JPH11130520A - Low thermally expandable ceramic and its production - Google Patents

Low thermally expandable ceramic and its production

Info

Publication number
JPH11130520A
JPH11130520A JP9292765A JP29276597A JPH11130520A JP H11130520 A JPH11130520 A JP H11130520A JP 9292765 A JP9292765 A JP 9292765A JP 29276597 A JP29276597 A JP 29276597A JP H11130520 A JPH11130520 A JP H11130520A
Authority
JP
Japan
Prior art keywords
cordierite
thermal expansion
weight
ceramic
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9292765A
Other languages
Japanese (ja)
Other versions
JP3676552B2 (en
Inventor
Hirohisa Sechi
啓久 瀬知
Masahiro Sato
政宏 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP29276597A priority Critical patent/JP3676552B2/en
Priority to US09/177,977 priority patent/US6265334B1/en
Priority to DE19849340A priority patent/DE19849340B4/en
Priority to DE19861434A priority patent/DE19861434B4/en
Publication of JPH11130520A publication Critical patent/JPH11130520A/en
Priority to US10/124,067 priority patent/USRE39120E1/en
Application granted granted Critical
Publication of JP3676552B2 publication Critical patent/JP3676552B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a low thermally expandable ceramic having both a low thermal expansion and high rigidity and to provide a method for producing the ceramic. SOLUTION: A molded article obtained by compounding 80-92 wt.% of cordierite with 8-20 wt.% of an oxide of rare earth element (RE) is baked in vacuum at 1,300-1,500 deg.C, cooled at 10 deg.C/min cooling rate to 1,000 deg.C to give a low thermally expandable ceramic comprising cordierite as a main phase and a crystal phase of the formula RE2 O3 .2SiO2 precipitated on the boundary, having <=0.5×10<-6> / deg.C coefficient of thermal expansion and >=120 GPa Young modulus at >=95% relative humidity at 10-40 deg.C, suitable for especially a part of semiconductor producing apparatus such as a stage for an exposure device, etc.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、真空装置構造体、
サセプタ、静電チャックあるいはステージや半導体製造
プロセスにおける治具などに適したコージェライトを主
体とする低熱膨張セラミックスとその製造方法に関す
る。
TECHNICAL FIELD The present invention relates to a vacuum device structure,
The present invention relates to a low thermal expansion ceramic mainly composed of cordierite suitable for a susceptor, an electrostatic chuck, a stage, a jig in a semiconductor manufacturing process, and a manufacturing method thereof.

【0002】[0002]

【従来技術】従来より、コージェライト系焼結体は、従
来から低熱膨張のセラミックスとして知られており、フ
ィルター、ハニカム、耐火物などに応用されている。こ
のコージェライト系焼結体は、コージェライト粉末、あ
るいはコージェライトを形成するMgO、Al2 3
SiO2 粉末を配合して、これに焼結助剤として、希土
類元素酸化物や、SiO2 、CaO、MgOなどを添加
し、所定形状に成形後、1000〜1400℃の温度で
焼成することによって作製される(特公昭57−362
9号、特開平2−229760号)。
2. Description of the Related Art Conventionally, cordierite-based sintered bodies have been conventionally known as low thermal expansion ceramics, and have been applied to filters, honeycombs, refractories, and the like. The cordierite-based sintered body is made of cordierite powder or MgO, Al 2 O 3 ,
By mixing SiO 2 powder, adding a rare earth element oxide, SiO 2 , CaO, MgO, etc. as a sintering aid thereto, forming the mixture into a predetermined shape, and firing at a temperature of 1000 to 1400 ° C. Produced (Japanese Patent Publication No. 57-362)
9, JP-A-2-229760).

【0003】一方、LSIなどの半導体装置の製造工程
において、シリコンウエハに配線を形成する工程におい
て、ウエハを支持または保持するためのサセプタ、静電
チャックや絶縁リングとしてあるいはその他の治具等と
して、これまでアルミナや窒化珪素が比較的に安価で、
化学的にも安定であるため広く用いられている。また、
露光装置のXYテーブル等として従来よりアルミナや窒
化珪素などのセラミックスも用いられている。
On the other hand, in a process of manufacturing a semiconductor device such as an LSI, in a process of forming wiring on a silicon wafer, a susceptor for supporting or holding the wafer, an electrostatic chuck, an insulating ring, or other jigs, etc. So far, alumina and silicon nitride have been relatively inexpensive,
It is widely used because it is chemically stable. Also,
Conventionally, ceramics such as alumina and silicon nitride have been used as an XY table of an exposure apparatus.

【0004】また、最近では、コージェライトの低熱膨
張性を利用し、半導体製造装置用部品として応用するこ
とが、特開平1−191422号や特公平6−9767
5号にて提案されている。特開平1−191422号に
よれば、X線マスクにおけるマスク基板に接着する補強
リングとして、SiO2 、インバーなどに加え、コージ
ェライトによって形成しメンブレンの応力を制御するこ
とが提案されている。
Recently, it has been proposed to use cordierite as a part for semiconductor manufacturing equipment by utilizing its low thermal expansion property, as disclosed in JP-A-1-191422 and JP-B-6-9767.
No. 5 is proposed. According to Japanese Patent Application Laid-Open No. 1-1191422, it is proposed that a reinforcing ring to be bonded to a mask substrate in an X-ray mask is formed of cordierite in addition to SiO 2 , invar and the like to control the stress of the membrane.

【0005】また、特公平6−97675号では、ウエ
ハを載置する静電チャック用基盤としてアルミナやコー
ジェライト系焼結体を使用することが提案されている。
In Japanese Patent Publication No. 6-97675, it is proposed to use an alumina or cordierite-based sintered body as a base for an electrostatic chuck on which a wafer is mounted.

【0006】[0006]

【発明が解決しようとする課題】近年、LSIなどにお
ける高集積化に伴い、回路の微細化が急速に進められ、
その線幅もサブミクロンオーダーのレベルまで高精密化
しつつある。そしてSiウエハに高精密回路を形成する
ための露光装置に対して高い精度が要求され、たとえば
露光装置のステージ用部材においては100nm(0.
1μm)以下の位置決め精度が要求され、露光の位置合
わせ誤差が製品の品質向上や歩留まり向上に大きな影響
を及ぼしているのが現状である。
In recent years, with high integration in LSIs and the like, circuit miniaturization has been rapidly advanced,
The line width is also being refined to a submicron order. High accuracy is required for an exposure apparatus for forming a high-precision circuit on a Si wafer. For example, a stage member of an exposure apparatus requires a 100 nm (0.
At present, a positioning accuracy of 1 μm or less is required, and a positioning error of exposure has a great influence on improvement of product quality and yield.

【0007】半導体製造装置用として一般に用いられて
きたアルミナ、窒化珪素などのセラミックスは、金属に
比べて熱膨張率が小さいものの、10〜40℃の熱膨張
率はそれぞれ5.2×10-6/℃、1.5×10-6/℃
であり、雰囲気温度が0.1℃変化すると数100nm
(0.1μm)の変形が発生することになり、露光等の
精密な工程ではこの変化が大きな問題となり、従来のセ
ラミックスでは精度が低く、生産性の低下をもたらして
いる。
Ceramics such as alumina and silicon nitride which have been generally used for semiconductor manufacturing equipment have a smaller coefficient of thermal expansion than metals, but have a coefficient of thermal expansion of 5.2 × 10 -6 at 10 to 40 ° C. / ° C, 1.5 × 10 -6 / ° C
Several hundred nm when the ambient temperature changes by 0.1 ° C.
(0.1 .mu.m), and this change becomes a serious problem in precise steps such as exposure, and the conventional ceramics have low accuracy and lower productivity.

【0008】これに対して、コージェライト系焼結体
は、熱膨張率が0.2×10-6/℃程度と、アルミナや
窒化珪素に比較して熱膨張率が低く、上記のような露光
精度に対する問題はある程度解決される。
On the other hand, the cordierite-based sintered body has a coefficient of thermal expansion of about 0.2 × 10 −6 / ° C., which is lower than that of alumina or silicon nitride. The problem of exposure accuracy is solved to some extent.

【0009】ところが、露光装置のステージのように、
Siウエハを載置した支持体が露光処理を施す位置まで
高速移動を伴うような場合には、移動後の支持体自体が
所定位置に停止後も振動しており、そのために、その振
動した状態で露光処理を施すと露光精度が低下するとい
う問題があった。これは、露光によって形成する配線幅
が細くなるほど顕著であり、高微細な配線回路を形成す
る上では致命的な問題となっていた。
However, like the stage of an exposure apparatus,
In the case where the support on which the Si wafer is mounted moves at a high speed to the position where the exposure processing is performed, the support itself after the movement is still vibrating even after stopping at a predetermined position. However, there is a problem that the exposure accuracy decreases when the exposure process is performed. This is more remarkable as the width of the wiring formed by exposure becomes narrower, and has been a fatal problem in forming a fine wiring circuit.

【0010】このような振動は、部材自体の剛性が低い
ことによって引き起こされるものであることから、これ
らの部材に対しては高い剛性、即ち高ヤング率が要求さ
れている。
Since such vibrations are caused by low rigidity of the members themselves, high rigidity, that is, high Young's modulus is required for these members.

【0011】従って、本発明は、それ自体低熱膨張を有
するとともに、高剛性を有する低熱膨張セラミックスと
その製造方法を提供することを目的とするものである。
また、本発明は、ステージなどの高速駆動される場合に
おいても振動が生じにくい半導体製造用部品を提供する
ことを目的とするものである。
Accordingly, an object of the present invention is to provide a low-thermal-expansion ceramic having low thermal expansion itself and high rigidity, and a method for producing the same.
It is another object of the present invention to provide a semiconductor manufacturing component that does not easily generate vibration even when driven at a high speed, such as a stage.

【0012】[0012]

【課題を解決するための手段】本発明者等は、上記課題
に対し鋭意研究を重ねた結果、コージェライトに希土類
元素酸化物を所定の比率で複合化し、かつコージェライ
ト結晶の粒界に前記希土類元素酸化物を特定の結晶相と
して存在させることにより、低熱膨張特性を阻害するこ
となく焼結性を高め、ヤング率を高めることができるこ
とを見いだし、本発明に至った。
Means for Solving the Problems The present inventors have conducted intensive studies on the above-mentioned problems, and as a result, obtained a composite of cordierite with a rare earth element oxide at a predetermined ratio, and the addition of the above-mentioned particles at the grain boundaries of cordierite crystals. The present inventors have found that the sinterability can be increased and the Young's modulus can be increased without impairing the low thermal expansion characteristics by causing the rare-earth element oxide to be present as a specific crystal phase.

【0013】即ち、本発明の低熱膨張セラミックスは、
コージェライトを80〜92重量%、希土類元素(R
E)の酸化物を8〜20重量%の割合で含み、相対密度
95%以上であり、且つコージェライト結晶の粒界に、
RE2 3 ・2SiO2 で表されるダイシリケート結晶
相を析出してなることを特徴とするものであり、さら
に、低熱膨張セラミックスの製造方法としては、コージ
ェライト粉末を80〜92重量%、希土類元素(RE)
の酸化物を8〜20重量%の割合で配合した成形体を、
1300〜1500℃の温度で焼成した後、1000℃
までを10℃/min以下の冷却速度で冷却することを
特徴とするものである。
That is, the low thermal expansion ceramic of the present invention comprises:
80 to 92% by weight of cordierite, rare earth element (R
E) containing 8 to 20% by weight of an oxide, having a relative density of 95% or more, and at the grain boundaries of cordierite crystals,
The method is characterized in that a disilicate crystal phase represented by RE 2 O 3 · 2SiO 2 is precipitated. Further, as a method for producing low thermal expansion ceramics, cordierite powder is 80 to 92% by weight, Rare earth element (RE)
A molded body containing 8 to 20% by weight of an oxide of
After firing at a temperature of 1300-1500 ° C, 1000 ° C
, At a cooling rate of 10 ° C./min or less.

【0014】[0014]

【発明の実施の形態】本発明の低熱膨張セラミックス
は、コージェライトは、一般式2MgO・2Al2 3
・5SiO2 で表される複合酸化物を主体とするもので
あり、平均粒径が1〜10μmの結晶粒子として存在す
る。このコージェライトは、焼結体中に、80〜92重
量%、好ましくは85〜90重量%の割合で存在する。
BEST MODE FOR CARRYING OUT THE INVENTION The low thermal expansion ceramic of the present invention is a cordierite having a general formula of 2MgO.2Al 2 O 3.
· 5SiO are those mainly composed of a composite oxide represented by 2, the average particle size is present as 1~10μm crystal grains. This cordierite is present in the sintered body at a ratio of 80 to 92% by weight, preferably 85 to 90% by weight.

【0015】また、この焼結体中には、副成分として希
土類元素酸化物を8〜20重量%、特に10〜15重量
%の割合で含有するものである。希土類元素酸化物は、
焼成時にコージェライトの成分と反応し、液相を生成す
ることから焼結性を高める作用が発揮されるとともにそ
れ自体のヤング率が高いために、これらを含有せしめる
ことにより、後述する実施例から明らかなように、焼結
体のヤング率を120GPa以上,特に130GPa以
上に高めることができる。
Further, the sintered body contains a rare earth element oxide as an auxiliary component in an amount of 8 to 20% by weight, particularly 10 to 15% by weight. Rare earth oxides
It reacts with the components of cordierite during firing, exhibits the effect of increasing the sinterability from generating a liquid phase, and has a high Young's modulus itself, so by including these, from the examples described later, As is apparent, the Young's modulus of the sintered body can be increased to 120 GPa or more, particularly 130 GPa or more.

【0016】このような希土類元素酸化物の添加によ
り、焼結体の相対密度を95%以上、特に96%以上ま
で高めることができる。焼結助剤量が8重量%よりも少
ないと焼結性が十分でなく、高い温度で焼成する必要が
あり、または相対密度95%以上に緻密化できなくな
る。また20重量%を越えると熱膨張係数が大きくな
り、0.5×10-6/℃以下の特性が達成できない。
By the addition of such a rare earth element oxide, the relative density of the sintered body can be increased to 95% or more, particularly to 96% or more. If the amount of the sintering aid is less than 8% by weight, the sinterability is not sufficient, and it is necessary to perform sintering at a high temperature, or the relative density cannot be increased to 95% or more. On the other hand, if it exceeds 20% by weight, the coefficient of thermal expansion becomes large, and characteristics of 0.5 × 10 −6 / ° C. or less cannot be achieved.

【0017】また、焼結体中には、上記のコージェライ
ト結晶粒子の粒界に、焼結助剤として添加された希土類
元素(RE)酸化物がRE2 3 ・2SiO2 で表され
るダイシリケート結晶相として存在することによって、
セラミックスの熱膨張率が大きくなることを防ぐことが
できる。即ち、希土類元素酸化物が、粒界において、非
晶質相として存在する場合に比較して、結晶相、とりわ
けRE2 3 ・2SiO2 で表されるダイシリケート相
は、原子配列が密であるために、焼結体全体のヤング率
を向上させるとともに、熱膨張係数も低下させる作用を
有する。なお、用いる希土類元素としては、特にY、Y
b、ErあるいはCeなどの元素が望ましい。
In the sintered body, a rare earth element (RE) oxide added as a sintering aid to the grain boundaries of the cordierite crystal particles is represented by RE 2 O 3 .2SiO 2. By being present as a disilicate crystal phase,
It is possible to prevent the coefficient of thermal expansion of the ceramic from increasing. That is, as compared with the case where the rare-earth element oxide exists as an amorphous phase at the grain boundary, the crystalline phase, particularly the disilicate phase represented by RE 2 O 3 .2SiO 2 , has a denser atomic arrangement. This has the effect of improving the Young's modulus of the entire sintered body and lowering the coefficient of thermal expansion. In addition, as the rare earth element to be used, in particular, Y, Y
Elements such as b, Er or Ce are desirable.

【0018】上記のように、粒界にダイシリケート結晶
相を析出させるためには、希土類元素酸化物を比較的多
量に含有することが必要である。従って、希土類元素酸
化物の含有量を上記の比率に限定したのは、8重量%よ
りも少ないとダイシリケート結晶相の析出が望めず、そ
の結果、セラミックスのヤング率を高めることができ
ず、20重量%よりも大きいと反応するコージェライト
の量が多くなるとともに異相が析出し、セラミックスの
熱膨張率が大きくなり、コージェライトの優れた低熱膨
張特性が発揮されないためである。なお、本発明のセラ
ミックスの熱膨張率は、10〜40℃において0.5×
10-6/℃以下、特に0.4×10-6/℃以下であるの
が望ましい。
As described above, in order to precipitate a disilicate crystal phase at a grain boundary, it is necessary to contain a relatively large amount of a rare earth element oxide. Therefore, the content of the rare earth element oxide is limited to the above ratio. If the content is less than 8% by weight, the precipitation of the disilicate crystal phase cannot be expected, and as a result, the Young's modulus of the ceramics cannot be increased, If the content is more than 20% by weight, the amount of cordierite that reacts increases, and a different phase is precipitated, the coefficient of thermal expansion of the ceramics increases, and the cordierite does not exhibit excellent low thermal expansion characteristics. The coefficient of thermal expansion of the ceramic of the present invention is 0.5 × at 10 to 40 ° C.
It is desirably 10 −6 / ° C. or less, especially 0.4 × 10 −6 / ° C. or less.

【0019】かかるダイシリケート結晶相は、希土類元
素酸化物と、コージェライト中のSiO2 分との反応に
より生成される結晶相であるが、コージェライト結晶相
は、必ずしも一般式2MgO・2Al2 3 ・5SiO
2 の組成からなるものではなく、MgO、Al2 3
SiO2 の各成分に対して固溶源が大きいために、例え
ば、希土類元素酸化物と反応した残余のMgO、Al2
3 は、コージェライト結晶中に固溶して、非化学量論
組成のコージェライト結晶相を形成してもよい。
The disilicate crystal phase is a crystal phase formed by a reaction between a rare earth element oxide and the SiO 2 component in cordierite, and the cordierite crystal phase is not necessarily of the general formula 2MgO.2Al 2 O. 3 · 5SiO
2 , not MgO, Al 2 O 3 ,
Since the solid solution source is large for each component of SiO 2 , for example, residual MgO, Al 2
O 3 may form a solid solution in the cordierite crystal to form a cordierite crystal phase having a non-stoichiometric composition.

【0020】上記のようなセラミックスを作製するに
は、平均粒径が10μm以下のコージェライト粉末に対
して、平均粒径が10μm以下の希土類元素酸化物粉末
を8〜20重量%の割合で添加する。
In order to produce the above ceramics, a rare earth element oxide powder having an average particle diameter of 10 μm or less is added to a cordierite powder having an average particle diameter of 10 μm or less at a ratio of 8 to 20% by weight. I do.

【0021】上記の比率で各成分を配合した後、ボール
ミルなどにより十分に混合し、所定形状に所望の成形手
段、例えば、金型プレス,冷間静水圧プレス,押出し成
形等により任意の形状に成形後、焼成する。
After the respective components are blended in the above ratio, they are sufficiently mixed by a ball mill or the like, and formed into a desired shape by a desired molding means, for example, a die press, a cold isostatic press, an extrusion molding or the like. After molding, firing is performed.

【0022】焼成は、1300〜1500℃の温度範
囲、好ましくは1350〜1450℃で1〜10時間程
度焼結することにより相対密度98%以上に緻密化する
ことができる。このときの温度が1300℃よりも低い
と緻密化できず、1500℃を越えると、成形体が溶融
してしまう。
The sintering can be performed at a temperature in the range of 1300 to 1500 ° C., preferably 1350 to 1450 ° C. for about 1 to 10 hours, so that the relative density can be increased to 98% or more. If the temperature at this time is lower than 1300 ° C., densification cannot be performed, and if it exceeds 1500 ° C., the molded body is melted.

【0023】また、本発明において、粒界にRE2 3
・2SiO2 の結晶相を析出させるためには、上記の焼
成後に焼成温度から1000℃の温度領域までを平均で
10℃/min以下、特に5℃/min以下の冷却速度
で冷却することが必要である。この温度領域の冷却速度
が10℃/minよりも速いと粒界にダイシリケート結
晶相を析出させることは困難である。なお、徐冷温度領
域は、焼成温度から1000℃以下の領域まで拡げても
何ら差し支えない。
In the present invention, RE 2 O 3
In order to precipitate a crystal phase of 2SiO 2 , it is necessary to cool at an average cooling rate of 10 ° C./min or less, especially 5 ° C./min or less from the firing temperature to a temperature range of 1000 ° C. after the above firing. It is. If the cooling rate in this temperature range is higher than 10 ° C./min, it is difficult to precipitate a disilicate crystal phase at the grain boundaries. Note that the annealing temperature range may be extended from the firing temperature to a range of 1000 ° C. or less.

【0024】[0024]

【実施例】平均粒径が3μmのコージェライト粉末に対
して、平均粒径が1μmのY2 3 、Yb2 3 、Er
2 3 、CeO2 の各粉末を表1、表2に示す割合で調
合後、ボールミルで24時間混合した後、1t/cm2
の圧力で金型成形した。そして、その成形体を炭化珪素
質の匣鉢に入れて表1、2の条件で焼成し、1000℃
までの平均冷却速度を表1、2のように変化させて実施
して、種々のセラミックスを作製した。
EXAMPLE For cordierite powder having an average particle size of 3 μm, Y 2 O 3 , Yb 2 O 3 and Er having an average particle size of 1 μm were used.
After mixing the powders of 2 O 3 and CeO 2 at the ratios shown in Tables 1 and 2, they were mixed in a ball mill for 24 hours, and then 1 t / cm 2
Molding was performed under the following pressure. Then, the molded body was placed in a silicon carbide sagger and fired under the conditions shown in Tables 1 and 2 at 1000 ° C.
The average cooling rate was changed as shown in Tables 1 and 2, and various ceramics were produced.

【0025】得られたセラミックスを研磨し、3×4×
15mmの大きさに研削加工し、このセラミックスの1
0〜40℃までの熱膨張係数を測定した。また、超音波
パルス法により、室温でのヤング率を測定した。結果は
表1,2に示した。
The obtained ceramic is polished and 3 × 4 ×
Grinding to a size of 15mm, this ceramic 1
The coefficient of thermal expansion from 0 to 40 ° C was measured. The Young's modulus at room temperature was measured by the ultrasonic pulse method. The results are shown in Tables 1 and 2.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【0028】表1,2にみられるように、本発明に基づ
き、コージェライトに希土類元素酸化物を所定比率で添
加し、RE2 3 ・2SiO2 の結晶相を析出させるこ
とにより、熱膨張率の低減化を図り0.5×10-6/℃
以下を達成し、且つヤング率を120GPa以上に高め
ることができ、その添加量が増加するに従いヤング率が
高くなる傾向が見られた。
[0028] As seen in Tables 1, based on the present invention, it was added to the cordierite a rare earth oxide at a predetermined ratio, by precipitating the crystal phase of RE 2 O 3 · 2SiO 2, thermal expansion 0.5 × 10 -6 / ° C.
The following was achieved, and the Young's modulus could be increased to 120 GPa or more, and the Young's modulus tended to increase as the amount of addition increased.

【0029】しかし、これらの希土類元素酸化物量が8
重量%よりも少ない試料No.1は、相対密度95%以上
が達成されず、しかもヤング率が120GPaよりも低
く、熱膨張率も0.5×10-6/℃よりも大きいもので
あった。また、20重量%を越える試料No.17では、
ヤング率は高いものの熱膨張率が0.5×10-6/℃よ
りも大きいものであった。
However, the amount of these rare earth element oxides is 8
The sample No. 1 having less than 95% by weight did not achieve a relative density of 95% or more, had a Young's modulus lower than 120 GPa, and had a coefficient of thermal expansion higher than 0.5 × 10 -6 / ° C. . Further, in sample No. 17 exceeding 20% by weight,
Although the Young's modulus was high, the coefficient of thermal expansion was larger than 0.5 × 10 −6 / ° C.

【0030】さらに、焼成温度については、1300℃
よりも低い試料No.3では緻密化することができず相対
密度95%以上が達成されなかった。また、焼成温度が
1500℃よりも高い試料No.9では、成形体の溶融が
見られ、セラミックスを作製することができなかった。
Further, the firing temperature is 1300 ° C.
Sample No. 3, which was lower than that, could not be densified and a relative density of 95% or more was not achieved. In the case of Sample No. 9 in which the firing temperature was higher than 1500 ° C., the molded body was melted and ceramics could not be produced.

【0031】また、冷却速度については、1000℃ま
での冷却速度が10℃/minよりも速い試料No.1
3、14、22、27、32では、RE2 3 ・2Si
2 の結晶相が析出せず、その結果、ヤング率が低く、
しかも熱膨張係数も大きいものであった。従って、粒界
にRE2 3 ・2SiO2 の結晶相を析出させることが
高ヤング率化、低熱膨張化の上で重要であることがわか
る。
As for the cooling rate, Sample No. 1 in which the cooling rate up to 1000 ° C. is higher than 10 ° C./min.
In 3 , 14, 22, 27 and 32, RE 2 O 3 2Si
O 2 crystal phase does not precipitate, resulting in low Young's modulus,
In addition, the thermal expansion coefficient was large. Therefore, it is understood that the precipitation of the crystal phase of RE 2 O 3 .2SiO 2 at the grain boundary is important for increasing the Young's modulus and reducing the thermal expansion.

【0032】[0032]

【発明の効果】以上詳述した通り、本発明の低熱膨張セ
ラミックスは、コージェライトの優れた低熱膨張特性を
維持しつつ、剛性、即ち、ヤング率を高めることができ
る。その結果、この低熱膨張セラミックスを高微細な回
路を形成するためのウエハに露光処理を行うなどの半導
体製造装置用部品、例えば、露光装置用ステージなどと
して用いることにより、雰囲気の温度変化に対しても寸
法の変化がなく、優れた精度が得られるとともに、振動
に伴う精度の低下をも防止することができ、半導体素子
製造の品質と量産性を高めることができる。
As described above in detail, the low thermal expansion ceramic of the present invention can increase rigidity, that is, Young's modulus, while maintaining excellent low thermal expansion characteristics of cordierite. As a result, by using this low thermal expansion ceramic as a part for semiconductor manufacturing equipment such as performing exposure processing on a wafer for forming a fine circuit, for example, an exposure equipment stage, etc. Also, there is no change in dimensions, excellent accuracy can be obtained, and a decrease in accuracy due to vibration can be prevented, so that the quality and mass productivity of semiconductor device manufacturing can be improved.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】コージェライトを80〜92重量%、希土
類元素(RE)の酸化物を8〜20重量%の割合で含
み、相対密度95%以上であり、且つコージェライト結
晶の粒界に、RE2 3 ・2SiO2 で表されるダイシ
リケート結晶相が析出してなることを特徴とする低熱膨
張セラミックス。
1. A cordierite containing 80 to 92% by weight of a rare earth element (RE) oxide at a ratio of 8 to 20% by weight, a relative density of 95% or more, and a grain boundary of a cordierite crystal, A low thermal expansion ceramic, wherein a disilicate crystal phase represented by RE 2 O 3 .2SiO 2 is precipitated.
【請求項2】コージェライト粉末を80〜92重量%、
希土類元素(RE)の酸化物を8〜20重量%の割合で
配合した成形体を、1300〜1500℃の温度で焼成
した後、1000℃までを10℃/min以下で冷却速
度で冷却することを特徴とする低熱膨張セラミックスの
製造方法。
2. A cordierite powder comprising 80 to 92% by weight,
After sintering a molded body in which an oxide of a rare earth element (RE) is blended at a rate of 8 to 20% by weight at a temperature of 1300 to 1500 ° C, it is cooled to 1000 ° C at a cooling rate of 10 ° C / min or less. A method for producing a low-thermal-expansion ceramic, comprising:
JP29276597A 1997-10-24 1997-10-24 Low thermal expansion ceramics and method for producing the same Expired - Fee Related JP3676552B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP29276597A JP3676552B2 (en) 1997-10-24 1997-10-24 Low thermal expansion ceramics and method for producing the same
US09/177,977 US6265334B1 (en) 1997-10-24 1998-10-22 Ceramic sintered product and process for producing the same
DE19849340A DE19849340B4 (en) 1997-10-24 1998-10-26 Ceramic sintered product and process for its production
DE19861434A DE19861434B4 (en) 1997-10-24 1998-10-26 An article of low thermal expansion ceramic material and its use
US10/124,067 USRE39120E1 (en) 1997-10-24 2002-04-16 Ceramic sintered product and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29276597A JP3676552B2 (en) 1997-10-24 1997-10-24 Low thermal expansion ceramics and method for producing the same

Publications (2)

Publication Number Publication Date
JPH11130520A true JPH11130520A (en) 1999-05-18
JP3676552B2 JP3676552B2 (en) 2005-07-27

Family

ID=17786056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29276597A Expired - Fee Related JP3676552B2 (en) 1997-10-24 1997-10-24 Low thermal expansion ceramics and method for producing the same

Country Status (1)

Country Link
JP (1) JP3676552B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002167267A (en) * 2000-11-28 2002-06-11 Kyocera Corp Low thermal expansion ceramic and method of manufacturing it
WO2010087099A1 (en) 2009-01-28 2010-08-05 京セラ株式会社 Cordierite-based sintered body
JP2010208943A (en) * 2010-05-17 2010-09-24 Kyocera Corp Low thermal expansion ceramic and method for producing the same
JP2011514875A (en) * 2008-02-29 2011-05-12 コーニング インコーポレイテッド Cordierite reinforced with dispersions for filters and substrates
WO2012115136A1 (en) 2011-02-24 2012-08-30 京セラ株式会社 Cordierite sintered body and member for semiconductor device composed of cordierite sintered body
JP2015174039A (en) * 2014-03-14 2015-10-05 日本碍子株式会社 plugged honeycomb structure
JP2017178773A (en) * 2016-03-23 2017-10-05 日本碍子株式会社 Cordierite sintered compact, method for producing the same and composite substrate
CN115974540A (en) * 2022-12-03 2023-04-18 昆明理工大学 Rare earth doped cordierite ceramic material and preparation method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002167267A (en) * 2000-11-28 2002-06-11 Kyocera Corp Low thermal expansion ceramic and method of manufacturing it
JP2011514875A (en) * 2008-02-29 2011-05-12 コーニング インコーポレイテッド Cordierite reinforced with dispersions for filters and substrates
WO2010087099A1 (en) 2009-01-28 2010-08-05 京セラ株式会社 Cordierite-based sintered body
JP2010208943A (en) * 2010-05-17 2010-09-24 Kyocera Corp Low thermal expansion ceramic and method for producing the same
WO2012115136A1 (en) 2011-02-24 2012-08-30 京セラ株式会社 Cordierite sintered body and member for semiconductor device composed of cordierite sintered body
US9073790B2 (en) 2011-02-24 2015-07-07 Kyocera Corporation Cordierite sintered body and member for semiconductor device composed of cordierite sintered body
JP2015174039A (en) * 2014-03-14 2015-10-05 日本碍子株式会社 plugged honeycomb structure
JP2017178773A (en) * 2016-03-23 2017-10-05 日本碍子株式会社 Cordierite sintered compact, method for producing the same and composite substrate
CN115974540A (en) * 2022-12-03 2023-04-18 昆明理工大学 Rare earth doped cordierite ceramic material and preparation method thereof
CN115974540B (en) * 2022-12-03 2023-11-24 昆明理工大学 Rare earth doped cordierite ceramic material and preparation method thereof

Also Published As

Publication number Publication date
JP3676552B2 (en) 2005-07-27

Similar Documents

Publication Publication Date Title
JP4416191B2 (en) Low thermal expansion ceramics, manufacturing method thereof, and semiconductor manufacturing component
US6242374B1 (en) High thermal conductive silicon nitride sintered body and method of producing the same
JP2010173878A (en) Cordierite sintered compact
JPH11343168A (en) Low thermal expansion black ceramics, its production and member for semiconductor producing apparatus
JP4261631B2 (en) Manufacturing method of ceramic sintered body
JP3676552B2 (en) Low thermal expansion ceramics and method for producing the same
JPH11209171A (en) Dense low thermal expansion ceramics, its production and member for semiconductor producing device
JP4429288B2 (en) Low thermal expansion ceramics and members for semiconductor manufacturing equipment using the same
JP2013100216A (en) Oxide ceramic sintered compact and method of manufacturing the same
JP4025455B2 (en) Composite oxide ceramics
JPH11236262A (en) Low thermal expansion ceramic structural member and member for semiconductor device producing apparatus using the same
JP3805119B2 (en) Method for producing low thermal expansion ceramics
JPH11100275A (en) Low thermal expansion ceramic and its preparation
JP3469513B2 (en) Exposure apparatus and support member used therein
JP2006347802A (en) Low-thermal expansion/high-specific rigidity ceramic, its production method, and electrostatic chuck
JP3537241B2 (en) Method for producing silicon nitride sintered body
JP2001039764A (en) Cordierite ceramics and its production
JPH06100306A (en) Sialon crystal particle and sintered compact of complex ceramics
JP2002167267A (en) Low thermal expansion ceramic and method of manufacturing it
JP4473512B2 (en) Ceramic sintered body and method for producing the same
JP3260340B2 (en) Composite ceramic and method for producing the same
JP2001302338A (en) Composite ceramic and manufacturing method thereof
JP4761617B2 (en) Aluminum nitride sintered body, method for producing the same, and electronic component using the same
JP2002160972A (en) High rigidity and low thermal expansion ceramic and its manufacturing method
JP2000247732A (en) Low-resistance ceramic, its production and member for semiconductor producing apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050428

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees