し、所定形状に成形後、1000〜1400℃の温度で焼成することによって作製される(特公昭57−3629号、特開平2−229760号)。
【0003】
一方、LSIなどの半導体装置の製造工程において、シリコンウエハに配線を形成する工程において、ウエハを支持または保持するためのサセプタ、静電チャックや絶縁リングとしてあるいはその他の治具等として、これまでアルミナや窒化珪素が比較的に安価で、化学的にも安定であるため広く用いられている。また、露光装置のXYテーブル等として従来よりアルミナや窒化珪素などのセラミックスも用いられている。
【0004】
また、最近では、コージェライトの低熱膨張性を利用し、半導体製造装置用部品として応用することが、特開平1−191422号や特公平6−97675号にて提案されている。特開平1−191422号によれば、X線マスクにおけるマスク基板に接着する補強リングとして、SiO2 、インバーなどに加え、コージェライトによって形成しメンブレンの応力を制御することが提案されている。
【0005】
また、特公平6−97675号では、ウエハを載置する静電チャック用基盤としてアルミナやコージェライト系焼結体を使用することが提案されている。
【0006】
【発明が解決しようとする課題】
近年、LSIなどにおける高集積化に伴い、回路の微細化が急速に進められ、その線幅もサブミクロンオーダーのレベルまで高精密化しつつある。そしてSiウエハに高精密回路を形成するための露光装置に対して高い精度が要求され、たとえば露光装置のステージ用部材においては100nm(0.1μm)以下の位置決め精度が要求され、露光の位置合わせ誤差が製品の品質向上や歩留まり向上に大きな影響を及ぼしているのが現状である。
【0007】
半導体製造装置用として一般に用いられてきたアルミナ、窒化珪素などのセラミックスは、金属に比べて熱膨張率が小さいものの、10〜40℃の熱膨張率はそれぞれ5.2×10-6/℃、1.5×10-6/℃であり、雰囲気温度が0.1℃変化すると数100nm(0.1μm)の変形が発生することになり、露光等の精密な工程ではこの変化が大きな問題となり、従来のセラミックスでは精度が低く、生産性の低下をもたらしている。
【0008】
これに対して、コージェライト系焼結体は、熱膨張率が0.2×10-6/℃程度と、アルミナや窒化珪素に比較して熱膨張率が低く、上記のような露光精度に対する問題はある程度解決される。
【0009】
ところが、露光装置のステージのように、Siウエハを載置した支持体が露光処理を施す位置まで高速移動を伴うような場合には、移動後の支持体自体が所定位置に停止後も振動しており、そのために、その振動した状態で露光処理を施すと露光精度が低下するという問題があった。これは、露光によって形成する配線幅が細くなるほど顕著であり、高微細な配線回路を形成する上では致命的な問題となっていた。
【0010】
このような振動は、部材自体の剛性が低いことによって引き起こされるものであることから、これらの部材に対しては高い剛性、即ち高ヤング率が要求されている。
【0011】
従って、本発明は、それ自体低熱膨張を有するとともに、高剛性を有する低熱膨張セラミックスとその製造方法を提供することを目的とするものである。また、本発明は、ステージなどの高速駆動される場合においても振動が生じにくい半導体製造用部品を提供することを目的とするものである。
【0012】
【課題を解決するための手段】
本発明者等は、上記課題に対し鋭意研究を重ねた結果、コージェライトに希土類元素酸化物を所定の比率で複合化し、かつコージェライト結晶の粒界に前記希土類元素酸化物を特定の結晶相として存在させることにより、低熱膨張特性を阻害することなく焼結性を高め、ヤング率を高めることができることを見いだし、本発明に至った。
【0013】
即ち、本発明の低熱膨張セラミックスは、コージェライトを80〜92重量%、Y、Yb、Er及びCeからなる群より選択された希土類元素(RE)の酸化物を8〜20重量%の割合で含み、相対密度95%以上であり、且つコージェライト結晶の粒界に、RE・2SiOで表されるダイシリケート結晶相が析出しており、130GPa以上のヤング率を有していることを特徴とするものであり、さらに、低熱膨張セラミックスの製造方法としては、コージェライト粉末を80〜92重量%、Y、Yb、Er及びCeからなる群より選択された希土類元素(RE)の酸化物を8〜20重量%の割合で配合した成形体を、1300〜1500℃の温度で焼成した後、1000℃までを10℃/min以下冷却速度で冷却し、RE ・2SiO で表されるダイシリケート結晶相を析出せしめることを特徴とするものである。
【0014】
【発明の実施の形態】
本発明の低熱膨張セラミックスは、コージェライトは、一般式2MgO・2Al2 3 ・5SiO2 で表される複合酸化物を主体とするものであり、平均粒径が1〜10μmの結晶粒子として存在する。このコージェライトは、焼結体中に、80〜92重量%、好ましくは85〜90重量%の割合で存在する。
【0015】
また、この焼結体中には、副成分として希土類元素酸化物を8〜20重量%、特に10〜15重量%の割合で含有するものである。希土類元素酸化物は、焼成時にコージェライトの成分と反応し、液相を生成することから焼結性を高める作用が発揮されるとともにそれ自体のヤング率が高いために、これらを含有せしめることにより、後述する実施例から明らかなように、焼結体のヤング率を130GPa以上に高めることができる。
【0016】
このような希土類元素酸化物の添加により、焼結体の相対密度を95%以上、特に96%以上まで高めることができる。焼結助剤量が8重量%よりも少ないと焼結性が十分でなく、高い温度で焼成する必要があり、または相対密度95%以上に緻密化できなくなる。また20重量%を越えると熱膨張係数が大きくなり、0.5×10-6/℃以下の特性が達成できない。
【0017】
また、焼結体中には、上記のコージェライト結晶粒子の粒界に、焼結助剤として添加された希土類元素(RE)酸化物がRE・2SiOで表されるダイシリケート結晶相として存在することによって、セラミックスの熱膨張率が大きくなることを防ぐことができる。即ち、希土類元素酸化物が、粒界において、非晶質相として存在する場合に比較して、結晶相、とりわけRE・2SiOで表されるダイシリケート相は、原子配列が密であるために、焼結体全体のヤング率を向上させるとともに、熱膨張係数も低下させる作用を有する。なお、希土類元素としては、Y、Yb、ErあるいはCeが使用される。
【0018】
上記のように、粒界にダイシリケート結晶相を析出させるためには、希土類元素酸化物を比較的多量に含有することが必要である。従って、希土類元素酸化物の含有量を上記の比率に限定したのは、8重量%よりも少ないとダイシリケート結晶相の析出が望めず、その結果、セラミックスのヤング率を高めることができず、20重量%よりも大きいと反応するコージェライトの量が多くなるとともに異相が析出し、セラミックスの熱膨張率が大きくなり、コージェライトの優れた低熱膨張特性が発揮されないためである。なお、本発明のセラミックスの熱膨張率は、10〜40℃において0.5×10-6/℃以下、特に0.4×10-6/℃以下であるのが望ましい。
【0019】
かかるダイシリケート結晶相は、希土類元素酸化物と、コージェライト中のSiO2 分との反応により生成される結晶相であるが、コージェライト結晶相は、必ずしも一般式2MgO・2Al2 3 ・5SiO2 の組成からなるものではなく、MgO、Al2 3 、SiO2 の各成分に対して固溶源が大きいために、例えば、希土類元素酸化物と反応した残余のMgO、Al2 3 は、コージェライト結晶中に固溶して、非化学量論組成のコージェライト結晶相を形成してもよい。
【0020】
上記のようなセラミックスを作製するには、平均粒径が10μm以下のコージェライト粉末に対して、平均粒径が10μm以下の希土類元素酸化物粉末を8〜20重量%の割合で添加する。
【0021】
上記の比率で各成分を配合した後、ボールミルなどにより十分に混合し、所定形状に所望の成形手段、例えば、金型プレス,冷間静水圧プレス,押出し成形等により任意の形状に成形後、焼成する。
【0022】
焼成は、1300〜1500℃の温度範囲、好ましくは1350〜1450℃で1〜10時間程度焼結することにより相対密度98%以上に緻密化することができる。このときの温度が1300℃よりも低いと緻密化できず、1500℃を越えると、成形体が溶融してしまう。
【0023】
また、本発明において、粒界にRE2 3 ・2SiO2 の結晶相を析出させるためには、上記の焼成後に焼成温度から1000℃の温度領域までを平均で10℃/min以下、特に5℃/min以下の冷却速度で冷却することが必要である。この温度領域の冷却速度が10℃/minよりも速いと粒界にダイシリケート結晶相を析出させることは困難である。なお、徐冷温度領域は、焼成温度から1000℃以下の領域まで拡げても何ら差し支えない。
【0024】
【実施例】
平均粒径が3μmのコージェライト粉末に対して、平均粒径が1μmのY2 3 、Yb2 3 、Er2 3 、CeO2 の各粉末を表1、表2に示す割合で調合後、ボールミルで24時間混合した後、1t/cm2 の圧力で金型成形した。そして、その成形体を炭化珪素質の匣鉢に入れて表1、2の条件で焼成し、1000℃までの平均冷却速度を表1、2のように変化させて実施して、種々のセラミックスを作製した。
【0025】
得られたセラミックスを研磨し、3×4×15mmの大きさに研削加工し、このセラミックスの10〜40℃までの熱膨張係数を測定した。また、超音波パルス法により、室温でのヤング率を測定した。結果は表1,2に示した。
【0026】
【表1】

Figure 0003676552
【0027】
【表2】
Figure 0003676552
【0028】
表1,2にみられるように、本発明に基づき、コージェライトに希土類元素酸化物を所定比率で添加し、RE2 3 ・2SiO2 の結晶相を析出させることにより、熱膨張率の低減化を図り0.5×10-6/℃以下を達成し、且つヤング率を120GPa以上に高めることができ、その添加量が増加するに従いヤング率が高くなる傾向が見られた。
【0029】
しかし、これらの希土類元素酸化物量が8重量%よりも少ない試料No.1は、相対密度95%以上が達成されず、しかもヤング率が120GPaよりも低く、熱膨張率も0.5×10-6/℃よりも大きいものであった。また、20重量%を越える試料No.17では、ヤング率は高いものの熱膨張率が0.5×10-6/℃よりも大きいものであった。
【0030】
さらに、焼成温度については、1300℃よりも低い試料No.3では緻密化することができず相対密度95%以上が達成されなかった。また、焼成温度が1500℃よりも高い試料No.9では、成形体の溶融が見られ、セラミックスを作製することができなかった。
【0031】
また、冷却速度については、1000℃までの冷却速度が10℃/minよりも速い試料No.13、14、22、27、32では、RE2 3 ・2SiO2 の結晶相が析出せず、その結果、ヤング率が低く、しかも熱膨張係数も大きいものであった。従って、粒界にRE2 3 ・2SiO2 の結晶相を析出させることが高ヤング率化、低熱膨張化の上で重要であることがわかる。
【0032】
【発明の効果】
以上詳述した通り、本発明の低熱膨張セラミックスは、コージェライトの優れた低熱膨張特性を維持しつつ、剛性、即ち、ヤング率を高めることができる。その結果、この低熱膨張セラミックスを高微細な回路を形成するためのウエハに露光処理を行うなどの半導体製造装置用部品、例えば、露光装置用ステージなどとして用いることにより、雰囲気の温度変化に対しても寸法の変化がなく、優れた精度が得られるとともに、振動に伴う精度の低下をも防止することができ、半導体素子製造の品質と量産性を高めることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a low thermal expansion ceramic mainly composed of cordierite suitable for a vacuum device structure, a susceptor, an electrostatic chuck, a stage, a jig in a semiconductor manufacturing process, and the like, and a manufacturing method thereof.
[0002]
[Prior art]
Conventionally, cordierite-based sintered bodies are conventionally known as low thermal expansion ceramics and are applied to filters, honeycombs, refractories, and the like. This cordierite-based sintered body is blended with cordierite powder or MgO, Al 2 O 3 , and SiO 2 powder forming cordierite, and a rare earth element oxide or SiO 2 as a sintering aid. , CaO, MgO, etc. are added, formed into a predetermined shape, and then fired at a temperature of 1000 to 1400 ° C. (Japanese Examined Patent Publication No. 57-3629, Japanese Laid-Open Patent Application No. 2-229760).
[0003]
On the other hand, in the manufacturing process of semiconductor devices such as LSI, in the process of forming wiring on a silicon wafer, as a susceptor, electrostatic chuck, insulating ring or other jig for supporting or holding the wafer, alumina has been used so far. And silicon nitride are widely used because they are relatively inexpensive and chemically stable. In addition, ceramics such as alumina and silicon nitride are conventionally used as an XY table for an exposure apparatus.
[0004]
Recently, it has been proposed in Japanese Patent Application Laid-Open No. 1-191422 and Japanese Patent Publication No. 6-97675 to utilize the low thermal expansion property of cordierite as a component for a semiconductor manufacturing apparatus. According to Japanese Patent Laid-Open No. 1-191422, it is proposed that a reinforcing ring bonded to a mask substrate in an X-ray mask is formed by cordierite in addition to SiO 2 or invar to control the membrane stress.
[0005]
Japanese Patent Publication No. 6-97675 proposes the use of alumina or a cordierite-based sintered body as an electrostatic chuck substrate on which a wafer is placed.
[0006]
[Problems to be solved by the invention]
In recent years, along with higher integration in LSIs and the like, circuit miniaturization has been rapidly progressed, and the line width is also being improved to a submicron order level. Further, high accuracy is required for an exposure apparatus for forming a high-precision circuit on a Si wafer. For example, a stage member of the exposure apparatus requires positioning accuracy of 100 nm (0.1 μm) or less, and exposure alignment is performed. The current situation is that errors greatly affect the quality improvement and yield improvement of products.
[0007]
