JP3677360B2 - Method for producing silicon nitride sintered body - Google Patents

Method for producing silicon nitride sintered body Download PDF

Info

Publication number
JP3677360B2
JP3677360B2 JP28874196A JP28874196A JP3677360B2 JP 3677360 B2 JP3677360 B2 JP 3677360B2 JP 28874196 A JP28874196 A JP 28874196A JP 28874196 A JP28874196 A JP 28874196A JP 3677360 B2 JP3677360 B2 JP 3677360B2
Authority
JP
Japan
Prior art keywords
mol
sintered body
silicon nitride
thermal expansion
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28874196A
Other languages
Japanese (ja)
Other versions
JPH10139550A (en
Inventor
政宏 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP28874196A priority Critical patent/JP3677360B2/en
Publication of JPH10139550A publication Critical patent/JPH10139550A/en
Application granted granted Critical
Publication of JP3677360B2 publication Critical patent/JP3677360B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、サセプタ、静電チャック、リング、ダミーウエハ等の半導体製造用部品等に用いるための高熱膨張の窒化珪素質焼結体の製造方法に関するものである。
【0002】
【従来の技術】
従来より、半導体装置の製造工程において、シリコンウエハを支持または保持するためのサセプタ、静電チャックや、絶縁リングとして、あるいは各種治具等の半導体製造用部品には主にアルミナ等のセラミックスが用いられている。アルミナセラミックスは比較的に安価で、化学的にも安定なため広く使用されており、実開昭62−72602号、特開昭53−96762号にて提案されている。
【0003】
さらにウエハに成膜を行う場合に、予めダミーウエハを用いて成膜条件を決定する事が行われているが、このダミーウエハとしてはアルミナの単結晶体であるサファイアが用いられている。
【0004】
【発明が解決しようとする課題】
しかしながら、上記アルミナセラミックスは室温から700℃までの熱膨張係数が7〜7.5ppm/℃程度でありシリコンの熱膨張係数3.8ppm/℃よりも大きいものであった。そのため例えば半導体の製造工程においてシリコンウエハを接触支持するような部品をアルミナセラミックスで形成すると、温度変化が生じた場合に互いの熱膨張差により支持する位置がずれてしまい高精度の加工ができないなどの問題があった。
【0005】
またダミーウエハとして用いられるサファイアも熱膨張係数が4.5〜5.3ppm/℃とシリコンより大きいためサファイア製のダミーウエハを用いた場合は成膜条件を厳密に決定できないという問題があった。
【0006】
このような問題に対して、シリコンの熱膨張係数に近い材料としてムライト−コージライトの複合焼結体も特開平6−263531号等にて提案されているが、強度がせいぜい200MPa程度と低いため取扱い時に破損しやすいという問題があった。
【0007】
従って、本発明は、サセプタ、チャック、リング、ダミーウエハ等の各種半導体製造用部品等に用いるために、シリコンとほぼ同等の熱膨張係数を有し、かつ強度特性の優れた窒化珪素質焼結体の製造方法を提供することを目的とするものである。
【0008】
【課題を解決するための手段】
本発明の窒化珪素質焼結体の製造方法は、窒化珪素50〜70モル%と、希土類元素酸化物を10〜30モル%と、酸化アルミニウムを5〜20モル%、酸化珪素を5〜20モル%の割合で含有する(但し、ZrO またはMgOを含まず)成形体を、窒素雰囲気中、1400〜1700℃の温度で焼成して、室温から700℃までの熱膨張係数が3.5〜4.1ppm/℃の焼結体を得るものである。
【0011】
【発明の実施の形態】
本発明の製造方法により得られる窒化珪素質焼結体は、窒化珪素を主結晶相とし、希土類元素、珪素、アルミニウム、酸素および窒素を含む粒界相によって構成される。本発明によれば、焼結体組成として、窒化珪素を50〜70モル%、好ましくは60〜65モル%含み、さらに、希土類元素(RE)をRE23換算で10〜30モル%、特に15〜25モル%、アルミニウムをAl23換算で5〜20モル%、特に10〜15モル%の割合で含むものである。
【0012】
ここで、各成分組成を上記の範囲に限定したのは、熱膨張係数を上記の範囲に整合させるためであり、窒化珪素量が50モル%より少ないか、希土類元素量が30モル%より多いか、あるいはアルミニウム量が20モル%よりも多いと、熱膨張係数が4.1ppm/℃より大きくなる。逆に、窒化珪素量が70モル%よりも多いか、希土類元素量が10モル%よりも少ないか、あるいはアルミニウム量が5モル%より少ないと、熱膨張係数が3.5ppm/℃より低くなるためである。
【0013】
さらに、本発明の製造方法により得られる窒化珪素質焼結体は、室温から700℃の熱膨張係数が3.5〜4.1ppm/℃、即ち、シリコンとの熱膨張係数差が0.3ppm/℃以下、特に0.1ppm/℃以下であることが望ましい。しかも、室温強度が400MPa以上の高い強度を有するものである。
【0014】
自動車や産業機械用として用いられる窒化珪素質焼結体は、機械的特性の点のみから、焼結助剤量を増やすと強度が低下するために、通常、5〜20モル%程度添加されるものである。しかし、このように焼結助剤量が少ない焼結体の室温から700℃の熱膨張係数は、3ppm/℃程度である。
【0015】
本発明では助剤成分とそれらの助剤量の最適化により、焼結体全体として、シリコンと同等の熱膨張係数を有する窒化珪素焼結体を得ることを可能とした。
【0016】
室温から700℃までの熱膨張係数の範囲を上記のように限定したのはこの範囲外ではシリコンとの熱膨張差により半導体製造用部品として高精度の加工ができなかったり、成膜条件を厳密に決定できない等の問題が生じるためである。
【0017】
なお、焼結体中に含まれる希土類元素としては、Y、Er、Yb、Lu、Sm等が挙げられるが、特にコストの点でY2 3 が望ましい。
【0018】
また、本発明の製造方法により得られる焼結体における窒化珪素主結晶相の粒界は、結晶化していても、ガラス化していても構わない。
【0019】
本発明の窒化珪素質焼結体を作製する方法としては、窒化珪素粉末として、α型および/またはβ型の平均粒径が0.4〜1.2μm、不純物酸素量が0.5〜2重量%の原料粉末と、平均粒径が2μm以下の希土類元素酸化物粉末、酸化アルミニウム粉末および酸化珪素粉末を用いる。
【0020】
そして、これらの原料粉末を用いて、成形体組成が、窒化珪素50〜70モル%、特に60〜65モル%、希土類元素酸化物10〜30モル%、特に15〜25モル%、酸化アルミニウム5〜20モル%、特に10〜15モル%、酸化珪素5〜20モル%、特に10〜15モル%となるように秤量し、ボールミル等によって混合した後、成形する。成形体中の組成において、酸化珪素とは、窒化珪素原料粉末中に含まれる不純物酸素分をSiO2 換算したものも含まれる。
【0021】
成形方法としては、その製品形状に応じ適宜周知の方法、例えば、金型プレス,冷間静水圧プレス,押出し成形等により成形することができる。
【0022】
次に、この成形体を、窒素雰囲気中、1400〜1700℃、特に1600〜1650℃の温度で焼成する。なお、焼成温度を上記の範囲に限定したのは、1400℃よりも低いと緻密な焼結体が得られず、1700℃よりも高いと助剤成分が分解してボイド等が発生し強度が低下するためである。
【0023】
焼成方法としては、公知の焼成方法、例えば、ホットプレス方法、常圧焼成、窒素圧力2気圧以上の窒素ガス圧力焼成、さらには、これらの焼成後のガス圧1000気圧以上で熱間静水圧焼成すれば、さらに緻密な焼結体を得ることができる。
【0024】
一方、周期律表第4a、5a、6a族元素金属や、それらの炭化物、窒化物、珪化物、または、SiCなどのは、分散粒子やウィスカ−として本発明の焼結体に存在しても特性を劣化させるような影響が少ないことから、これらを周知技術の基づき、適量添加して複合材料として特性の改善を行うことも当然可能であるが、半導体製造上、不純物として半導体の製造に影響を及ぼすFe、Co、Ni等の金属元素は、0.1重量%以下に制御することが望ましい。
【0025】
【実施例】
窒化珪素粉末(α率92%、、平均粒径0.8μm、不純物酸素量1.0重量%、酸素を除く純度99.9%以上)と、平均粒径が0.5〜1.5μm、純度99.9%以上の各種の希土類元素酸化物粉末と各種の酸化アルミニウム粉末および酸化珪素粉末を用いて、成形体組成が表1、2に示す組成になるように調合後、1t/cm2 で金型成形した。なお、Fe、Cr、Ni等の金属元素量は0.1重量%以下に制御した。
【0026】
この成形体を炭化珪素質の匣鉢に入れて、表1の条件で焼成した。得られた焼結体をJIS−R1601にて指定されている形状まで研磨し、JIS−R1601に基づく室温での4点曲げ抗折強度試験を実施した。さらに室温から700℃までの熱膨張率を求めた。
【0027】
【表1】

Figure 0003677360
【0028】
【表2】
Figure 0003677360
【0029】
表1の本発明品は、いずれも室温〜700℃の熱膨張係数が3.5〜4.1ppm/℃の範囲であり、しかも強度が400MPa以上の高い強度を有するものであった。これに対して、本発明の組成範囲や焼成条件が逸脱した表2の試料では、いずれも熱膨張係数がSiよりも高すぎるか、または強度が400MPa以下であり、本発明の目的に適合しないものであった。
【0030】
【発明の効果】
以上詳述した通り、本発明の製造方法により得られる窒化珪素質焼結体は、シリコンの熱膨張係数と非常に近似した特性を有するとともに高い強度を有することから、半導体製造用部品として、例えば、サセプタ、静電チャック、リング、等に使用した場合において、シリコンウエハと接触して支持する場合においても安定に高い寸法精度を維持でき、またダミーウエハとして用いることにより、精度の高い製造条件の設定が可能となる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a silicon nitride sintered body having a high thermal expansion for use in semiconductor manufacturing parts such as a susceptor, an electrostatic chuck, a ring, and a dummy wafer.
[0002]
[Prior art]
Conventionally, ceramics such as alumina have been mainly used for semiconductor manufacturing parts such as susceptors, electrostatic chucks, insulating rings, and various jigs for supporting or holding a silicon wafer in the manufacturing process of semiconductor devices. It has been. Alumina ceramics are widely used because they are relatively inexpensive and chemically stable, and are proposed in Japanese Utility Model Laid-Open No. 62-72602 and Japanese Patent Laid-Open No. 53-96762.
[0003]
Further, when a film is formed on a wafer, a film forming condition is determined in advance using a dummy wafer. As the dummy wafer, sapphire, which is a single crystal of alumina, is used.
[0004]
[Problems to be solved by the invention]
However, the alumina ceramic has a thermal expansion coefficient from room temperature to 700 ° C. of about 7 to 7.5 ppm / ° C., which is larger than the thermal expansion coefficient of silicon of 3.8 ppm / ° C. For this reason, for example, if a part that contacts and supports a silicon wafer in the semiconductor manufacturing process is formed of alumina ceramics, when the temperature changes, the supporting position shifts due to the difference in thermal expansion between each other, and high-precision processing cannot be performed. There was a problem.
[0005]
In addition, since sapphire used as a dummy wafer has a thermal expansion coefficient of 4.5 to 5.3 ppm / ° C., which is larger than that of silicon, there is a problem that the film forming conditions cannot be determined strictly when a sapphire dummy wafer is used.
[0006]
In order to solve this problem, a mullite-cordierite composite sintered body has been proposed as a material close to the thermal expansion coefficient of silicon in Japanese Patent Laid-Open No. 6-263531, but the strength is as low as about 200 MPa at most. There was a problem of being easily damaged during handling.
[0007]
Accordingly, the present invention is a silicon nitride sintered body having a thermal expansion coefficient substantially equal to silicon and having excellent strength characteristics for use in various semiconductor manufacturing parts such as susceptors, chucks, rings, and dummy wafers. An object of the present invention is to provide a manufacturing method.
[0008]
[Means for Solving the Problems]
The method for producing a silicon nitride sintered body according to the present invention includes 50 to 70 mol% silicon nitride, 10 to 30 mol% rare earth element oxide, 5 to 20 mol% aluminum oxide, and 5 to 20 silicon oxide. A molded body containing a mol% ratio (excluding ZrO 2 or MgO) is fired at a temperature of 1400 to 1700 ° C. in a nitrogen atmosphere, and a thermal expansion coefficient from room temperature to 700 ° C. is 3.5. A sintered body of ˜4.1 ppm / ° C. is obtained.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The silicon nitride sintered body obtained by the production method of the present invention is composed of a grain boundary phase containing silicon nitride as a main crystal phase and containing rare earth elements, silicon, aluminum, oxygen and nitrogen. According to the present invention, as the sintered body composition, the silicon nitride 50 to 70 mol%, preferably comprising 60 to 65 mol%, further 10 to 30 mole% rare earth element and (RE) in terms of RE 2 O 3, in particular 15 to 25 mol%, 5 to 20 mol% of aluminum in terms of Al 2 O 3, particularly those containing at a ratio of 10 to 15 mol%.
[0012]
Here, the reason why each component composition is limited to the above range is to match the thermal expansion coefficient to the above range, and the silicon nitride amount is less than 50 mol% or the rare earth element amount is more than 30 mol%. If the amount of aluminum is more than 20 mol%, the coefficient of thermal expansion becomes larger than 4.1 ppm / ° C. Conversely, if the silicon nitride content is greater than 70 mol%, the rare earth element content is less than 10 mol%, or the aluminum content is less than 5 mol%, the thermal expansion coefficient is lower than 3.5 ppm / ° C. Because.
[0013]
Furthermore, the silicon nitride sintered body obtained by the production method of the present invention has a thermal expansion coefficient of 3.5 to 4.1 ppm / ° C. from room temperature to 700 ° C., that is, a difference of 0.3 ppm in thermal expansion coefficient from silicon. / ° C. or less, and particularly preferably 0.1 ppm / ° C. or less. Moreover, the room temperature strength is as high as 400 MPa or more.
[0014]
Silicon nitride based sintered bodies used for automobiles and industrial machines are usually added in an amount of about 5 to 20 mol% because the strength decreases when the amount of sintering aid is increased only from the viewpoint of mechanical properties. Is. However, the thermal expansion coefficient from room temperature to 700 ° C. of the sintered body having a small amount of sintering aid is about 3 ppm / ° C.
[0015]
In the present invention, it is possible to obtain a silicon nitride sintered body having a thermal expansion coefficient equivalent to that of silicon as a whole of the sintered body by optimizing the auxiliary components and the amounts of the auxiliary agents.
[0016]
The range of the coefficient of thermal expansion from room temperature to 700 ° C is limited as described above. Outside this range, high-precision processing cannot be performed as a semiconductor manufacturing component due to the difference in thermal expansion with silicon, and the film forming conditions are strictly This is because a problem such as being unable to be determined occurs.
[0017]
The rare earth element contained in the sintered body includes Y, Er, Yb, Lu, Sm and the like, and Y 2 O 3 is particularly preferable in terms of cost.
[0018]
Moreover, the grain boundary of the silicon nitride main crystal phase in the sintered body obtained by the production method of the present invention may be crystallized or vitrified.
[0019]
As a method for producing the silicon nitride sintered body of the present invention, the silicon nitride powder has an α-type and / or β-type average particle size of 0.4 to 1.2 μm and an impurity oxygen content of 0.5 to 2. A raw material powder of wt%, a rare earth element oxide powder having an average particle diameter of 2 μm or less, an aluminum oxide powder, and a silicon oxide powder are used.
[0020]
Using these raw material powders, the compact composition has a silicon nitride composition of 50 to 70 mol%, particularly 60 to 65 mol%, rare earth element oxide 10 to 30 mol%, particularly 15 to 25 mol%, and aluminum oxide 5 It is weighed so as to be ˜20 mol%, particularly 10 to 15 mol%, silicon oxide 5 to 20 mol%, particularly 10 to 15 mol%, mixed by a ball mill or the like, and then molded. In the composition in the molded body, the silicon oxide includes those obtained by converting the impurity oxygen content contained in the silicon nitride raw material powder into SiO 2 .
[0021]
As a molding method, it can be molded by a well-known method as appropriate according to the product shape, for example, a die press, a cold isostatic press, extrusion molding or the like.
[0022]
Next, this molded body is fired in a nitrogen atmosphere at a temperature of 1400 to 1700 ° C., particularly 1600 to 1650 ° C. Note that the firing temperature is limited to the above range. When the temperature is lower than 1400 ° C., a dense sintered body cannot be obtained. When the temperature is higher than 1700 ° C., the auxiliary component is decomposed to generate voids and the like. It is because it falls.
[0023]
As a firing method, a known firing method, for example, a hot press method, normal pressure firing, nitrogen gas pressure firing at a nitrogen pressure of 2 atm or higher, and hot isostatic firing at a gas pressure of 1000 atm or higher after firing. If so, a denser sintered body can be obtained.
[0024]
On the other hand, Group 4a, 5a, and 6a element metals of the periodic table and their carbides, nitrides, silicides, or SiC may exist in the sintered body of the present invention as dispersed particles or whiskers. Since there is little influence that deteriorates the characteristics, it is of course possible to improve the characteristics as a composite material by adding an appropriate amount of these based on well-known technology. It is desirable to control the metal elements such as Fe, Co, Ni, etc., that affect the content of 0.1 wt% or less.
[0025]
【Example】
Silicon nitride powder (α ratio 92%, average particle size 0.8 μm, impurity oxygen content 1.0% by weight, purity excluding oxygen 99.9% or more), average particle size 0.5-1.5 μm, Using various rare earth element oxide powders having a purity of 99.9% or more and various aluminum oxide powders and silicon oxide powders, the molded product composition was adjusted to the compositions shown in Tables 1 and 2, and then 1 t / cm 2 Molded with. The amount of metal elements such as Fe, Cr, Ni, etc. was controlled to 0.1% by weight or less.
[0026]
This molded body was put in a silicon carbide mortar and fired under the conditions shown in Table 1. The obtained sintered body was polished to the shape specified in JIS-R1601, and a four-point bending strength test at room temperature based on JIS-R1601 was performed. Furthermore, the thermal expansion coefficient from room temperature to 700 ° C. was determined.
[0027]
[Table 1]
Figure 0003677360
[0028]
[Table 2]
Figure 0003677360
[0029]
The products of the present invention shown in Table 1 all had a high coefficient of thermal expansion at room temperature to 700 ° C. in the range of 3.5 to 4.1 ppm / ° C. and a strength of 400 MPa or more. On the other hand, in the samples of Table 2 where the composition range and firing conditions of the present invention deviated, all of them had a thermal expansion coefficient higher than that of Si or a strength of 400 MPa or less, which is not suitable for the purpose of the present invention. It was a thing.
[0030]
【The invention's effect】
As described above in detail, the silicon nitride sintered body obtained by the manufacturing method of the present invention has characteristics very close to the thermal expansion coefficient of silicon and has high strength. When used for susceptors, electrostatic chucks, rings, etc., high dimensional accuracy can be stably maintained even when contacting and supporting a silicon wafer, and by using it as a dummy wafer, highly accurate manufacturing conditions can be set. Is possible.

Claims (1)

窒化珪素50〜70モル%と、希土類元素酸化物を10〜30モル%と、酸化アルミニウムを5〜20モル%、酸化珪素を5〜20モル%の割合で含有する(但し、ZrOまたはMgOを含まず)成形体を、窒素雰囲気中、1400〜1700℃の温度で焼成して、室温から700℃までの熱膨張係数が3.5〜4.1ppm/℃の焼結体を得ることを特徴とする窒化珪素質焼結体の製造方法。50 to 70 mol% silicon nitride, 10 to 30 mol% rare earth element oxide, 5 to 20 mol% aluminum oxide, and 5 to 20 mol% silicon oxide (provided that ZrO 2 or MgO The molded body is fired at a temperature of 1400 to 1700 ° C. in a nitrogen atmosphere to obtain a sintered body having a thermal expansion coefficient from room temperature to 700 ° C. of 3.5 to 4.1 ppm / ° C. A method for producing a silicon nitride sintered body, which is characterized.
JP28874196A 1996-10-30 1996-10-30 Method for producing silicon nitride sintered body Expired - Fee Related JP3677360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28874196A JP3677360B2 (en) 1996-10-30 1996-10-30 Method for producing silicon nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28874196A JP3677360B2 (en) 1996-10-30 1996-10-30 Method for producing silicon nitride sintered body

Publications (2)

Publication Number Publication Date
JPH10139550A JPH10139550A (en) 1998-05-26
JP3677360B2 true JP3677360B2 (en) 2005-07-27

Family

ID=17734102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28874196A Expired - Fee Related JP3677360B2 (en) 1996-10-30 1996-10-30 Method for producing silicon nitride sintered body

Country Status (1)

Country Link
JP (1) JP3677360B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5481137B2 (en) 2008-11-21 2014-04-23 日本特殊陶業株式会社 Silicon nitride / Merilite composite sintered body

Also Published As

Publication number Publication date
JPH10139550A (en) 1998-05-26

Similar Documents

Publication Publication Date Title
JPH027908B2 (en)
JPH11209171A (en) Dense low thermal expansion ceramics, its production and member for semiconductor producing device
JP3677360B2 (en) Method for producing silicon nitride sintered body
JPS6050750B2 (en) Silicon nitride composite sintered body
JP3091085B2 (en) Rare earth silicate based sintered body and method for producing the same
JP3602931B2 (en) Low hardness silicon nitride sintered body and semiconductor manufacturing parts using the same
JP2736386B2 (en) Silicon nitride sintered body
JP3231950B2 (en) Surface coated silicon nitride material
US5545362A (en) Production method of sintered silicon nitride
JPH08133840A (en) Ceramics for apparatus for producing semiconductor device
JPH11100275A (en) Low thermal expansion ceramic and its preparation
JP5011609B2 (en) Dense cordierite ceramics and method for producing the same
JP4907791B2 (en) Low thermal expansion ceramics and method for producing the same
JP3445345B2 (en) High heat-resistant water sialon-based sintered body
JP2581128B2 (en) Alumina-sialon composite sintered body
JP2946593B2 (en) Silicon nitride sintered body and method for producing the same
JP2001130983A (en) Silicon nitride sintered compact
JP3176203B2 (en) Method for producing silicon nitride based sintered body
JPH05178669A (en) Production of silicon nitride sintered body
JPH1017365A (en) Silicon carbide sintered compact and its production
JP4500515B2 (en) Parts for semiconductor manufacturing equipment and mirrors for length measurement
JP2699697B2 (en) Method for producing silicon carbide / silicon nitride composite sintered body
KR910002077B1 (en) Sintered si3 n4-al2 o3 complex ceramic and its production
JPH10182237A (en) Silicon nitride-base composite sintered compact and its production
JPH07215768A (en) Silicon nitride sintered compact and its production

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050509

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees