JPH05178669A - Production of silicon nitride sintered body - Google Patents

Production of silicon nitride sintered body

Info

Publication number
JPH05178669A
JPH05178669A JP4029508A JP2950892A JPH05178669A JP H05178669 A JPH05178669 A JP H05178669A JP 4029508 A JP4029508 A JP 4029508A JP 2950892 A JP2950892 A JP 2950892A JP H05178669 A JPH05178669 A JP H05178669A
Authority
JP
Japan
Prior art keywords
powder
strength
sintered body
sintering aid
silicon nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4029508A
Other languages
Japanese (ja)
Other versions
JP3036207B2 (en
Inventor
Teizo Hase
貞三 長谷
Hidemitsu Sakamoto
秀光 坂元
Shinji Tsuji
慎二 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP4029508A priority Critical patent/JP3036207B2/en
Publication of JPH05178669A publication Critical patent/JPH05178669A/en
Application granted granted Critical
Publication of JP3036207B2 publication Critical patent/JP3036207B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain high strength by mixing Si3N4 powder with ZrO2.SiO2 (zircon) as a sintering aid and other oxide sintering aid, compacting and sintering the mixture. CONSTITUTION:Si3N4 powder having 0.1-0.6mum average particle diameter and such high purity as <=100ppm total amt. of metal impurities is mixed with 5-15wt.% sintering aid having 0.05-0.5mum average particle diameter obtd. by mixing zircon with other oxide sintering aid such as Y2O3, or Y2O3+MgAl2O4 in (1:4)-(2:3) weight ratio. The resulting powdery mixture is subjected to isostatic pressing under 1,000-3,000kg/cm<2> pressure to obtain a compact and this compact is sintered at 1,500-1,700 deg.C in an inert atmosphere of Ar to produce a silicon nitride sintered body.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は窒化ケイ素焼結体の製造
方法に係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a silicon nitride sintered body.

【0002】[0002]

【従来の技術】窒化ケイ素焼結体は窒化ケイ素粉末に焼
結助剤を添加し、成形及び焼結して作製される。焼結助
剤としてはY2 3 ,MgO,Al2 3 など各種の酸
化物が使用され、また提案されている。切削工具のコー
ティングされた母材としてではあるが、窒化ケイ素粉末
に焼結助剤として0.1〜10重量%のY2 3 と0.
1〜10重量%のZrO2 とを添加した焼結体が特開昭
61−101482号公報に開示され、また窒化ケイ素
粉末に焼結助剤としてY2 3 と、さらにZrO2 及び
SiO2 をそれぞれ添加することも従来知られている。
2. Description of the Related Art A silicon nitride sintered body is produced by adding a sintering aid to silicon nitride powder, molding and sintering. Various oxides such as Y 2 O 3 , MgO and Al 2 O 3 are used and proposed as the sintering aid. Although used as a coated base material for a cutting tool, 0.1% to 10% by weight of Y 2 O 3 as a sintering aid was added to silicon nitride powder as a sintering aid.
A sintered body to which 1 to 10% by weight of ZrO 2 is added is disclosed in JP-A-61-101482, and Y 2 O 3 is added to a silicon nitride powder as a sintering aid, and further ZrO 2 and SiO 2 are added. It is also conventionally known to add each of these.

【0003】[0003]

【発明が解決しようとする課題】従来、窒化ケイ素焼結
体において、常圧焼結で、しかも1500℃から170
0℃の比較的低温度の焼結により、室温から1000℃
の範囲で1000MPa (空気中)を越え、さらには空気
中1400℃で600MPa を越える強度を発現した報告
は無い。高強度を得るためには、緻密で微細な焼結体組
織が必要であり、そのためには低温度で焼結する必要が
あったが、常圧では焼結しないためにHIP焼結法が用
いられている。
Conventionally, a silicon nitride sintered body has been pressure-sintered at 1500 ° C. to 170 ° C.
Room temperature to 1000 ° C due to relatively low temperature of 0 ° C
There is no report that the strength exceeds 1000 MPa (in air) in the range of, and further exceeds 600 MPa at 1400 ° C. in air. In order to obtain high strength, a dense and fine sintered body structure was required, and for that purpose it was necessary to sinter at a low temperature, but since it does not sinter under normal pressure, the HIP sintering method is used. Has been.

【0004】そこで、本発明は、HIP焼結の必要がな
く、常圧焼結で、しかも1500〜1700℃の比較的
低温度で焼成して高温で高強度を発現する窒化ケイ素焼
結体を製造する方法を提供することを目的とする。
Therefore, the present invention provides a silicon nitride sintered body which does not require HIP sintering, is pressureless sintered, and is sintered at a relatively low temperature of 1500 to 1700 ° C. to exhibit high strength at high temperature. It is intended to provide a method for manufacturing.

【0005】[0005]

【課題を解決するための手段】本発明によれば、焼結助
剤として各種酸化物系助剤と共に、ZrO2 とSiO 2
とをそれぞれ単独にではなく、ジルコンZrO2 ・Si
2 (ZrSiO4 )という化合物の形で添加すること
によって、上記課題が解決される。ZrO2 とSiO2
とを単独粒子として添加すると、緻密化はするが、強度
は低下する。
According to the present invention, the sintering aid is
ZrO together with various oxide-based auxiliaries as agents2And SiO 2
Zircon ZrO2・ Si
O2(ZrSiOFour) Is added in the form of compound
The above-mentioned problems are solved by. ZrO2And SiO2
When and are added as individual particles, they are densified, but strength
Will fall.

【0006】こうして本発明によれば、窒化ケイ素粉末
に、焼結助剤として少なくともZrO2 ・SiO2 と他
の酸化物系助剤を添加した均一混合粉末を成形し、該成
形体を1500℃〜1700℃の温度で焼結することを
特徴とする窒化ケイ素焼結体の製造方法が提供される。
出発原料としての窒化ケイ素粉末は平均粒径0.1〜
0.6μm、より好ましくは0.2〜0.4μmのもの
を使用するのがよい。出発原料の粒径が小さいことによ
り焼結時の駆動力が大きくなり、また出発原料の粒径が
大きくなると、焼結粒子の粒径が大きくなり、強度低下
の原因になるからである。また、純度は金属不純物総量
100ppm 以下のものがよい。不純物がこれより多くな
ると粒界ガラス相の軟化温度が低下し、高温における強
度が低下するからである。
[0006] Thus, according to the present invention, the silicon nitride powder, molding the homogeneous powder mixture prepared by adding at least ZrO 2 · SiO 2 and other oxide-based additive as a sintering aid, 1500 ° C. The molded article Provided is a method for producing a silicon nitride sintered body, which comprises sintering at a temperature of ˜1700 ° C.
The silicon nitride powder as a starting material has an average particle size of 0.1 to 0.1.
It is preferable to use one having a thickness of 0.6 μm, more preferably 0.2 to 0.4 μm. This is because the driving force at the time of sintering becomes large due to the small particle size of the starting material, and when the particle size of the starting material becomes large, the particle size of the sintered particles becomes large, which causes a decrease in strength. Further, the purity is preferably such that the total amount of metal impurities is 100 ppm or less. This is because if the amount of impurities is larger than this, the softening temperature of the grain boundary glass phase decreases, and the strength at high temperature decreases.

【0007】本発明では上記各種酸化物系助剤と共にジ
ルコン(ZrO2 ・SiO2 )を添加することを特徴と
している。窒化ケイ素粉末原料と各種酸化物系助剤によ
って1500〜1700℃という低い温度で緻密化し、
かつジルコンの添加で一層の高強度が実現できる。ジル
コン以外の酸化物系助剤としては、代表的には、Y2
3 ,Yb2 3 ,Al2 3 ,MgAl2 4 ,TiO
2 ,ZrO2 ,3Al2 3 ・2SiO2 (ムライ
ト),その他の希土類金属酸化物、などが挙げられる。
これらの助剤は窒化ケイ素粉末粒子表面に存在する酸化
ケイ素と液相を生成し、1500〜1700℃で充分に
緻密な焼結体となるために液相焼結の促進剤として不可
欠である。
The present invention is characterized in that zircon (ZrO 2 .SiO 2 ) is added together with the above various oxide type auxiliaries. Densified at a low temperature of 1500 to 1700 ° C. with a silicon nitride powder raw material and various oxide-based auxiliaries,
Moreover, even higher strength can be realized by adding zircon. As an oxide-based auxiliary agent other than zircon, Y 2 O is typically used.
3 , Yb 2 O 3 , Al 2 O 3 , MgAl 2 O 4 , TiO
2 , ZrO 2 , 3Al 2 O 3 .2SiO 2 (mullite), other rare earth metal oxides, and the like.
These auxiliaries form a liquid phase with the silicon oxide existing on the surface of the silicon nitride powder particles, and become a sufficiently dense sintered body at 1500 to 1700 ° C., so that they are indispensable as accelerators for the liquid phase sintering.

【0008】好ましい酸化物系助剤の例はY2 3 ,Y
2 3 +MgAl2 4 ,3Al2 3 ・2SiO
2 (ムライト)、Al2 3 などである。Y2 3 やY
2 3 +MgAl2 4 は1000℃4点曲げ強度10
00MPa 以上の強度を与え、ムライトは1300〜14
00℃での高強度を与える。Y2 3 は針状晶のβ−S
3 4 結晶の生成を促進し、結晶粒のアスペクト比を
大きくして焼結体の強度、破壊靱性が向上する。MgA
2 4 は焼結温度を低下させる効果があり、その結果
として焼結体に微細な組織を発現させる。
Examples of preferred oxide auxiliaries are Y2O3, Y
2O3+ MgAl2OFour, 3Al2O3・ 2SiO
2(Mullite), Al2O3And so on. Y2O3And Y
2O3+ MgAl2OFourIs 1000 ° C. 4-point bending strength 10
Providing a strength of over 00 MPa, mullite is 1300-14
Provides high strength at 00 ° C. Y2O3Is acicular β-S
i 3NFourIt promotes the formation of crystals and improves the aspect ratio of crystal grains.
By making it larger, the strength and fracture toughness of the sintered body are improved. MgA
l2OFourHas the effect of lowering the sintering temperature, and as a result
As a result, a fine structure is developed in the sintered body.

【0009】また、本発明では酸化物系以外の焼結助剤
を追加的に添加してもよい。例えば、AlN,Y2 (C
2 3 などである。焼結助剤は平均粒径0.05〜
0.5μm、より好ましくは0.3μm、純度99.0
%以上のものがよい。粒径が大きすぎると焼結性が低下
し、不純物が多いと所望の強度が得られない。
In the present invention, a sintering aid other than the oxide type may be additionally added. For example, AlN, Y 2 (C
N 2 ) 3 and so on. The sintering aid has an average particle size of 0.05 to
0.5 μm, more preferably 0.3 μm, purity 99.0
% Or more is preferable. If the particle size is too large, the sinterability will decrease, and if the amount of impurities is large, the desired strength cannot be obtained.

【0010】焼結助剤の量は焼結助剤の種類にも依存す
るが、一般にジルコンとその他の酸化物系助剤の総量で
5〜15重量%、より好ましくは6〜10重量%程度添
加する。5重量%未満では常圧焼結で緻密化せず、強度
が出ない一方、15重量%より多くなると高温強度が低
下する。また、ジルコンとその他の酸化物系助剤との割
合は重量比で1/4〜2/3が好ましいが、ジルコンと
ムライトの場合は1〜3が好ましい。これらの比よりジ
ルコンが少ないと高温強度向上効果は少なくなり、多い
と緻密化が阻害されるようになる。
The amount of the sintering aid depends on the kind of the sintering aid, but generally the total amount of zircon and other oxide-based auxiliary agents is 5 to 15% by weight, more preferably about 6 to 10% by weight. Added. If it is less than 5% by weight, it will not be densified by pressureless sintering and strength will not be obtained. The weight ratio of zircon to other oxide-based auxiliary agent is preferably 1/4 to 2/3, but 1 to 3 is preferable for zircon and mullite. When the amount of zircon is less than these ratios, the effect of improving the high temperature strength is small, and when the amount is large, the densification is hindered.

【0011】また、上記焼結助剤と共に、非晶質のSi
−N−C粉末を添加すると、焼結過程中に微細SiC粒
子を粒界3重点位置及び粒内に生成し、これにより14
00℃で粒界相の軟化を防止し、またSiC粒子が分散
して亀裂進展に対し抵抗となり、強度(特に1400℃
強度)、破壊靱性を向上する作用がある。この非晶質S
i−N−C粉末は焼結温度でおよそ30重量%のSiC
と70重量%のSi3 4 として結晶化するものであ
り、平均粒径0.3μm以下の粉末がよい。なお、同程
度の粒径の粉末として直接SiC粉末を添加してもよ
い。
In addition to the above sintering aid, amorphous Si
When the -NC powder is added, fine SiC particles are generated at the grain boundary triple points and in the grain during the sintering process, thereby
At 00 ° C, softening of the grain boundary phase is prevented, and SiC particles disperse and become resistant to crack growth, resulting in strength (especially 1400 ° C).
Strength) and fracture toughness. This amorphous S
The i-N-C powder is about 30 wt% SiC at the sintering temperature.
And 70% by weight of Si 3 N 4 are crystallized, and powder having an average particle diameter of 0.3 μm or less is preferable. Note that SiC powder may be directly added as a powder having a similar particle size.

【0012】上記の非晶質Si−N−C粉末を添加する
場合には、3〜20重量%が好ましく、より好ましくは
5〜15重量%であり、この範囲が比較的焼結し易く、
添加効果も顕著となる。出発原料粉末の成形は常法によ
ることができる。すなわち、典型的には、出発粉末を均
一に混合し、1000〜3000kg/cm2 程度の圧力で
静水圧プレスして成形する。
When the above amorphous Si-N-C powder is added, it is preferably 3 to 20% by weight, more preferably 5 to 15% by weight, and this range is relatively easy to sinter,
The effect of addition becomes remarkable. The starting raw material powder can be molded by a conventional method. That is, typically, the starting powders are uniformly mixed and isostatically pressed at a pressure of about 1000 to 3000 kg / cm 2 to form the powder.

【0013】次いで、焼成するが、本発明の方法では1
500〜1700℃の温度範囲で焼成する。1700℃
を越えるとジルコンの熱分解が著しくなり、また粒成長
のため組織が微細化しないので、強度が低下する。一
方、1500℃未満では充分に緻密化した焼結体が得ら
れず、強度が低い。焼成雰囲気は不活性であればよく、
例えば窒素、アルゴン、ヘリウムあるいはこれらの混合
ガス等、典型的には窒素である。
Then, it is fired, but in the method of the present invention, it is 1
Baking is performed in a temperature range of 500 to 1700 ° C. 1700 ° C
If it exceeds, the thermal decomposition of zircon becomes remarkable, and the structure does not become fine due to grain growth, so that the strength is lowered. On the other hand, if the temperature is less than 1500 ° C., a sufficiently densified sintered body cannot be obtained and the strength is low. If the firing atmosphere is inert,
For example, nitrogen, argon, helium or a mixed gas thereof is typically nitrogen.

【0014】本発明の窒化ケイ素焼結体の製造方法は、
上記のほかは、常法に従うことができる。また、本発明
では常圧低温焼結で、高強度を有する焼結体が得られる
利点があるが、加圧焼結によればさらに強度が向上する
効果がある。
The method for producing a silicon nitride sintered body of the present invention comprises:
In addition to the above, conventional methods can be followed. Further, in the present invention, there is an advantage that a sintered body having a high strength can be obtained by the normal temperature low temperature sintering, but the pressure sintering has an effect of further improving the strength.

【0015】[0015]

【作用】焼結助剤の添加により焼結温度を1500〜1
700℃にし、焼結組織の微細化を図った上に、ジルコ
ンが添加されていると高温での強度が向上する。ジルコ
ンの詳細な作用は不明であるが、高温において粒界相の
粘度を高め、軟化防止に効果があるものと考えられる。
[Function] The sintering temperature is increased to 1500 to 1 by adding a sintering aid.
When the temperature is set to 700 ° C. and the sintered structure is made finer and zircon is added, the strength at high temperature is improved. Although the detailed function of zircon is unknown, it is considered that zircon increases the viscosity of the grain boundary phase at high temperature and is effective in preventing softening.

【0016】[0016]

【実施例】実施例1 Si3 4 粉末(平均粒径0.5μm以下、α化率92
〜97%)に焼結助剤としてY2 3 粉末(平均粒径
0.3μm、純度99.9%)、ZrO2 ・SiO2
末(平均粒径0.5μm以下、純度97%以上)を添加
した粉末を混合(窒化ケイ素製ボールミル)し、200
kg/cm2 の圧力で加圧成形し、その成形体を薄ゴムに詰
め、真空封入後、CIPにて3000kg/cm2 の圧力で
加圧後、この成形体を表1に示す条件でN2 雰囲気中の
炉内で焼結させた。昇温速度1℃/min 、最高温度での
保持時間は4時間とした。
EXAMPLES Example 1 Si 3 N 4 powder (average particle size 0.5 μm or less, α conversion rate 92)
˜97%) as a sintering aid Y 2 O 3 powder (average particle size 0.3 μm, purity 99.9%), ZrO 2 · SiO 2 powder (average particle size 0.5 μm or less, purity 97% or more) The powder added with was mixed (a ball mill made of silicon nitride) to obtain 200
After pressure molding at a pressure of kg / cm 2 , the molded body was packed in thin rubber, vacuum-sealed, and then pressed at a pressure of 3000 kg / cm 2 by CIP. Sintered in a furnace in 2 atmospheres. The temperature rising rate was 1 ° C./min, and the holding time at the maximum temperature was 4 hours.

【0017】これらの焼結体の室温4点曲げ強度(JI
S R 1601)、高温4点曲げ強度(JIS A
1604、大気中)を各10本測定してその平均強度を
表1に示す。焼結体の相対密度はn−ブタノール置換法
で求めた嵩密度を理論密度で除して得た値である。比較
のために、実施例1と同様な方法で成形したのち、この
成形体を表2に示す条件でN2 雰囲気中の炉内焼結させ
表2の結果を得た。
Room temperature 4-point bending strength (JI
S R 1601), high temperature 4-point bending strength (JIS A
1604, in the air), and 10 of each were measured, and the average strength thereof is shown in Table 1. The relative density of the sintered body is a value obtained by dividing the bulk density obtained by the n-butanol substitution method by the theoretical density. For comparison, after molding in the same manner as in Example 1, this molded body was sintered in a furnace under N 2 atmosphere under the conditions shown in Table 2 to obtain the results shown in Table 2.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0020】実施例2 シリコンジイミドの熱分解法、又は金属シリコンの直接
窒化法により生成されたSi3 4 粉末(平均粒径0.
5μm以下、α化率92〜97%)に焼結助剤としてY
2 3 粉末(平均粒径0.3μm、純度99.9%)、
MgAl2 4 粉末(平均粒径0.3μm以下、純度9
9.9%)、ZrO2 ・SiO2 粉末(平均粒径0.5
μm以下、純度97%以上)を添加した粉末を混合(窒
化ケイ素製ボールミル)し、200kg/cm2 の圧力で加
圧成形し、その成形体を薄ゴムに詰め、真空封入後、C
IPにて3000kg/cm2 の圧力で加圧後、この成形体
を表3に示す条件でN2 雰囲気中の炉内で焼結させた。
緻密化過程で昇温速度1℃/min 、最高温度での保持時
間は4時間とした。
Example 2 Si 3 N 4 powder (average particle size of 0. 0) produced by thermal decomposition method of silicon diimide or direct nitriding method of metallic silicon.
5 μm or less, α conversion rate of 92 to 97%) and Y as a sintering aid
2 O 3 powder (average particle size 0.3 μm, purity 99.9%),
MgAl 2 O 4 powder (average particle size 0.3 μm or less, purity 9
9.9%), ZrO 2 · SiO 2 powder (average particle size 0.5
Powder mixed with μm or less and purity of 97% or more) is mixed (silicon nitride ball mill), pressure-molded at a pressure of 200 kg / cm 2 , the molded body is packed in thin rubber, vacuum-enclosed, and then C
After pressurizing with IP at a pressure of 3000 kg / cm 2 , the molded body was sintered under the conditions shown in Table 3 in a furnace in an N 2 atmosphere.
During the densification process, the temperature rising rate was 1 ° C./min, and the holding time at the maximum temperature was 4 hours.

【0021】これらの焼結体の室温4点曲げ強度(JI
S R 1601)、高温4点曲げ強度(JIS R
1604、大気中)を各10本測定してその平均強度を
表3に示す。焼結体の相対密度はn−ブタノール置換法
で求めた嵩密度を理論密度で除して得た値である。実施
例2と同様な方法で成形したのち、この成形体を表4に
示す条件でN2 雰囲気中の炉内焼結させ表4の結果を得
た。
Room temperature 4-point bending strength (JI
S R 1601), high temperature 4-point bending strength (JIS R
1604, in the air), and 10 of each were measured, and the average strength thereof is shown in Table 3. The relative density of the sintered body is a value obtained by dividing the bulk density obtained by the n-butanol substitution method by the theoretical density. After molding in the same manner as in Example 2, this molded body was sintered in a furnace under N 2 atmosphere under the conditions shown in Table 4 to obtain the results shown in Table 4.

【0022】[0022]

【表3】 [Table 3]

【0023】[0023]

【表4】 [Table 4]

【0024】表3、表4に見られるように、Y2 3
MgAl2 4 と共に、ZrO2 とSiO2 とを単独で
はなくZrSiO4 として添加し、1700℃以下の低
い温度で焼結することにより、1000℃と空気中にお
いても1000MPa を越える4点曲げ強度値を発現し、
焼結時の雰囲気圧力を高めるとさらに高い強度値が得ら
れた(試料No.29,30,31)。
As can be seen in Tables 3 and 4, Y 2 O 3 ,
By adding ZrO 2 and SiO 2 together with MgAl 2 O 4 as ZrSiO 4 instead of independently and sintering at a low temperature of 1700 ° C. or less, a 4-point bending strength value exceeding 1000 MPa even at 1000 ° C. and in air. Express
Higher strength values were obtained by increasing the atmospheric pressure during sintering (Sample Nos. 29, 30, 31).

【0025】なお、焼結助剤はその総量が5〜15重量
%の範囲がよいようである。5%より少ないと緻密に焼
結せず、また15%より多くなると強度が低下するから
である。ZrO2 とSiO2 粉末を別々に添加すると比
較例No.34に示されるように緻密な焼結体は得られ
るが、強度が低下する。
The total amount of the sintering aid is preferably in the range of 5 to 15% by weight. If it is less than 5%, it will not sinter densely, and if it is more than 15%, the strength will decrease. When ZrO 2 and SiO 2 powder were added separately, Comparative Example No. Although a dense sintered body is obtained as shown in 34, the strength is reduced.

【0026】また、Y2 3 −MgAl2 4 −ZrO
2 ,Y2 3 −MgAl2 4 −SiO2 、及びY2
3 −MgAl2 4 組成では比較例試料No.35〜3
7に示されるように緻密な焼結体は得られるが1000
℃の強度低下が著しい。実施例3 Si3 4 粉末: シリコンジイミドの熱分解法により生成されたSi
3 4 粉末(平均粒径0.2μm、不純物総量50ppm
、α化率97〜100%) 金属シリコンの直接窒化法により生成されたSi3
4 粉末(平均粒径0.9μm、不純物総量980ppm
、α化率92〜97%) ジルコン(ZrSiO2 )粉末:平均粒径0.2μm、
純度99% 他の焼結助剤:表5、表6の助剤、いずれも平均粒径
0.2〜0.6μm、純度99〜99.9%。
Further, Y 2 O 3 --MgAl 2 O 4 --ZrO
2 , Y 2 O 3 —MgAl 2 O 4 —SiO 2 , and Y 2 O
In the case of the 3- MgAl 2 O 4 composition, the comparative sample No. 35-3
Although a dense sintered body can be obtained as shown in FIG.
Significant decrease in strength at ℃ Example 3 Si 3 N 4 powder: Si produced by pyrolysis of silicon diimide
3 N 4 powder (average particle size 0.2 μm, total amount of impurities 50 ppm
, Α-conversion rate 97-100%) Si 3 produced by the direct nitriding method of metallic silicon
N 4 powder (average particle size 0.9 μm, total amount of impurities 980 ppm
, Α-ized rate 92 to 97%) Zircon (ZrSiO 2 ) powder: average particle size 0.2 μm,
Purity 99% Other sintering aids: Auxiliaries in Table 5 and Table 6, both having an average particle size of 0.2 to 0.6 μm and a purity of 99 to 99.9%.

【0027】上記粉末を表5に示す配合組成(Si3
4 粉末は焼結助剤の残部で、合計100重量%)で秤量
し、不純物(介在物)の混入を極力防止した窒化ケイ素
製ボールミルで混合した。得られた粉末を150kg/cm
2 の圧力で金型成形し、次いで薄ゴム袋に詰め、真空封
入後3000kg/cm2 の圧力で静水圧加圧を加え、成形
を完了した。
The above powder is blended as shown in Table 5 (Si 3 N
The 4 powders were the balance of the sintering aid, and were weighed with a total of 100% by weight) and mixed with a silicon nitride ball mill in which impurities (inclusions) were prevented as much as possible. 150 kg / cm of the obtained powder
Molding was carried out at a pressure of 2 , then packed in a thin rubber bag, sealed in vacuum, and hydrostatically pressurized at a pressure of 3000 kg / cm 2 to complete molding.

【0028】成形体を表5に示す条件で1気圧の窒素雰
囲気中で焼結させた。昇温速度は1300℃以上で1℃
/min に制御した。焼結温度における保持時間は4時間
とした。得られた焼結体を機械加工し、JIS−R−1
601及びJIS−R−1604規格に従い、室温及び
高温の4点曲げ強度を測定した。試験本数は15〜20
本で表5中の強度値は算術平均値である。
The compact was sintered under the conditions shown in Table 5 in a nitrogen atmosphere at 1 atm. Temperature rising rate is 1 ° C above 1300 ° C
/ Min was controlled. The holding time at the sintering temperature was 4 hours. The obtained sintered body is machined to JIS-R-1
According to 601 and JIS-R-1604 standard, room temperature and high temperature 4-point bending strength were measured. The number of tests is 15 to 20
The intensity values in Table 5 in this book are arithmetic mean values.

【0029】焼結体のかさ密度はn−ブタノールを用い
た置換法で測定したがいずれも全気孔率で1.5%以下
であった。境面研摩面の光学顕微鏡観察で1μm以上の
気孔は観察されなかった。実施例3と同様にして但し表
6に示す条件で成形体を成形し、焼結して、表6に示す
結果を得た。
The bulk density of the sintered body was measured by the substitution method using n-butanol, and the total porosity was all 1.5% or less. No pores of 1 μm or more were observed by an optical microscope observation of the polished surface. A molded body was molded in the same manner as in Example 3 except under the conditions shown in Table 6 and was sintered, and the results shown in Table 6 were obtained.

【0030】[0030]

【表5】 [Table 5]

【0031】[0031]

【表6】 [Table 6]

【0032】表5、表6から、Y2 3 あるいはY2
3 +MgAlO4 とジルコンの組合せにかぎらず、各種
の酸化物系助剤とジルコンの組合せにおいても、高温強
度の向上が可能であることが認められる。実施例4 Si3 4 粉末(平均粒径:0.3μm、純度:99.
99%)に、焼結助剤としてZrSiO4 粉末(平均粒
径:0.3μm、純度:97%以上)、及び3Al2
3 ・2SiO2 粉末(平均粒径:0.3μm、純度:9
8%以上)を表7に示す配合割合で添加し、Si3 4
製のボールミルでエタノール中で均一に混合した後、乾
燥して混合粉末を得た。
From Tables 5 and 6, Y 2 O 3 or Y 2 O
It is recognized that the high temperature strength can be improved not only by the combination of 3 + MgAlO 4 and zircon but also by the combination of various oxide type auxiliaries and zircon. Example 4 Si 3 N 4 powder (average particle size: 0.3 μm, purity: 99.
99%), ZrSiO 4 powder (average particle size: 0.3 μm, purity: 97% or more) as a sintering aid, and 3Al 2 O.
3 · 2SiO 2 powder (average particle size: 0.3 [mu] m, Purity: 9
8% or more) is added in the mixing ratio shown in Table 7, and Si 3 N 4 is added.
The resulting mixture was uniformly mixed in ethanol with a ball mill manufactured by K.K. and then dried to obtain a mixed powder.

【0033】上記混合粉末を150kgf /cm2 の圧力で
加圧成形し、その成形体を薄ゴムにつめ、真空封入後、
CIP(Cold Isostatic Press)
処理にて3000kgf /cm2 の圧力で加圧して、所定形
状(6mm×5mm×45mm)の成形体を得た。上記成形体
を表7に示す最高加熱温度で4時間、窒素雰囲気中の炉
内で焼結して、焼結体を得た。なお、このときの昇温速
度は2℃/min とした。
The above-mentioned mixed powder was pressure-molded at a pressure of 150 kgf / cm 2 , the molded body was packed in a thin rubber, and after vacuum filling,
CIP (Cold Isostatic Press)
In the treatment, a pressure of 3000 kgf / cm 2 was applied to obtain a molded product having a predetermined shape (6 mm × 5 mm × 45 mm). The molded body was sintered at the maximum heating temperature shown in Table 7 for 4 hours in a furnace in a nitrogen atmosphere to obtain a sintered body. The temperature rising rate at this time was 2 ° C./min.

【0034】これらの焼結体について、JIS R 1
604に従い、空気中で室温、1300℃、1400℃
の各温度で4点曲げ強度を各20本ずつ測定して、平均
強度を求めた。その結果を表7に示す。
Regarding these sintered bodies, JIS R 1
According to 604, room temperature in air, 1300 ° C, 1400 ° C
The four-point bending strength was measured for each of 20 pieces at each temperature and the average strength was obtained. The results are shown in Table 7.

【0035】[0035]

【表7】 [Table 7]

【0036】表7に示す結果からも明らかなように、本
実施例に係る焼結体は、いずれも1300℃における高
温強度が800MPa 以上と高く、しかも1400℃にお
ける高温強度も700MPa 以上を確保できた。また、本
実施例では、常圧焼結でも充分な強度性向上の効果が得
られた。また、加圧下で焼結した試料No.54に係る
焼結体では、さらに高強度化を図ることができた。
As is clear from the results shown in Table 7, in all the sintered bodies according to this example, the high temperature strength at 1300 ° C. was as high as 800 MPa or more, and the high temperature strength at 1400 ° C. could be as high as 700 MPa or more. It was Further, in the present example, the effect of sufficiently improving the strength was obtained even by pressureless sintering. In addition, the sample No. In the sintered body of No. 54, higher strength could be achieved.

【0037】なお、ムライトの添加量が多すぎる焼結体
は高温での強度が低下し、ムライトの添加量が少なすぎ
る焼結体は強度が低下した。また焼結助剤の総量が多す
ぎる焼結体は、室温での強度は高いものの、1300℃
及び1400℃での高温強度が低下した。ジルコン2〜
6重量%、ムライト2〜4重量%の範囲内の添加量が好
ましい結果を与えた。
The sintered body containing too much mullite decreased in strength at high temperature, and the sintered body containing too little mullite decreased in strength. A sintered body containing too much sintering aid has a high strength at room temperature, but at 1300 ° C.
And the high temperature strength at 1400 ° C decreased. Zircon 2
Addition amounts within the range of 6% by weight and 2-4% by weight of mullite gave favorable results.

【0038】実施例5 用いた非晶質Si−N−C粉末は例えばヘキサメチルジ
シラザンとアンモニアを1000℃でCVD反応させ、
2 気流中1350℃で熱分解して製造される複合粉末
であり、1500℃程度でSi3 4 とSiCに熱分解
するものである。
The amorphous Si-N-C powder used in Example 5 was obtained by subjecting hexamethyldisilazane and ammonia to a CVD reaction at 1000 ° C.
It is a composite powder produced by thermal decomposition in an N 2 stream at 1350 ° C., which decomposes into Si 3 N 4 and SiC at about 1500 ° C.

【0039】平均粒径0.2μm、金属元素不純物総量
50ppm のSi3 4 粉末に、平均粒径0.2μmのY
2 3 粉末とZrSiO4 粉末と平均粒径0.1μmの
非晶質Si−N−C粉末(加熱により生成するSiCの
換算値で30wt%の複合粉末) を表8に示す組成になる
よう秤量しエタノール中で均一に混合後、該混合粉末を
金型成形したのち該成形体に3t/cm2 の静水圧を負荷
させ、該成形体を1500〜1700℃の温度で焼結し
た。尚、最高温度到達後に表8に示す窒素ガス圧力まで
毎分20気圧の昇圧速度で加圧した。得られた焼結体の
強度をJIS規格に準じ、室温と高温4点曲げ試験(J
IS−R−1601,1604)で測定し、その結果を
表8に示した。
Si 3 N 4 powder having an average particle size of 0.2 μm and a total amount of metal element impurities of 50 ppm was added to Y having an average particle size of 0.2 μm.
Table 2 shows the composition of 2 O 3 powder, ZrSiO 4 powder, and amorphous Si-N-C powder having an average particle size of 0.1 μm (composite powder of 30 wt% in terms of SiC generated by heating). After weighing and uniformly mixing in ethanol, the mixed powder was molded into a mold, and then a hydrostatic pressure of 3 t / cm 2 was applied to the molded body, and the molded body was sintered at a temperature of 1500 to 1700 ° C. After reaching the maximum temperature, the nitrogen gas pressure shown in Table 8 was applied at a pressure increasing rate of 20 atm / min. The strength of the obtained sintered body conforms to JIS standard, and room temperature and high temperature 4-point bending test (J
IS-R-1601, 1604) and the results are shown in Table 8.

【0040】[0040]

【表8】 [Table 8]

【0041】表8の結果を表1と比較すると、酸化物系
助剤、ジルコンと共に、非晶質Si−N−C粉末をさら
に添加すると、高温強度がより向上することが認められ
る。これは、焼結体の粒界及び粒内にSiCが生成して
分散しているため、高温での粒界相の軟化を防止すると
共に、クラックの進展を止める作用があり、強度、破壊
靱性が向上するものと考えられる。
Comparing the results of Table 8 with Table 1, it is recognized that the high temperature strength is further improved by further adding the amorphous Si-N-C powder together with the oxide type auxiliary agent and zircon. This is because SiC is generated and dispersed in the grain boundaries and in the grains of the sintered body, so that it has the effect of preventing the softening of the grain boundary phase at high temperatures and of stopping the development of cracks. Is expected to improve.

【0042】なお、上記と同じ系で実験した結果によれ
ば、酸化物系助剤とジルコンとの合計量で3〜10重量
%、非晶質Si−N−C粉末2〜15重量%の範囲内の
添加量で高温強度の向上が著しく、好ましい。
According to the results of experiments conducted in the same system as described above, the total amount of the oxide type auxiliary agent and zircon is 3 to 10% by weight, and the amorphous Si-N-C powder is 2 to 15% by weight. The addition amount within the range remarkably improves the high temperature strength, which is preferable.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 窒化ケイ素粉末に、焼結助剤として少な
くともZrO2 ・SiO2 (ジルコン)と、ZrO2
SiO2 以外の酸化物系助剤とを添加した均一混合粉末
を成形し、該成形体を1500〜1700℃の温度で焼
結することを特徴とする窒化ケイ素焼結体の製造方法。
1. A silicon nitride powder containing at least ZrO 2 .SiO 2 (zircon) as a sintering aid, and ZrO 2 .multidot.
A method for producing a silicon nitride sintered body, which comprises molding a homogeneous mixed powder to which an oxide-based auxiliary agent other than SiO 2 is added, and sintering the molded body at a temperature of 1500 to 1700 ° C.
JP4029508A 1991-10-29 1992-02-17 Method for producing silicon nitride sintered body Expired - Lifetime JP3036207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4029508A JP3036207B2 (en) 1991-10-29 1992-02-17 Method for producing silicon nitride sintered body

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP28314691 1991-10-29
JP3-290003 1991-11-06
JP3-283146 1991-11-06
JP29000391 1991-11-06
JP4029508A JP3036207B2 (en) 1991-10-29 1992-02-17 Method for producing silicon nitride sintered body

Publications (2)

Publication Number Publication Date
JPH05178669A true JPH05178669A (en) 1993-07-20
JP3036207B2 JP3036207B2 (en) 2000-04-24

Family

ID=27286604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4029508A Expired - Lifetime JP3036207B2 (en) 1991-10-29 1992-02-17 Method for producing silicon nitride sintered body

Country Status (1)

Country Link
JP (1) JP3036207B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6850907B2 (en) 1996-12-13 2005-02-01 Cantor Fitzgerald, L.P. Automated price improvement protocol processor
US7392217B2 (en) 2001-05-09 2008-06-24 Bgc Partners, Inc. Systems and methods for controlling traders from manipulating electronic trading markets

Also Published As

Publication number Publication date
JP3036207B2 (en) 2000-04-24

Similar Documents

Publication Publication Date Title
US5470806A (en) Making of sintered silicon carbide bodies
JPS6256107B2 (en)
EP0699174B1 (en) Sintered self-reinforced silicon nitride
JP2507479B2 (en) SiC-Al Lower 2 O Lower 3 Composite Sintered Body and Manufacturing Method Thereof
CA2060241C (en) Silicon nitride sintered body and process for producing the same
JP2507480B2 (en) SiC-Al Lower 2 O Lower 3 Composite Sintered Body and Manufacturing Method Thereof
US4650498A (en) Abrasion resistant silicon nitride based articles
EP0365553B1 (en) Method for producing ceramic composite materials containing silicon oxynitride and zirconium oxide
JP3036207B2 (en) Method for producing silicon nitride sintered body
JP3145470B2 (en) Tungsten carbide-alumina sintered body and method for producing the same
JP2773439B2 (en) Method for producing silicon carbide-containing silicon nitride composite
JPH0259471A (en) Silicon nitride-based sintered body having high strength at high temperature and production thereof
JP2976534B2 (en) Silicon nitride sintered body and method for producing the same
JPH0753256A (en) Aluminous composite sintered compact and its production
JP3137405B2 (en) Manufacturing method of silicon nitride based ceramics
EP0317147B1 (en) Si3n4-al2o3 composite sintered bodies and method of producing the same
JPH01145380A (en) Production of silicon nitride sintered form
JPH0840776A (en) Sintered substance based on si3n4/bn and their production
JPH07115927B2 (en) SiC-based ceramics and method for producing the same
JP2692377B2 (en) Silicon nitride sintered body and method for producing the same
JP2910359B2 (en) Method for producing silicon nitride based sintered body
JP3144178B2 (en) Silicon nitride sintered body and method for producing the same
JP3124866B2 (en) Method for producing silicon nitride based sintered body
JP2890849B2 (en) Method for producing silicon nitride sintered body
JPH06305840A (en) Sintered silicon nitride and its production