Although ceramics such as alumina and silicon nitride that have been generally used for semiconductor manufacturing equipment have a smaller coefficient of thermal expansion than metals, the coefficient of thermal expansion at 10 to 40 ° C. is 5.2 × 10 −6 / ° C., respectively. It is 1.5 × 10 -6 / ° C. When the ambient temperature changes by 0.1 ° C, deformation of several hundreds of nanometers (0.1 µm) occurs, and this change becomes a major problem in precise processes such as exposure. Conventional ceramics have low accuracy, resulting in a decrease in productivity.
[0008]
On the other hand, the cordierite-based sintered body has a thermal expansion coefficient of about 0.2 × 10 −6 / ° C., which is lower than that of alumina or silicon nitride. The problem is solved to some extent.
[0009]
However, when the support on which the Si wafer is placed is moved to a position where exposure processing is performed, such as the stage of an exposure apparatus, the support itself after the movement vibrates even after stopping at a predetermined position. For this reason, there has been a problem in that the exposure accuracy is lowered when the exposure process is performed in the vibrated state. This is more conspicuous as the width of the wiring formed by exposure becomes narrower, and has become a fatal problem in forming a highly fine wiring circuit.
[0010]
Since such vibration is caused by the low rigidity of the members themselves, high rigidity, that is, high Young's modulus is required for these members.
[0011]
Accordingly, an object of the present invention is to provide a low thermal expansion ceramic that has low thermal expansion and high rigidity, and a method for producing the same. Another object of the present invention is to provide a semiconductor manufacturing component that is less prone to vibration even when driven at a high speed, such as a stage.
[0012]
[Means for Solving the Problems]
As a result of intensive studies on the above problems, the present inventors have complexed rare earth element oxides with cordierite at a predetermined ratio, and the rare earth element oxides have a specific crystal phase at the grain boundaries of the cordierite crystals. As a result, the present inventors have found that it is possible to enhance the sinterability and increase the Young's modulus without hindering the low thermal expansion characteristics, and have reached the present invention.
[0013]
That is, the low thermal expansion ceramic of the present invention comprises cordierite in an amount of 80 to 92% by weight, rare earth element (RE) oxide selected from the group consisting of Y, Yb, Er and Ce in a proportion of 8 to 20% by weight. And a relative density of 95% or more, and a disilicate crystal phase represented by RE 2 O 3 · 2SiO 2 is precipitated at the grain boundary of the cordierite crystal and has a Young's modulus of 130 GPa or more. it is characterized in further process for producing a low thermal expansion ceramics, cordierite powder 80 to 92 wt%, Y, Yb, rare earth element selected from the group consisting of Er and Ce of (RE) the molded body obtained by blending the oxide in a proportion of 8-20 wt.%, after firing at a temperature of 1300 to 1500 ° C., until 1000 ° C. and cooled in the following cooling rate 10 ° C. / min, R It is characterized in that the allowed to precipitate disilicate crystal phase represented by 2 O 3 · 2SiO 2.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
In the low thermal expansion ceramic of the present invention, cordierite is mainly composed of a composite oxide represented by the general formula 2MgO · 2Al 2 O 3 · 5SiO 2 and exists as crystal particles having an average particle size of 1 to 10 μm. To do. This cordierite is present in the sintered body in a proportion of 80 to 92% by weight, preferably 85 to 90% by weight.
[0015]
The sintered body contains rare earth element oxide as an auxiliary component in an amount of 8 to 20% by weight, particularly 10 to 15% by weight. Rare earth element oxides react with the cordierite components during firing to produce a liquid phase, so that the effect of enhancing the sinterability is exhibited and the Young's modulus of itself is high. As is apparent from the examples described later, the Young's modulus of the sintered body can be increased to 130 GPa or more .
[0016]
By adding such a rare earth element oxide, the relative density of the sintered body can be increased to 95% or more, particularly 96% or more. If the amount of the sintering aid is less than 8% by weight, the sinterability is not sufficient, it is necessary to fire at a high temperature, or the relative density cannot be increased to 95% or more. On the other hand, if it exceeds 20% by weight, the coefficient of thermal expansion becomes large, and characteristics of 0.5 × 10 −6 / ° C. or less cannot be achieved.
[0017]
Further, in the sintered body, a disilicate crystal in which a rare earth element (RE) oxide added as a sintering aid is represented by RE 2 O 3 · 2SiO 2 at the grain boundary of the cordierite crystal particles. By existing as a phase, it is possible to prevent an increase in the coefficient of thermal expansion of the ceramic. That is, compared to the case where the rare earth element oxide exists as an amorphous phase at the grain boundary, the crystal phase, particularly the disilicate phase represented by RE 2 O 3 · 2SiO 2 has a dense atomic arrangement. Therefore, it has the effect of improving the Young's modulus of the entire sintered body and reducing the thermal expansion coefficient. Note that Y, Yb, Er, or Ce is used as the rare earth element.
[0018]
As described above, in order to precipitate the disilicate crystal phase at the grain boundary, it is necessary to contain a relatively large amount of rare earth element oxide. Therefore, the content of the rare earth element oxide is limited to the above-mentioned ratio. If the content is less than 8% by weight, precipitation of a disilicate crystal phase cannot be expected, and as a result, the Young's modulus of the ceramic cannot be increased. When the amount is more than 20% by weight, the amount of cordierite that reacts increases and a heterogeneous phase precipitates, the thermal expansion coefficient of the ceramic increases, and the excellent low thermal expansion characteristic of cordierite is not exhibited. The thermal expansion coefficient of the ceramic of the present invention is desirably 0.5 × 10 −6 / ° C. or less, particularly 0.4 × 10 −6 / ° C. or less at 10 to 40 ° C.
[0019]
Such a disilicate crystal phase is a crystal phase formed by a reaction between a rare earth element oxide and a SiO 2 component in cordierite, but the cordierite crystal phase is not necessarily a general formula 2MgO · 2Al 2 O 3 · 5SiO. 2 and a large solid solution source for each component of MgO, Al 2 O 3 and SiO 2 , for example, the residual MgO and Al 2 O 3 reacted with the rare earth element oxide are The cordierite crystal phase having a non-stoichiometric composition may be formed by solid solution in the cordierite crystal.
[0020]
In order to produce the ceramic as described above, a rare earth element oxide powder having an average particle size of 10 μm or less is added at a ratio of 8 to 20% by weight to a cordierite powder having an average particle size of 10 μm or less.
[0021]
After blending each component in the above ratio, mix well with a ball mill or the like, and after molding into a desired shape by a desired molding means such as a die press, cold isostatic pressing, extrusion molding, etc., Bake.
[0022]
Firing can be densified to a relative density of 98% or more by sintering at a temperature range of 1300 to 1500 ° C., preferably 1350 to 1450 ° C. for about 1 to 10 hours. If the temperature at this time is lower than 1300 ° C., it cannot be densified, and if it exceeds 1500 ° C., the molded body will melt.
[0023]
In the present invention, in order to precipitate the RE 2 O 3 .2SiO 2 crystal phase at the grain boundaries, the average from the firing temperature to the temperature range of 1000 ° C. after the firing is 10 ° C./min or less, particularly 5 It is necessary to cool at a cooling rate of ° C./min or less. If the cooling rate in this temperature region is faster than 10 ° C./min, it is difficult to precipitate a disilicate crystal phase at the grain boundary. The slow cooling temperature region can be expanded from the firing temperature to a region of 1000 ° C. or lower.
[0024]
【Example】
Each powder of Y 2 O 3 , Yb 2 O 3 , Er 2 O 3 , and CeO 2 having an average particle size of 1 μm is prepared in the proportions shown in Tables 1 and 2 with respect to the cordierite powder having an average particle size of 3 μm. Then, after mixing for 24 hours with a ball mill, the mold was molded at a pressure of 1 t / cm 2 . Then, the molded body was put in a silicon carbide mortar and fired under the conditions shown in Tables 1 and 2, and the average cooling rate up to 1000 ° C. was changed as shown in Tables 1 and 2 to implement various ceramics. Was made.
[0025]
The obtained ceramic was polished and ground to a size of 3 × 4 × 15 mm, and the thermal expansion coefficient of this ceramic up to 10 to 40 ° C. was measured. Further, the Young's modulus at room temperature was measured by an ultrasonic pulse method. The results are shown in Tables 1 and 2.
[0026]
[Table 1]
Figure 0003676552
[0027]
[Table 2]
Figure 0003676552
[0028]
As can be seen from Tables 1 and 2 , the thermal expansion coefficient is reduced by adding rare earth element oxides to cordierite at a predetermined ratio and precipitating a crystal phase of RE 2 O 3 .2SiO 2 based on the present invention. achieving the aims 0.5 × 10 -6 / ℃ or less of, and can increase the Young's modulus over 120 GPa, a tendency that the Young's modulus increases were observed in accordance with the addition amount increases.
[0029]
However, sample No. 1 in which the amount of these rare earth element oxides is less than 8% by weight does not achieve a relative density of 95% or more, has a Young's modulus lower than 120 GPa, and a thermal expansion coefficient of 0.5 × 10 −. It was larger than 6 / ° C. In Sample No. 17 exceeding 20% by weight, the Young's modulus was high, but the thermal expansion coefficient was larger than 0.5 × 10 −6 / ° C.
[0030]
Furthermore, regarding the firing temperature, the sample No. 3 lower than 1300 ° C. could not be densified, and a relative density of 95% or more was not achieved. Further, in sample No. 9 having a firing temperature higher than 1500 ° C., the molded body was melted, and ceramics could not be produced.
[0031]
As for the cooling rate, in the samples No. 13, 14, 22, 27, and 32 where the cooling rate up to 1000 ° C. is faster than 10 ° C./min, the crystal phase of RE 2 O 3 .2SiO 2 does not precipitate, As a result, the Young's modulus was low and the coefficient of thermal expansion was large. Therefore, it can be seen that the precipitation of the RE 2 O 3 .2SiO 2 crystal phase at the grain boundaries is important for increasing the Young's modulus and reducing the thermal expansion.
[0032]
【The invention's effect】
As described above in detail, the low thermal expansion ceramic of the present invention can increase rigidity, that is, Young's modulus, while maintaining the excellent low thermal expansion characteristics of cordierite. As a result, by using this low thermal expansion ceramic as a component for semiconductor manufacturing equipment such as performing exposure processing on a wafer for forming a high-definition circuit, for example, a stage for an exposure equipment, the temperature of the atmosphere can be reduced. In addition, there is no change in dimensions, and excellent accuracy can be obtained. Also, a decrease in accuracy due to vibration can be prevented, and the quality and mass productivity of semiconductor element manufacturing can be improved.

Claims (2)

コージェライトを80〜92重量%、Y、Yb、Er及びCeからなる群より選択された希土類元素(RE)の酸化物を8〜20重量%の割合で含み、相対密度95%以上であり、且つコージェライト結晶の粒界に、RE・2SiOで表されるダイシリケート結晶相が析出しており、130GPa以上のヤング率を有していることを特徴とする低熱膨張セラミックス。Cordierite is contained in an amount of 8 to 20 wt% of a rare earth element (RE) oxide selected from the group consisting of 80 to 92 wt%, Y, Yb, Er and Ce , and a relative density of 95% or more, A low thermal expansion ceramic characterized in that a disilicate crystal phase represented by RE 2 O 3 · 2SiO 2 is precipitated at a grain boundary of cordierite crystal and has a Young's modulus of 130 GPa or more . コージェライト粉末を80〜92重量%、Y、Yb、Er及びCeからなる群より選択された希土類元素(RE)の酸化物を8〜20重量%の割合で配合した成形体を、1300〜1500℃の温度で焼成した後、1000℃までを10℃/min以下冷却速度で冷却し、RE ・2SiO で表されるダイシリケート結晶相を析出せしめることを特徴とする低熱膨張セラミックスの製造方法。1300-1500, a molded body in which cordierite powder is blended in an amount of 8-20% by weight of a rare earth element (RE) oxide selected from the group consisting of 80-92% by weight, Y, Yb, Er and Ce. after baking at ° C. of temperature, up to 1000 ° C. and cooled in the following cooling rate 10 ° C. / min, the low thermal expansion ceramic, characterized in that allowed to precipitate disilicate crystal phase represented by RE 2 O 3 · 2SiO 2 Manufacturing method.
JP29276597A 1997-10-24 1997-10-24 Low thermal expansion ceramics and method for producing the same Expired - Fee Related JP3676552B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP29276597A JP3676552B2 (en) 1997-10-24 1997-10-24 Low thermal expansion ceramics and method for producing the same
US09/177,977 US6265334B1 (en) 1997-10-24 1998-10-22 Ceramic sintered product and process for producing the same
DE19849340A DE19849340B4 (en) 1997-10-24 1998-10-26 Ceramic sintered product and process for its production
DE19861434A DE19861434B4 (en) 1997-10-24 1998-10-26 An article of low thermal expansion ceramic material and its use
US10/124,067 USRE39120E1 (en) 1997-10-24 2002-04-16 Ceramic sintered product and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29276597A JP3676552B2 (en) 1997-10-24 1997-10-24 Low thermal expansion ceramics and method for producing the same

Publications (2)

Publication Number Publication Date
JPH11130520A JPH11130520A (en) 1999-05-18
JP3676552B2 true JP3676552B2 (en) 2005-07-27

Family

ID=17786056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29276597A Expired - Fee Related JP3676552B2 (en) 1997-10-24 1997-10-24 Low thermal expansion ceramics and method for producing the same

Country Status (1)

Country Link
JP (1) JP3676552B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002167267A (en) * 2000-11-28 2002-06-11 Kyocera Corp Low thermal expansion ceramic and method of manufacturing it
US7960009B2 (en) * 2008-02-29 2011-06-14 Corning Incorporated Dispersion-toughened cordierite for filter and substrate applications
JP5657210B2 (en) 2009-01-28 2015-01-21 京セラ株式会社 A member for semiconductor manufacturing equipment comprising a cordierite sintered body
JP2010208943A (en) * 2010-05-17 2010-09-24 Kyocera Corp Low thermal expansion ceramic and method for producing the same
EP2679562B1 (en) 2011-02-24 2017-03-29 Kyocera Corporation Cordierite sintered body and member for semiconductor device composed of cordierite sintered body
JP6231910B2 (en) * 2014-03-14 2017-11-15 日本碍子株式会社 Plugged honeycomb structure
JP6940959B2 (en) * 2016-03-23 2021-09-29 日本碍子株式会社 Cordellite sintered body, its manufacturing method and composite substrate
CN115974540B (en) * 2022-12-03 2023-11-24 昆明理工大学 Rare earth doped cordierite ceramic material and preparation method thereof

Also Published As

Publication number Publication date
JPH11130520A (en) 1999-05-18

Similar Documents

Publication Publication Date Title
JP4416191B2 (en) Low thermal expansion ceramics, manufacturing method thereof, and semiconductor manufacturing component
JP5657210B2 (en) A member for semiconductor manufacturing equipment comprising a cordierite sintered body
US6265334B1 (en) Ceramic sintered product and process for producing the same
JPH11343168A (en) Low thermal expansion black ceramics, its production and member for semiconductor producing apparatus
JP3676552B2 (en) Low thermal expansion ceramics and method for producing the same
JP4261631B2 (en) Manufacturing method of ceramic sintered body
JPH11209171A (en) Dense low thermal expansion ceramics, its production and member for semiconductor producing device
JP4429288B2 (en) Low thermal expansion ceramics and members for semiconductor manufacturing equipment using the same
JP3469513B2 (en) Exposure apparatus and support member used therein
JP4025455B2 (en) Composite oxide ceramics
JPH11236262A (en) Low thermal expansion ceramic structural member and member for semiconductor device producing apparatus using the same
JP3805119B2 (en) Method for producing low thermal expansion ceramics
JPH11100275A (en) Low thermal expansion ceramic and its preparation
JP3537241B2 (en) Method for producing silicon nitride sintered body
JPH06100306A (en) Sialon crystal particle and sintered compact of complex ceramics
JP2001039764A (en) Cordierite ceramics and its production
JP2002167267A (en) Low thermal expansion ceramic and method of manufacturing it
JP3260340B2 (en) Composite ceramic and method for producing the same
JP2001302338A (en) Composite ceramic and manufacturing method thereof
JP2002160972A (en) High rigidity and low thermal expansion ceramic and its manufacturing method
JP5011609B2 (en) Dense cordierite ceramics and method for producing the same
JP4761617B2 (en) Aluminum nitride sintered body, method for producing the same, and electronic component using the same
JP2000247732A (en) Low-resistance ceramic, its production and member for semiconductor producing apparatus
JP2003137644A (en) Low thermal expansion ceramic, members for ultra- precise machine structure, measuring instrument and semiconductor manufacturing equipment using the same, and method of producing low thermal expansion ceramic
JP2001058867A (en) Structure part

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050428

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees