JP2007254205A - Silicon nitride joined body, its production method and member for semiconductor production apparatus using the joined body - Google Patents

Silicon nitride joined body, its production method and member for semiconductor production apparatus using the joined body Download PDF

Info

Publication number
JP2007254205A
JP2007254205A JP2006080618A JP2006080618A JP2007254205A JP 2007254205 A JP2007254205 A JP 2007254205A JP 2006080618 A JP2006080618 A JP 2006080618A JP 2006080618 A JP2006080618 A JP 2006080618A JP 2007254205 A JP2007254205 A JP 2007254205A
Authority
JP
Japan
Prior art keywords
silicon nitride
bonding layer
bonding
bonding agent
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006080618A
Other languages
Japanese (ja)
Other versions
JP4854354B2 (en
Inventor
Kazuyoshi Oshima
和喜 大嶋
Takehiro Oda
武廣 織田
Teppei Kayama
哲平 香山
Kazuaki Takigawa
和明 瀧川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2006080618A priority Critical patent/JP4854354B2/en
Publication of JP2007254205A publication Critical patent/JP2007254205A/en
Application granted granted Critical
Publication of JP4854354B2 publication Critical patent/JP4854354B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ceramic Products (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a silicon nitride hollow joined body having a low coefficient of thermal expansion and high strength, as a member for a semiconductor production apparatus. <P>SOLUTION: In the silicon nitride hollow joined body, a pair of base bodies 1,4 composed of a silicon nitride-based sintered compact containing silicon nitride as a main component, erbium oxide (Er<SB>2</SB>O<SB>3</SB>) and alumina (Al<SB>2</SB>O<SB>3</SB>) are joined through a joining layer containing glass as a main component, fine crystallites of silicon nitride and an Er component. Thereby, the thermal expansion of the member can be suppressed to the utmost, and the deformation of the member caused by heat can be prevented. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、窒化珪素質焼結体同士を接合剤を用いて接合した窒化珪素接合体とその製造方法、並びにこの窒化珪素接合体を用いた半導体製造装置用部材に関し、特にウエハ定盤や半導体露光装置用ステージ等の大型中空構造を有する部材に適用されるものに関する。   The present invention relates to a silicon nitride bonded body obtained by bonding silicon nitride sintered bodies to each other using a bonding agent, a method for manufacturing the same, and a member for a semiconductor manufacturing apparatus using the silicon nitride bonded body. The present invention relates to a member applied to a member having a large hollow structure such as a stage for an exposure apparatus.

半導体製造において、ウエハ表面の研磨加工に用いられるウエハ定盤や、半導体露光装置用のステージについては、一度により多くの製品を加工して工程内の合理化を図るという目的から大型化の要求が高まっている。   In semiconductor manufacturing, there is an increasing demand for wafer surface plates used for polishing of wafer surfaces and stages for semiconductor exposure equipment in order to process more products at once and streamline the process. ing.

このような大型化に際して、ウエハ定盤やステージ等には、撓みがなく、振動に対して共振しにくく、軽量で、熱膨張係数が低く、且つわずかな温度差によっても形状変化が起こりにくいことが求められ、この要求を満足させるために、中空構造を有したセラミック構造体からなるウエハ定盤やステージ部材が多用されている。   In such an increase in size, the wafer surface plate, stage, etc. do not bend, are less likely to resonate with vibration, are lightweight, have a low coefficient of thermal expansion, and are unlikely to change in shape due to a slight temperature difference. In order to satisfy this requirement, a wafer surface plate and a stage member made of a ceramic structure having a hollow structure are frequently used.

大型の中空セラミック構造体は、例えば容器状のセラミック焼結体に板状のセラミック焼結体を接合剤を介して接合したものであり、この接合方法としては、両者をネジ留めして機械的に係合させるのが一般的であるが、このような接合方法では、大型中空セラミック構造体の表面に重量物を積載し、移動させた場合に係合箇所のみに負荷が集中し、繰り返し負荷がかかることで係合箇所が破断する恐れがあり、また、振動が加わった際に、係合箇所に応力集中が生じ係合が緩む可能性があった。   A large hollow ceramic structure is obtained by, for example, bonding a plate-shaped ceramic sintered body to a container-shaped ceramic sintered body via a bonding agent. However, in such a joining method, when a heavy object is loaded on the surface of a large hollow ceramic structure and moved, the load concentrates only on the engagement point, and the load is repeatedly applied. As a result, there is a possibility that the engagement portion is broken, and when vibration is applied, stress concentration occurs in the engagement portion and the engagement may be loosened.

このような問題点から、前記容器状のセラミック焼結体と板状のセラミック焼結体を無機接合剤で接合して一体化させる方法が用いられている。   From such a problem, a method is used in which the container-shaped ceramic sintered body and the plate-shaped ceramic sintered body are joined and integrated with an inorganic bonding agent.

また、ウエハ定盤やステージに用いられるセラミック焼結体としては、アルミナ、炭化珪素、窒化珪素等のセラミックスが用いられているが、近年では、軽量かつ低熱膨張係数である窒化珪素質焼結体からなるものが多用されている。   In addition, ceramics such as alumina, silicon carbide, and silicon nitride are used as the ceramic sintered body used for the wafer surface plate and stage. In recent years, however, the silicon nitride-based sintered body is lightweight and has a low thermal expansion coefficient. The thing which consists of is used extensively.

この窒化珪素質焼結体同士を接合したセラミック構造体として、例えば特許文献1では、接合剤として被接合体である窒化珪素質焼結体の焼結助剤のうち少なくとも1種以上の成分と、窒化珪素とを含有してなる接合剤が提案されており、具体的にY−Al−SiO系ガラスにSiを添加した接合剤を用いてY、Ybを焼結助剤とする窒化珪素質焼結体同士を接合することが示されている。 As a ceramic structure in which the silicon nitride sintered bodies are bonded to each other, for example, in Patent Document 1, at least one component or more of the sintering aids of the silicon nitride sintered body that is the bonded body is used as a bonding agent. , bonding agent comprising a silicon nitride has been proposed, specifically using the bonding agent was added Si 3 N 4 in Y 2 O 3 -Al 2 O 3 -SiO 2 based glass Y 2 O 3 , joining silicon nitride sintered bodies using Yb 2 O 3 as a sintering aid is shown.

また、特許文献2には、セラミック焼結体を接合するために、周期律表3族元素の酸化物と、珪素酸化物と、アルミニウム酸化物とを配合してなる接合剤において、前記周期律表3族元素の酸化物を少なくとも2種配合し、かつ窒素を含有することにより、熱膨張係数を低下させ、接合部の耐熱性、機械的特性を向上させることが提案されており、窒化物系セラミックスをこの接合剤により接合することが示されている。
特開平5−4876号公報 特開平11−278950号公報
Further, Patent Document 2 discloses that in the bonding agent formed by mixing an oxide of a group 3 element of a periodic table, a silicon oxide, and an aluminum oxide in order to bond a ceramic sintered body, the periodic rule is used. It has been proposed to reduce the thermal expansion coefficient and improve the heat resistance and mechanical properties of the joint by incorporating at least two Group 3 element oxides and containing nitrogen. It is shown that the ceramics are bonded with this bonding agent.
Japanese Patent Laid-Open No. 5-4876 JP 11-278950 A

しかしながら、特許文献1では、Y−Al−SiO系ガラスや、これに予め窒化珪素を加えた組成のガラス等の接合剤が用いられており、これら接合剤は融点が1450〜1550℃と高い。同様に、特許文献2の接合剤では、1200〜1450℃と従来よりも低融点の接合剤とし、接合体の熱膨張を低いものとすることはできるものの、接合剤中に含まれる各成分の結晶粒径やSiOの粒径が大きいため、接合層を高強度なものとすることができないため、接合部に熱応力が発生した際にクラックが生じやすいという問題を有している。 However, in Patent Document 1, a bonding agent such as Y 2 O 3 —Al 2 O 3 —SiO 2 glass or glass having a composition in which silicon nitride is added in advance is used, and these bonding agents have a melting point. It is as high as 1450-1550 ° C. Similarly, in the bonding agent of Patent Document 2, a bonding agent having a melting point of 1200 to 1450 ° C. is lower than that of the conventional one, and the thermal expansion of the bonded body can be reduced, but each component contained in the bonding agent Since the crystal grain size and the SiO 2 grain size are large, the bonding layer cannot be made high in strength, so that there is a problem that cracks are likely to occur when a thermal stress is generated at the joint.

また、接合剤に3族元素の酸化物として、酸化エルビウム(Er)を含有させた場合には、高温で熱処理するために酸化エルビウムはβ−ErSiを構成することができないため、接合部の熱膨張を小さくすることは困難である。 In addition, when erbium oxide (Er 2 O 3 ) is included as a Group 3 element oxide in the bonding agent, erbium oxide constitutes β-Er 2 Si 2 O 7 for heat treatment at a high temperature. Therefore, it is difficult to reduce the thermal expansion of the joint.

さらに、接合部の厚みが40〜70μmと厚いため、接合部の密度を均一にすることが困難となり、接合後の接合面積率が低下し接合強度が低下しやすいという問題を有している。   Furthermore, since the thickness of the joint portion is as thick as 40 to 70 μm, it is difficult to make the density of the joint portion uniform, and there is a problem that the joint area ratio after joining is lowered and the joint strength is easily lowered.

本発明は、窒化珪素を主成分とし、酸化エルビウム(Er)およびアルミナ(Al)を含む窒化珪素質焼結体からなる一対の基体を、ガラスを主成分とし、窒化珪素から成る微細結晶およびEr成分を含む接合層を介して接合されたことを特徴とするものである。 The present invention relates to a pair of substrates made of a silicon nitride sintered body containing silicon nitride as a main component and containing erbium oxide (Er 2 O 3 ) and alumina (Al 2 O 3 ) as a main component. It is characterized in that it is bonded through a bonding layer containing fine crystals and an Er component.

また、前記接合層は、Er元素がEr換算で5質量%以下含有されていることを特徴とする。 The bonding layer is characterized by containing 5% by mass or less of an Er element in terms of Er 2 O 3 .

さらに、前記接合層における窒化珪素の微細結晶は、その平均結晶粒径が0.2μm以下であることを特徴とする。   Further, the fine crystal of silicon nitride in the bonding layer has an average crystal grain size of 0.2 μm or less.

さらにまた、前記接合層は、その厚みが0.5〜5μmであることを特徴とする。   Furthermore, the bonding layer has a thickness of 0.5 to 5 μm.

また、前記窒化珪素接合体からなる半導体製造装置用部材であって、一方の基体に穴部を備えるとともに、他方の基体により前記穴部の周囲を閉鎖するように接合したことを特徴とする。   Further, the semiconductor manufacturing apparatus member is made of the silicon nitride bonded body, wherein one base is provided with a hole, and the other base is bonded so as to close the periphery of the hole.

さらに、前記窒化珪素接合体の製造方法であって、窒化珪素を主成分として、酸化エルビウム(Er)およびアルミナ(Al)を焼結助剤として含有してなる窒化珪素質焼結体からなる一対の基体を得る工程と、一方の基体の所定位置にガラスを主成分とする接合剤を塗布するとともに、該接合剤を介して他方の基体を載置し、1250〜1400℃の温度で熱処理する工程と、を有することを特徴とする。 Furthermore, in the method for manufacturing the silicon nitride bonded body, the silicon nitride material comprising silicon nitride as a main component and erbium oxide (Er 2 O 3 ) and alumina (Al 2 O 3 ) as sintering aids. A step of obtaining a pair of substrates made of a sintered body, a bonding agent mainly composed of glass is applied to a predetermined position of one substrate, and the other substrate is placed via the bonding agent, and 1250 to 1400. And a heat treatment step at a temperature of ° C.

本発明によれば、窒化珪素接合体の基体としてEr、Alを焼結助剤として含む窒化珪素質焼結体を用いることで、半導体製造装置用部材として用いた場合、部材の熱膨張を極力抑え、加熱による部材の形状変化が起こることを防止することが可能となる。これにより、例えばウエハ定盤のようなウエハ加工装置用部材として用いる場合には、ウエハ表面の微細加工、表面加工に影響を与えることがない。また、半導体露光用ステージとして用いた場合も同様にウエハにマスクパターンを形成する際等に、部材の形状変化を極力少なくすることが可能であり、より高精度なパターン形成が可能となる。 According to the present invention, when a silicon nitride sintered body containing Er 2 O 3 and Al 2 O 3 as a sintering aid is used as a substrate of a silicon nitride bonded body, when used as a member for a semiconductor manufacturing apparatus, It becomes possible to suppress the thermal expansion of the member as much as possible and prevent the shape change of the member due to heating. Thereby, for example, when used as a member for a wafer processing apparatus such as a wafer surface plate, the fine processing of the wafer surface and the surface processing are not affected. Similarly, when used as a semiconductor exposure stage, it is possible to minimize changes in the shape of the member when forming a mask pattern on a wafer, and it is possible to form a pattern with higher accuracy.

これに加え、窒化珪素接合体の接合層中に窒化珪素から成る微細結晶とEr成分を含有した構成とすることにより、前記接合層を高強度化でき、かつEr成分の働きにより、接合層を低融点化、低熱膨張化することが可能となる。   In addition to this, the bonding layer of the silicon nitride bonded body includes a fine crystal composed of silicon nitride and an Er component, whereby the bonding layer can be increased in strength, and the bonding layer is formed by the action of the Er component. A low melting point and low thermal expansion can be achieved.

以下、本発明を実施するための最良の形態について説明する。   Hereinafter, the best mode for carrying out the present invention will be described.

本発明の窒化珪素接合体は、酸化エルビウム(Er)およびアルミナ(Al)を含む窒化珪素質焼結体からなる一対の基体を接合層を介して接合してなるものであり、前記接合層中に窒化珪素から成る微細結晶とEr成分を含むことを特徴とする。 The silicon nitride bonded body of the present invention is formed by bonding a pair of bases made of a silicon nitride sintered body containing erbium oxide (Er 2 O 3 ) and alumina (Al 2 O 3 ) via a bonding layer. In addition, the bonding layer includes fine crystals made of silicon nitride and an Er component.

このような構成の窒化珪素接合体は、基体である窒化珪素焼結体が酸化エルビウム(Er)を含んでおり、これが焼結時に焼結助剤として働くと同時に、主成分であるβ−Siと反応することにより熱膨張の小さなβ−ErSiとして、窒化珪素焼結体の結晶粒子間に存在する。そのため、例えばアルミナ(Al)、イットリア(Y)を焼結助剤として含む窒化珪素質焼結体と比較して、その熱膨張係数を1.4×10−6/℃以下の低いものとすることができる。 In the silicon nitride bonded body having such a structure, a silicon nitride sintered body as a base contains erbium oxide (Er 2 O 3 ), which acts as a sintering aid during sintering and is a main component. By reacting with β-Si 3 N 4 , β-Er 2 Si 2 O 7 having a small thermal expansion exists between crystal grains of the silicon nitride sintered body. Therefore, for example, the thermal expansion coefficient is 1.4 × 10 −6 / ° C. compared with a silicon nitride sintered body containing alumina (Al 2 O 3 ) and yttria (Y 2 O 3 ) as a sintering aid. The following can be low.

このように、熱膨張係数の小さな窒化珪素焼結体とできる理由としては、結晶粒子間にβ−ErSiを存在させることにより、窒化珪素接合体自体の熱膨張を小さくすることができるため、焼結体に熱が加わった際に主成分であるβ−Siとβ−ErSiの各結晶の熱膨張の総和を小さくすることができる。その結果、窒化珪素質焼結体の熱膨張係数を1.4×10−6/℃以下と小さくすることができるのである。 As described above, the reason why a silicon nitride sintered body having a small thermal expansion coefficient can be obtained is to reduce the thermal expansion of the silicon nitride bonded body itself by making β-Er 2 Si 2 O 7 exist between crystal grains. Therefore, the sum of thermal expansion of each crystal of β-Si 3 N 4 and β-Er 2 Si 2 O 7 which are main components when heat is applied to the sintered body can be reduced. As a result, the thermal expansion coefficient of the silicon nitride sintered body can be reduced to 1.4 × 10 −6 / ° C. or less.

本発明の窒化珪素接合体は、接合層中に窒化珪素から成る微細結晶とEr成分を含むことを最大の特徴とする。   The silicon nitride bonded body of the present invention is characterized in that the bonding layer contains fine crystals made of silicon nitride and an Er component.

これにより、Y−Al−SiO系ガラス、Yb−Al−SiO系ガラス、Lu−Al−SiO系ガラス等のガラスを主成分とする接合層中に窒化珪素の微細結晶を析出させ、さらに基体中のEr元素が接合層中に拡散してEr、β−ErSiを構成するため、接合層のガラスの存在比率も低く、且つ熱膨張の小さいβ−ErSiの存在により、接合層を低熱膨張化、高強度化することが可能となる。 Thereby, glass such as Y 2 O 3 —Al 2 O 3 —SiO 2 glass, Yb 2 O 3 —Al 2 O 3 —SiO 2 glass, Lu 2 O 3 —Al 2 O 3 —SiO 2 glass, etc. In order to form Er 2 O 3 and β-Er 2 Si 2 O 7 by precipitating fine crystals of silicon nitride in the bonding layer containing as a main component and further diffusing Er elements in the substrate into the bonding layer, The presence of β-Er 2 Si 2 O 7 having a low glass abundance ratio and low thermal expansion makes it possible to reduce the thermal expansion and increase the strength of the bonding layer.

なお、このように接合層中に窒化珪素から成る微細結晶とEr成分を含むようにするためには、詳細は後述するが、窒化珪素から成る微細結晶は接合層となる接合体の主成分であるガラスの成分Siが窒素雰囲気中で焼成することにより、得られる接合体の接合層中に窒化珪素を生成するものであり、Er成分は基体中のEr元素が熱処理時に接合層中に拡散してEr、β−ErSiを構成するものである。また、この接合層となる接合剤中のSiO粒度を制御し、また、熱処理温度を低くすること、さらには熱処理時の雰囲気ガス、熱処理温度、キープ時間を調整することにより、接合層中に窒化珪素から成る微細結晶を析出させ、かつEr成分を基体より拡散させることができる。 In order to include the fine crystal made of silicon nitride and the Er component in the bonding layer in this way, the fine crystal made of silicon nitride is the main component of the joined body that becomes the bonding layer, as will be described in detail later. The glass component Si is fired in a nitrogen atmosphere to produce silicon nitride in the bonding layer of the resulting bonded body. The Er component diffuses into the bonding layer during the heat treatment. Thus, Er 2 O 3 and β-Er 2 Si 2 O 7 are formed. In addition, by controlling the SiO 2 particle size in the bonding agent to be the bonding layer, lowering the heat treatment temperature, and further adjusting the atmosphere gas, heat treatment temperature, and keeping time during the heat treatment, Fine crystals made of silicon nitride can be deposited and the Er component can be diffused from the substrate.

前記窒化珪素の微細結晶とは、平均結晶粒径が0.2μm以下の窒化珪素の結晶であり、基体である窒化珪素の平均結晶粒径は1〜5μm程度であるため、このように基体より小さな平均結晶粒径の窒化珪素結晶を含有した接合層の構成とすることにより、接合部の強度を著しく向上する効果があり、接合層をほぼ基体と同様の強度とできる。さらには、微細な窒化珪素結晶とすることにより、接合層の厚みをより薄くすることが可能となる。接合層の厚みは0.5〜5μmと非常に薄くすることが可能であり、この接合層の厚みが0.5μmより薄いと、十分な接合強度が得られず、また5μmを超えると、接合部にかかる応力が大きくなり好ましくない。より好ましい接合層の厚さとしては0.7〜2μmとすることがより好ましい。   The fine crystal of silicon nitride is a crystal of silicon nitride having an average crystal grain size of 0.2 μm or less, and the average crystal grain size of silicon nitride as a base is about 1 to 5 μm. The structure of the bonding layer containing the silicon nitride crystal having a small average crystal grain size has an effect of remarkably improving the strength of the bonding portion, and the bonding layer can have almost the same strength as that of the substrate. Furthermore, by using fine silicon nitride crystals, the thickness of the bonding layer can be further reduced. The thickness of the bonding layer can be very thin, 0.5-5 μm. If the thickness of the bonding layer is less than 0.5 μm, sufficient bonding strength cannot be obtained. The stress applied to the part is undesirably increased. The thickness of the bonding layer is more preferably 0.7-2 μm.

なお、前記接合層における窒化珪素の微細結晶については、例えば接合層を含んだ接合体の一部を切り出し、この表面に高精度ラップ加工により鏡面加工を施した後、3000〜10000倍でSEM観察することにより、その存在を確認する。そしてその粒径については、接合層の任意の箇所を波長分散型X線マイクロアナライザー装置(日本電子製JXA−8600M型)により分析し、観察部のN元素の分布を確認するとともに、その範囲の大きさから推定することが可能である。   As for the silicon nitride fine crystal in the bonding layer, for example, a part of the bonded body including the bonding layer is cut out, and the surface is mirror-finished by high-precision lapping, followed by SEM observation at 3000 to 10,000 times. To confirm its existence. And about the particle size, while analyzing the arbitrary places of a joining layer with a wavelength dispersion type | mold X-ray microanalyzer apparatus (the JXA-8600M type | model made by JEOL), while confirming distribution of N element of an observation part, the range It can be estimated from the size.

また、前記接合層に含まれるEr成分としては、Er元素がEr換算で5質量%以下で含まれていることが好ましい。Er成分を含有させるのは、接合層の低熱膨張化を促進するためであり、この量が5質量%を超えると、主に基体同士の接着の役割を果たしているY−Al−SiO系ガラスの量が少なく、接合強度が低下する原因となる。 Further, as the Er component contained in the bonding layer, it is preferable that an Er element is contained in an amount of 5% by mass or less in terms of Er 2 O 3 . The Er component is included to promote the low thermal expansion of the bonding layer. When this amount exceeds 5% by mass, Y 2 O 3 —Al 2 O mainly plays a role of bonding between the substrates. The amount of 3- SiO 2 glass is small, which causes a decrease in bonding strength.

なお、前記接合層におけるEr成分の存在は、接合層を含む接合体の一部を切り出し、この表面に高精度ラップ加工により鏡面加工を施した試料を作製後、接合層の一部をSEMにより1000〜5000倍に拡大観察し、その範囲を波長分散型X線マイクロアナライザー装置(日本電子製JXA−8600M型)により分析し、観察部のEr元素の分布状態の確認を行うことで実施可能である。また、前記Er成分量の確認は、接合層のみを精密加工により切り出し、これを粉砕して粉末状にした後、ICP発光分光分析装置(島津製作所製ICPS−8100型)によりEr元素量を確認する方法や、前記接合層を透過型電子顕微鏡により5000〜2万倍に拡大観察した後、接合層の任意の箇所をエネルギー分散型X線回折装置により分析し、各部の元素カウント数から、Er成分の質量割合を求める方法のいずれかにより確認することができる。   The presence of the Er component in the bonding layer is determined by cutting out a part of the bonded body including the bonding layer, preparing a sample that has been subjected to mirror finishing on this surface by high-precision lapping, and then removing a part of the bonding layer by SEM. It is possible to carry out by magnifying 1000 to 5000 times, analyzing the range with a wavelength dispersive X-ray microanalyzer (JXA-8600M type manufactured by JEOL Ltd.), and confirming the distribution state of Er element in the observation part. is there. In addition, the amount of Er component is confirmed by cutting out only the bonding layer by precision machining, pulverizing it into a powder, and then confirming the amount of Er element with an ICP emission spectroscopic analyzer (ICPS-8100 manufactured by Shimadzu Corporation). And after observing the bonding layer at a magnification of 5000 to 20,000 times with a transmission electron microscope, an arbitrary portion of the bonding layer is analyzed with an energy dispersive X-ray diffractometer, and the Er count of each part is It can be confirmed by any of the methods for determining the mass ratio of the components.

このように熱膨張係数の小さな窒化珪素接合体は、例えば一体に製造しにくい中空部を有するウエハ加工用定盤やステージ等の半導体製造装置用部材として好適に用いることができ、高温時でも熱膨張が小さく寸法精度の高い半導体製造装置用部材を得ることができる。具体的には、図1(a)に示すように、穴部2を備えた凹形状の一方の基体1に、基体1の縁部に嵌合する凸部3を有する円盤状の基体4を、基体1の接合部5に塗布した接合剤を介して接合し、図1(b)に示すような円柱状の中空体からなる半導体製造装置用部材を得ることができる。   Such a silicon nitride bonded body having a small thermal expansion coefficient can be suitably used as a member for a semiconductor manufacturing apparatus such as a wafer processing surface plate or a stage having a hollow portion that is difficult to manufacture integrally, and can be used even at high temperatures. A member for a semiconductor manufacturing apparatus with small expansion and high dimensional accuracy can be obtained. Specifically, as shown in FIG. 1A, a disc-shaped base 4 having a convex portion 3 fitted to an edge of the base 1 is provided on one concave base 1 having a hole 2. Then, it is bonded via a bonding agent applied to the bonding portion 5 of the base body 1 to obtain a semiconductor manufacturing apparatus member composed of a cylindrical hollow body as shown in FIG.

この半導体製造装置用部材は、軽量化するためにその内部を中空としており、このような構造の中空体は、一体には形成できないため、一対の基体1、4を接合した接合体として製造される。例えばこれを半導体製造装置のウエハ加工用定盤やステージとして用いることにより、多少の温度変化によっても、形状変化が微小で、ウエハの超精密加工や、半導体の超精密配線等が可能な半導体製造装置とすることができる。   This member for a semiconductor manufacturing apparatus has a hollow inside in order to reduce the weight, and since a hollow body having such a structure cannot be formed integrally, it is manufactured as a joined body in which a pair of substrates 1 and 4 are joined. The For example, by using this as a surface plate or stage for wafer processing of semiconductor manufacturing equipment, semiconductor manufacturing that allows ultra-precise processing of wafers, ultra-precise wiring of semiconductors, etc., even with slight changes in temperature It can be a device.

なお、本発明の窒化珪素接合体の接合層の強度は、JIS R1601−1995に準拠した測定で、500MPa以上の強度を有している。この強度は基体である窒化珪素焼結体とほぼ同等以上の強度である。また、熱膨張係数については、特に室温での熱膨張係数を測定する必要があるため、基体及び接合層を含む接合体を切り出し、加工して長さ15〜16mmとし、長さ方向の両端をR状に面取り加工したものとする。次いで、真空理工株式会社製のレーザー熱膨張計を用い、この試料をHeガス中で0〜50℃の範囲で昇温速度1℃/分程度で連続的に昇温しながら、レーザーを用いて試料の長さを計測し、ASTM(The American Society of Testing and Materials) E 289(Standard Test Method for Linear Thermal Expansion of Rigid Solids with Interferometry)に準拠した測定に従って23℃における熱膨張係数を測定した。   In addition, the intensity | strength of the joining layer of the silicon nitride joined body of this invention has the intensity | strength of 500 Mpa or more by the measurement based on JISR1601-1995. This strength is almost equal to or higher than that of the silicon nitride sintered body as the substrate. As for the thermal expansion coefficient, since it is necessary to measure the thermal expansion coefficient at room temperature in particular, the joined body including the base body and the joining layer is cut out and processed to have a length of 15 to 16 mm, and both ends in the length direction are formed. It is assumed that it is chamfered into an R shape. Next, using a laser thermal dilatometer manufactured by Vacuum Riko Co., Ltd., using a laser while heating the sample continuously in He gas at a temperature rising rate of about 1 ° C./min in the range of 0 to 50 ° C. The length of the sample was measured, and the coefficient of thermal expansion at 23 ° C. was measured in accordance with ASTM (The American Society of Testing and Materials) E289 (Standard Test Method for Linear Thermal Expansion of Rigid Solids with Interferometry).

次に、本発明の窒化珪素接合体の製造方法について詳細を以下に示す。   Next, the details of the method for producing the silicon nitride bonded body of the present invention will be described below.

本発明の窒化珪素接合体の製造方法としては、まず基体としてEr、Alを焼結助剤として含む純度99〜99.8%の窒化珪素原料粉末を準備し、これにバインダー、分散剤、溶媒を加え、スラリーとした後、噴霧造粒装置(スプレードライヤー)にて造粒して、球状の2次原料粉末を作製する。しかる後、前記2次原料粉末を用いて、粉末プレス成形法や湿式静水圧プレス成形(ラバープレス)法により、成形体を作製し、必要に応じて切削加工を施す。本発明の窒化珪素接合体に用いる基体は、孔部や凹凸部を形成する場合が多く、このような孔部や凹凸部の形成は、前記切削加工時に行う場合が多い。そして前記成形体を焼成する。窒素雰囲気中、1700〜2000℃の最高温度で焼成する。その後、必要に応じて研削加工を施し、本発明の窒化珪素接合体の基体を得ることができる。 As a method for producing a silicon nitride bonded body according to the present invention, first, a silicon nitride raw material powder having a purity of 99 to 99.8% containing Er 2 O 3 and Al 2 O 3 as sintering aids as a substrate is prepared. A binder, a dispersant, and a solvent are added to form a slurry, which is then granulated with a spray granulator (spray dryer) to produce a spherical secondary raw material powder. Thereafter, a molded body is produced using the secondary raw material powder by a powder press molding method or a wet isostatic press molding (rubber press) method, and is subjected to cutting as necessary. The base used for the silicon nitride bonded body of the present invention often forms holes and irregularities, and such holes and irregularities are often formed during the cutting process. And the said molded object is baked. Firing is performed at a maximum temperature of 1700 to 2000 ° C. in a nitrogen atmosphere. Thereafter, grinding may be performed as necessary to obtain a substrate of the silicon nitride bonded body of the present invention.

次に、接合剤を準備する。前記接合剤については、Y−Al−SiO,Yb−Al−SiO,Lu−Al−SiO等のガラスを用いる。ここで、Y粉末としては純度が98%以上、平均粒径が0.5〜1.5μmのものを、またSiO粉末としては純度が99%以上、平均粒径が0.5μm以下のものを、Al粉体としては純度が95%以上、平均粒径が0.5〜2μmのものを使用する。そして、これをYが35〜45質量%、Alが10〜30質量%、SiOが35〜45質量%の範囲で3種類の粉末の合計が100質量%となるように混合する。 Next, a bonding agent is prepared. As the bonding agent, glass such as Y 2 O 3 —Al 2 O 3 —SiO 2 , Yb 2 O 3 —Al 2 O 3 —SiO 2 , Lu 2 O 3 —Al 2 O 3 —SiO 2 is used. Here, the Y 2 O 3 powder has a purity of 98% or more and an average particle size of 0.5 to 1.5 μm, and the SiO 2 powder has a purity of 99% or more and an average particle size of 0.5 μm. The following are used as Al 2 O 3 powder having a purity of 95% or more and an average particle size of 0.5 to 2 μm. Then, this Y 2 O 3 is 35 to 45 wt%, Al 2 O 3 is 10 to 30 mass%, as the sum of the three powders in the range SiO 2 is 35 to 45 mass% of 100 mass% To mix.

ここで、前記SiO粉末の平均粒径のみ0.5μm以下と小さくしなければならないのは、SiO粉末の大きさが前記接合層に生成される窒化珪素微細結晶の大きさに影響するからである。0.5μmより大きなSiO粉末を用いた場合には、接合層の窒化珪素微細結晶の大きさを0.2μm以下にすることができない。また、前記SiOの含有量が35質量%より少ないと前記接合層に微細な窒化珪素結晶を生成させにくく、本発明の構成となる高強度な接合層を得ることができない。また、SiO量が45質量%を超えると、窒化珪素微細結晶の生成量が多く、Y−Al−SiOガラスの量が少なくなり、接合層の強度が低下するために好ましくない。 Here, only the average particle diameter of the SiO 2 powder must be reduced to 0.5 μm or less because the size of the SiO 2 powder affects the size of the silicon nitride fine crystal formed in the bonding layer. It is. When SiO 2 powder larger than 0.5 μm is used, the size of the silicon nitride fine crystal of the bonding layer cannot be made 0.2 μm or less. On the other hand, if the content of SiO 2 is less than 35% by mass, it is difficult to form fine silicon nitride crystals in the bonding layer, and a high-strength bonding layer that constitutes the structure of the present invention cannot be obtained. On the other hand, if the amount of SiO 2 exceeds 45% by mass, the amount of silicon nitride fine crystals produced is large, the amount of Y 2 O 3 —Al 2 O 3 —SiO 2 glass is reduced, and the strength of the bonding layer is reduced. It is not preferable.

そして、この混合粉末にアルミナボール、有機溶剤(イソプロピルアルコール)を適量加えたものを円柱状のプラスチック容器中に投入し、回転装置にて軸方向と平行に、12〜36時間回転させ混合する。混合後、プラスチック容器から前記アルミナボールと混合スラリーを分離しながら金属製容器内にスラリーを排出する。排出後、金属製容器に入れたまま乾燥機内で40〜80℃の温度で36〜60時間乾燥し、乾燥後に得られた粉体の固まりを解砕して接合剤用原料とする。   Then, an appropriate amount of alumina balls and an organic solvent (isopropyl alcohol) added to the mixed powder is put into a cylindrical plastic container and mixed by rotating for 12 to 36 hours in parallel with the axial direction by a rotating device. After mixing, the slurry is discharged into a metal container while separating the alumina balls and the mixed slurry from the plastic container. After discharging, it is dried in a dryer at a temperature of 40 to 80 ° C. for 36 to 60 hours while being put in a metal container, and the powder mass obtained after drying is crushed to obtain a bonding material.

次に、前記接合剤用原料と溶媒と分散剤とを調合する。前記接合剤用原料100質量%に対し、溶媒を10〜20質量%、分散剤を0.5〜2質量%の割合で添加して、これらを再度円柱状のプラスチック容器内に投入して、容器の軸方向と平行に回転装置にて回転させながら8時間以上混合する。ここで、前記溶媒としては、疎水性有機溶媒、例えばパラフィン系等の溶媒を使用することが好ましい。疎水性有機溶媒は接合する一方の基体の接合部に塗布した際に表面が乾きにくく、他方の基体の接合部となじみ易く、より良好な接合層とすることが可能となる。分散剤についても、前記疎水性溶媒に適した非イオン界面活性剤を用いるのが良く、例えば、しょ糖脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、脂肪酸アルカノールアミド等を用いるのが良い。なお、接合剤用原料と溶媒と分散剤の混合溶液、すなわち接合剤ペーストは載置して保管すると分離或いは固化するので、回転させたまま保管するのが良い。さらに、この接合剤ペーストの粘度は0.5〜2Pa・sとするのが良い。0.5Pa・sより低粘度では、粘度が低すぎて基体の接合部に塗布した際に、ペーストが接合部に留まらずに垂れ落ちるために好ましくない。また、2Pa・sを超える粘度では、基体の接合部に薄くペーストを塗布することができず、結果的に接合層の厚さが厚くなってしまうために好ましくない。   Next, the raw material for the bonding agent, a solvent, and a dispersant are prepared. Add 100 to 20% by weight of solvent and 0.5 to 2% by weight of a dispersant with respect to 100% by weight of the raw material for the bonding agent, and put them into a cylindrical plastic container again. Mix for 8 hours or more while rotating with a rotating device parallel to the axial direction of the container. Here, as the solvent, it is preferable to use a hydrophobic organic solvent, for example, a paraffin-based solvent. When the hydrophobic organic solvent is applied to the bonding portion of one substrate to be bonded, the surface is difficult to dry, and the hydrophobic organic solvent is easily compatible with the bonding portion of the other substrate, so that a better bonding layer can be obtained. As the dispersant, it is preferable to use a nonionic surfactant suitable for the hydrophobic solvent. For example, sucrose fatty acid ester, polyoxyethylene sorbitan fatty acid ester, fatty acid alkanolamide and the like are preferably used. Note that the mixed solution of the bonding agent raw material, the solvent, and the dispersing agent, that is, the bonding agent paste, is separated or solidified when placed and stored, so it is preferable to store it while rotating. Furthermore, the viscosity of the bonding agent paste is preferably 0.5 to 2 Pa · s. When the viscosity is lower than 0.5 Pa · s, the viscosity is too low, and this is not preferable because the paste drips without staying at the joint when applied to the joint of the substrate. A viscosity exceeding 2 Pa · s is not preferable because a thin paste cannot be applied to the bonding portion of the substrate, resulting in an increase in the thickness of the bonding layer.

次に、上述のようにして作製した接合剤ペーストを窒化珪素焼結体からなる基体の接合部に塗布する。接合剤ペーストの塗布は、刷毛などを用いて行なっても良いが、塗布厚さをより均一とするためには、接合部のみ目開きし、その他は目封止したスクリーンを準備し、そのスクリーンの目開き部分を接合部に合わせ、スクリーン上に接合剤ペーストを垂らし、樹脂性のスキージでスクリーンを介して接合剤ペーストを塗布するとよい。ここで、前記接合剤ペーストの塗布厚さは10〜100μmの範囲とするのが良い。10μmより薄いと、窒化珪素焼結体からなる基体同士を接合するのに際して一方の基体表面を加圧して接合部に加圧力を加えた際に、接合剤ペーストが接合部全体に均一に拡がりにくい。さらに本発明では接合部よりはみ出した接合剤ペーストが、熱処理時に溶融状態となった際に、表面張力の影響で応力集中を受けやすい角部に拡がり、その部分を補強する効果があり、この効果を得るには10μm以上の塗布厚さが必要となる。また、接合剤ペーストの塗布厚さが100μmを超えると、加圧後に接合部よりはみ出した接合剤ペーストが基体の内面や外面に付着して良好な外観が得られず、それを除去するために追加工を施さなければならなくなり、その分製造コストが増加してしまうために好ましくない。また、接合部に加える加圧力は、接合剤ペーストの粘度にもよるが、接合面にかかる圧力(面圧)が15MPa以上の圧力となるように設定すれば良い。   Next, the bonding agent paste produced as described above is applied to the bonding portion of the substrate made of the silicon nitride sintered body. The bonding paste may be applied using a brush or the like. However, in order to make the coating thickness more uniform, only a joint is opened, and the other is plugged. It is preferable that the opening portion is aligned with the joining portion, the joining paste is hung on the screen, and the joining paste is applied through the screen with a resin squeegee. Here, the coating thickness of the bonding agent paste is preferably in the range of 10 to 100 μm. When the thickness is less than 10 μm, when bonding the substrates made of silicon nitride sintered bodies to each other, the surface of one of the substrates is pressed and pressure is applied to the bonded portion, so that the bonding agent paste is difficult to spread uniformly over the entire bonded portion. . Furthermore, in the present invention, when the bonding agent paste that protrudes from the joint is in a molten state at the time of heat treatment, it spreads to the corners that are susceptible to stress concentration due to the influence of surface tension, and has the effect of reinforcing that part. To obtain a coating thickness of 10 μm or more is required. Moreover, when the coating thickness of the bonding agent paste exceeds 100 μm, the bonding agent paste that protrudes from the bonding portion after pressing adheres to the inner and outer surfaces of the substrate, and a good appearance cannot be obtained. Since additional work must be performed, the manufacturing cost increases accordingly, which is not preferable. Further, the pressure applied to the bonded portion may be set so that the pressure applied to the bonded surface (surface pressure) is 15 MPa or more, although it depends on the viscosity of the bonding agent paste.

次に、接合剤ペーストを塗布して接合面同士を当接、加圧させた後、熱処理を実施する。熱処理には、窒素ガスを注入して炉内を窒素雰囲気に調整可能な大型のバッチ炉を用いる。注入窒素量としては、原子割合で1〜30%程度の窒素量とし、更に炉内を常圧で2〜5×10−3MPaのN分圧とするのが良い。熱処理温度を1250〜1400℃にて、0.5〜3時間保持すれば均一で強固な接合が可能となり、さらには1〜3時間保持することが好ましい。このような雰囲気、温度、保持時間にて熱処理することにより、接合層中により微細な窒化珪素結晶を析出させることが可能となり、接合層の強度を高めることができる。また基体中のEr成分が接合層へ拡散しやすく、接合層の低熱膨張化を促進させることが可能となる。前記熱処理温度が1250℃より低いと、接合層中に微細な窒化珪素結晶を生成させることができず、1400℃を超えると、接合層を構成する成分が昇華し始めるため、接合層の密度が低下し、接合強度が低下する。これについては、本発明では基体から接合層へEr成分を拡散させることにより、接合層を低熱膨張化しているが、Er成分の拡散は、接合層を構成する成分の融点を下げる効果もあり、これによって、熱処理温度を低下でき、より低温度で熱処理が可能となるため、製造コストの削減につながる。 Next, a bonding agent paste is applied, the bonded surfaces are brought into contact with each other and pressed, and then heat treatment is performed. For the heat treatment, a large batch furnace in which nitrogen gas is injected and the inside of the furnace can be adjusted to a nitrogen atmosphere is used. As the amount of nitrogen to be injected, it is preferable that the nitrogen amount is about 1 to 30% in terms of atomic ratio, and that the inside of the furnace is an N 2 partial pressure of 2 to 5 × 10 −3 MPa at normal pressure. If the heat treatment temperature is held at 1250 to 1400 ° C. for 0.5 to 3 hours, uniform and strong bonding is possible, and it is preferable to hold for 1 to 3 hours. By performing heat treatment in such an atmosphere, temperature, and holding time, finer silicon nitride crystals can be precipitated in the bonding layer, and the strength of the bonding layer can be increased. Further, the Er component in the substrate is easily diffused into the bonding layer, and it is possible to promote the low thermal expansion of the bonding layer. If the heat treatment temperature is lower than 1250 ° C., fine silicon nitride crystals cannot be generated in the bonding layer, and if it exceeds 1400 ° C., the components constituting the bonding layer begin to sublimate. The joint strength decreases. For this, in the present invention, the bonding layer is reduced in thermal expansion by diffusing the Er component from the substrate to the bonding layer, but the diffusion of the Er component also has the effect of lowering the melting point of the component constituting the bonding layer, As a result, the heat treatment temperature can be lowered and the heat treatment can be performed at a lower temperature, leading to a reduction in manufacturing cost.

以下、本発明の実施例について詳細を示す。   Details of the embodiments of the present invention will be described below.

(実施例1)
本発明の窒化珪素接合体と従来の窒化珪素接合体を製造し、その接合強度、熱膨張係数について比較する試験を実施した。また、本発明の窒化珪素接合体においては、接合層中の窒化珪素から成る微細結晶とEr成分の有無を確認した。
(Example 1)
A silicon nitride joined body of the present invention and a conventional silicon nitride joined body were manufactured, and a test for comparing the joining strength and the thermal expansion coefficient was performed. Further, in the silicon nitride bonded body of the present invention, the presence or absence of a fine crystal composed of silicon nitride and an Er component in the bonding layer was confirmed.

本発明の窒化珪素接合体試料として、先ず、基体を作製するため、酸化エルビウム(Er)およびアルミナ(Al)を含む窒化珪素質焼結体を製造する。市販の窒化珪素粉末(純度99.5%以上、平均粒径1μm)、酸化エルビウム粉末(純度99.5%以上、平均粒径1μm)、アルミナ粉末(純度99%以上、平均粒径1μm)を準備し、窒化珪素粉末100質量%に対し、それぞれ酸化エルビウムを5質量%、アルミナ粉末を2.5質量%添加して混合攪拌機にて混合して酸化エルビウム、アルミナを焼結助剤として含有した窒化珪素粉末を得る。その後、前記粉末にバインダー、分散剤、溶媒を加え、スラリーとした後、スプレードライヤーにて造粒して、2次原料粉末を作製する。そして前記2次原料粉末を用いて、粉末プレス成形法にて外径120mm、厚さ40mmの円盤状の窒化珪素成形体を数十個作製した。この後、前記窒化珪素質成形体を窒素雰囲気中1900℃にて焼成し、窒化珪素焼結体を得て、これに研削加工を施し、外径100mm、厚さ30mmの窒化珪素焼結体からなる円盤状の基体を数十個作製した。 As a silicon nitride bonded body sample of the present invention, first, a silicon nitride sintered body containing erbium oxide (Er 2 O 3 ) and alumina (Al 2 O 3 ) is manufactured in order to produce a substrate. Commercially available silicon nitride powder (purity 99.5% or more, average particle size 1 μm), erbium oxide powder (purity 99.5% or more, average particle size 1 μm), alumina powder (purity 99% or more, average particle size 1 μm) And 5 mass% of erbium oxide and 2.5 mass% of alumina powder were added to 100 mass% of silicon nitride powder and mixed with a mixing stirrer to contain erbium oxide and alumina as sintering aids. A silicon nitride powder is obtained. Thereafter, a binder, a dispersant, and a solvent are added to the powder to form a slurry, which is then granulated with a spray dryer to produce a secondary raw material powder. Then, using the secondary raw material powder, dozens of disk-shaped silicon nitride compacts having an outer diameter of 120 mm and a thickness of 40 mm were produced by a powder press molding method. Thereafter, the silicon nitride-based molded body is fired at 1900 ° C. in a nitrogen atmosphere to obtain a silicon nitride sintered body, which is subjected to grinding, and from a silicon nitride sintered body having an outer diameter of 100 mm and a thickness of 30 mm. Several dozen disk-shaped substrates were produced.

次に、前記基体同士を円盤状にて接合する。以下接合方法を記載する。   Next, the bases are joined in a disk shape. The joining method is described below.

まず、接合剤ペーストを作製するために、市販のY粉末(純度98%、平均粒径1μm)、Al粉末(純度95%、平均粒径1μm)、SiO粉末(純度99%、平均粒径0.5μm)を準備する。Y、Al、SiOの各粉末をそれぞれ40、20、40質量%の割合で、合計100質量%となるように混合し、これにアルミナボール、有機溶剤(イソプロピルアルコール)を適量加え、プラスチック容器中で24時間回転攪拌した後、プラスチック容器から所定の金属容器にスラリーを排出し、乾燥機内で60℃の温度で40時間乾燥し、乾燥後に得られた粉体の固まりを解砕して接合剤用原料とする。 First, in order to produce a bonding agent paste, commercially available Y 2 O 3 powder (purity 98%, average particle size 1 μm), Al 2 O 3 powder (purity 95%, average particle size 1 μm), SiO 2 powder (purity) 99%, average particle size 0.5 μm). Y 2 O 3 , Al 2 O 3 , and SiO 2 powders were mixed in proportions of 40, 20, and 40% by mass, respectively, so that the total amount would be 100% by mass, and alumina balls and organic solvent (isopropyl alcohol) were mixed therewith. After adding a suitable amount, and rotating and stirring in a plastic container for 24 hours, the slurry is discharged from the plastic container to a predetermined metal container, and dried in a dryer at a temperature of 60 ° C. for 40 hours. Is crushed into a raw material for a bonding agent.

次に前記接合剤用原料と溶媒と分散剤とを混合する。接合剤用原料100質量%に対し、溶媒としてイソパラフィンを15質量%、分散剤としてポリオキシエチレンソルビタン脂肪酸エステルを1.5質量%の割合で添加して、これらを再度円柱状のプラスチック容器内に投入して、回転装置にて回転させながら10時間混合する。接合剤ペーストの粘度をE型粘度計にて測定したところ1Pa・sであった。   Next, the raw material for a bonding agent, a solvent, and a dispersant are mixed. Add 100% by mass of isoparaffin as a solvent and 1.5% by mass of polyoxyethylene sorbitan fatty acid ester as a dispersant to 100% by mass of the raw material for the bonding agent, and again add them into a cylindrical plastic container. The mixture is mixed for 10 hours while rotating with a rotating device. The viscosity of the bonding agent paste was measured with an E-type viscometer and found to be 1 Pa · s.

この後、得られた接合剤ペーストを、円盤状の窒化珪素焼結体から成る基体の表面にスクリーンを介して塗布し、その塗布面に円盤状の窒化珪素焼結体から成る基体を接合し、15MPaの加圧力で加圧した。加圧後、前記接合体試料を窒素量20%、3×10−3MPaのN分圧とした熱処理炉内で1300℃の温度で熱処理した。 After that, the obtained bonding agent paste is applied to the surface of the substrate made of a disk-shaped silicon nitride sintered body through a screen, and the substrate made of the disk-shaped silicon nitride sintered body is bonded to the coated surface. , And pressurized with a pressure of 15 MPa. After the pressurization, the joined body sample was heat-treated at a temperature of 1300 ° C. in a heat treatment furnace having a nitrogen content of 20% and an N 2 partial pressure of 3 × 10 −3 MPa.

熱処理後、炉内より取り出した各試料について、中央部に接合層が位置するように、JIS R1601−1995に準拠した試験片サイズを研削加工により数十本切り出し、強度試験用の試験片を作製して3点曲げ強度を測定した。なお、各試料の接合層の厚さは1.5μmであり、基体のみでは600MPaの強度を示した。   After heat treatment, for each sample taken out from the furnace, dozens of test piece sizes according to JIS R1601-1995 are cut out by grinding so that the bonding layer is located in the center, and a test piece for strength test is produced. Then, the three-point bending strength was measured. Note that the thickness of the bonding layer of each sample was 1.5 μm, and the substrate alone showed a strength of 600 MPa.

また、同様の試料について、接合層を含んだ形で加工して長さ15〜16mmとし、長さ方向の両端をR状に面取り加工したものとする。次いで、真空理工株式会社製のレーザー熱膨張計を用い、この試料をHeガス中で0〜50℃の範囲で昇温速度1℃/分程度で連続的に昇温しながら、レーザーを用いて試料の長さを計測し、ASTM(The American Society of Testing and Materials) E 289(Standard Test Method for Linear Thermal Expansion of Rigid Solids with Interferometry)に準拠した測定に従って室温における熱膨張係数を測定した。   Further, a similar sample is processed to include a bonding layer to have a length of 15 to 16 mm, and both ends in the length direction are chamfered into an R shape. Next, using a laser thermal dilatometer manufactured by Vacuum Riko Co., Ltd., using a laser while heating the sample continuously in He gas at a temperature rising rate of about 1 ° C./min in the range of 0 to 50 ° C. The length of the sample was measured, and the coefficient of thermal expansion at room temperature was measured according to the measurement based on ASTM (The American Society of Testing and Materials) E289 (Standard Test Method for Linear Thermal Expansion of Rigid Solids with Interferometry).

また、接合層における窒化珪素微細結晶の存在を確認するために、試料の接合層を含む表面を高精度ラップ加工し、鏡面とした後、その表面をSEMにより観察し、任意の箇所を波長分散型X線マイクロアナライザー装置(日本電子製JXA−8600M型)により分析し、N元素の分布を確認した。さらにEr元素についても同様に分析し、接合層のEr元素の存在を確認した。   In addition, in order to confirm the presence of silicon nitride microcrystals in the bonding layer, the surface including the bonding layer of the sample is subjected to high-precision lapping to make a mirror surface, and then the surface is observed by SEM, and an arbitrary portion is wavelength-dispersed. Analysis with a type X-ray microanalyzer (JXA-8600M type manufactured by JEOL Ltd.) confirmed the distribution of the N element. Further, the Er element was similarly analyzed to confirm the presence of the Er element in the bonding layer.

なお、本発明の窒化珪素接合体の基体となる窒化珪素焼結体の窒化珪素平均結晶粒径は3μmであった。また、接合層の厚さは2μmとしている。   The silicon nitride sintered body serving as the substrate of the silicon nitride joined body of the present invention had an average silicon nitride crystal grain size of 3 μm. The thickness of the bonding layer is 2 μm.

つづいて、比較例1として、従来の窒化珪素接合体についても同様の評価を実施した。基体としては、イットリア(Y)とアルミナ(Al)を焼結助剤として含有する外径100mm、厚さ30mmの円板状の窒化珪素焼結体を用い、これを本発明の窒化珪素接合体と同様にY−Al−SiO系接合剤を用いて接合した。このとき、接合剤に使用するSiOの平均粒径を1μmとした。さらに、その熱処理温度は本発明の窒化珪素接合体と同じ1300℃では、接合剤が溶融しなかったため、1550℃と高い熱処理温度とした。 Subsequently, as Comparative Example 1, the same evaluation was performed for a conventional silicon nitride bonded body. As the substrate, a disc-shaped silicon nitride sintered body having an outer diameter of 100 mm and a thickness of 30 mm containing yttria (Y 2 O 3 ) and alumina (Al 2 O 3 ) as a sintering aid is used. as with silicon nitride bonded body of the present invention were bonded using Y 2 O 3 -Al 2 O 3 -SiO 2 based bonding agent. At this time, the average particle diameter of SiO 2 used for the bonding agent was set to 1 μm. Furthermore, the heat treatment temperature was set to a high heat treatment temperature of 1550 ° C. because the bonding agent did not melt at the same 1300 ° C. as that of the silicon nitride bonded body of the present invention.

また、比較例2として、基体に前記イットリア(Y)とアルミナ(Al)を焼結助剤として含有する外径100mm、厚さ30mmの円板状の窒化珪素焼結体を用い、これをEr−Y−Al−SiO系接合剤(Er:20質量%,Y:20質量%,Al:20質量%,SiO:40質量%)を用いて接合した従来の窒化珪素接合体も準備した。この接合剤に用いるSiOの平均粒径については、比較例1と同じく1μmとした。また熱処理温度については、接合剤が溶融し、良好な接合状態が得られた1450℃とした。その後、本発明の窒化珪素接合体と同様の評価を実施した。 Further, as Comparative Example 2, a disk-shaped silicon nitride sintered body having an outer diameter of 100 mm and a thickness of 30 mm, containing yttria (Y 2 O 3 ) and alumina (Al 2 O 3 ) as a sintering aid in a base. This was used as an Er 2 O 3 —Y 2 O 3 —Al 2 O 3 —SiO 2 bonding agent (Er 2 O 3 : 20% by mass, Y 2 O 3 : 20% by mass, Al 2 O 3 : 20 A conventional silicon nitride bonded body bonded by using (mass%, SiO 2 : 40 mass%) was also prepared. The average particle diameter of SiO 2 used for this bonding agent was set to 1 μm as in Comparative Example 1. The heat treatment temperature was 1450 ° C. at which the bonding agent melted and a good bonding state was obtained. Thereafter, the same evaluation as that of the silicon nitride bonded body of the present invention was performed.

本発明と比較例1,2の評価結果を表1に示す。

Figure 2007254205
The evaluation results of the present invention and Comparative Examples 1 and 2 are shown in Table 1.
Figure 2007254205

表1において、比較例1,2は、いずれも熱処理温度が高い。これは、比較例1については、基体にEr成分が含まれておらず、Er成分が接合層に拡散することによる接合剤の低融点化の効果が発揮されなかったためである。また、比較例2については、接合剤にEr成分が含まれているものの、Er成分の含有量が多いため、接合剤の溶融温度が高いものとなっている。また、強度については、比較例1,2ともに低い。これは、接合層に窒化珪素結晶が含有されているものの、接合剤に用いたSiOの平均粒径が大きいため、接合層中の窒化珪素結晶粒径は0.2μmより大きくなり、微細結晶ではないためである。さらに、熱膨張係数は、比較例1については、接合層にEr成分が存在せず、β−ErSiが生成されないため高い値を示している。比較例2については、Er成分が存在するため、β−ErSiが接合層に生成され、本発明ほどではないものの、比較的低い値となっている。 In Table 1, Comparative Examples 1 and 2 each have a high heat treatment temperature. This is because, in Comparative Example 1, the Er component was not contained in the substrate, and the effect of lowering the melting point of the bonding agent due to the Er component diffusing into the bonding layer was not exhibited. In Comparative Example 2, although the Er component is contained in the bonding agent, the melting temperature of the bonding agent is high because the Er component content is large. Further, the strengths of both Comparative Examples 1 and 2 are low. This is because although the bonding layer contains silicon nitride crystals, the average particle size of SiO 2 used for the bonding agent is large, so the silicon nitride crystal particle size in the bonding layer is larger than 0.2 μm, and the fine crystal It is because it is not. Furthermore, the thermal expansion coefficient of Comparative Example 1 is high because no Er component is present in the bonding layer and β-Er 2 Si 2 O 7 is not generated. In Comparative Example 2, since the Er component is present, β-Er 2 Si 2 O 7 is generated in the bonding layer, which is not as high as the present invention, but has a relatively low value.

これと比較して本発明の窒化珪素接合体は、接合剤として用いるSiO平均粒径を小さくしたため、接合層に0.2μm以下の窒化珪素の微細結晶を析出でき、かつ接合層に基体からEr成分が5質量%以下の割合で適量拡散したため、β−ErSiが生成し、接合層を低熱膨張化できており、かつ接合剤を低融点化でき、熱処理温度も1300℃と低いものとできた。 Compared to this, the silicon nitride bonded body of the present invention has a smaller SiO 2 average particle size used as a bonding agent, so that a fine crystal of silicon nitride of 0.2 μm or less can be precipitated in the bonding layer, and the bonding layer can be formed from the substrate. Since an appropriate amount of the Er component is diffused at a ratio of 5% by mass or less, β-Er 2 Si 2 O 7 is generated, the bonding layer can be reduced in thermal expansion, the bonding agent can be reduced in melting point, and the heat treatment temperature is 1300 ° C. I was able to make it low.

本発明の窒化珪素接合体である中空体の構成を示す概略図であり、(a)は分解斜視図であり、(b)は接合後の斜視図である。It is the schematic which shows the structure of the hollow body which is a silicon nitride joined body of this invention, (a) is a disassembled perspective view, (b) is a perspective view after joining.

符号の説明Explanation of symbols

1:基体
2:穴部
3:凸部
4:基体
5:接合部
1: Base body 2: Hole part 3: Convex part 4: Base body 5: Joint part

Claims (6)

窒化珪素を主成分とし、酸化エルビウム(Er)およびアルミナ(Al)を含む窒化珪素質焼結体からなる一対の基体を、ガラスを主成分とし、窒化珪素から成る微細結晶およびEr成分を含む接合層を介して接合されたことを特徴とする窒化珪素接合体。 A pair of substrates made of a silicon nitride sintered body containing silicon nitride as a main component and containing erbium oxide (Er 2 O 3 ) and alumina (Al 2 O 3 ), and a fine crystal made of silicon nitride as a main component And a silicon nitride bonded body bonded through a bonding layer containing an Er component. 前記接合層におけるEr成分は、Er換算で5質量%以下の範囲で含有されていることを特徴とする請求項1に記載の窒化珪素接合体。 2. The silicon nitride bonded body according to claim 1, wherein the Er component in the bonding layer is contained in a range of 5 mass% or less in terms of Er 2 O 3 . 前記接合層における窒化珪素から成る微細結晶は、その平均結晶粒径が0.2μm以下であることを特徴とする請求項1または2に記載の窒化珪素接合体。 3. The silicon nitride bonded body according to claim 1, wherein the fine crystal made of silicon nitride in the bonding layer has an average crystal grain size of 0.2 μm or less. 前記接合層は、その厚みが0.5〜5μmであることを特徴とする請求項1乃至3の何れかに記載の窒化珪素接合体。 4. The silicon nitride bonded body according to claim 1, wherein the bonding layer has a thickness of 0.5 to 5 μm. 請求項1乃至4の何れかに記載の窒化珪素接合体の製造方法であって、窒化珪素を主成分として、酸化エルビウム(Er)およびアルミナ(Al)を焼結助剤として含有してなる窒化珪素質焼結体からなる一対の基体を得る工程と、一方の基体の所定位置にガラスを主成分とする接合剤を塗布するとともに、該接合剤を介して他方の基体を載置し、1250〜1400℃の温度で熱処理する工程と、を有することを特徴とする窒化珪素接合体の製造方法。 The method for producing a silicon nitride bonded body according to any one of claims 1 to 4, wherein silicon nitride is a main component, and erbium oxide (Er 2 O 3 ) and alumina (Al 2 O 3 ) are used as sintering aids. A step of obtaining a pair of bases made of a silicon nitride-based sintered body, and a bonding agent mainly composed of glass applied to a predetermined position of one of the bases, and the other base through the bonding agent And a step of heat-treating at a temperature of 1250 to 1400 ° C. 請求項1乃至4の何れかに記載の窒化珪素接合体からなり、一方の基体に穴部を備えるとともに、他方の基体により前記穴部を閉鎖するように接合したことを特徴とする半導体製造装置用部材。 5. A semiconductor manufacturing apparatus comprising the silicon nitride bonded body according to claim 1, wherein a hole is formed on one base and the hole is closed by the other base. Materials.
JP2006080618A 2006-03-23 2006-03-23 Silicon nitride bonded body, method for manufacturing the same, and member for semiconductor manufacturing apparatus using the same Expired - Fee Related JP4854354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006080618A JP4854354B2 (en) 2006-03-23 2006-03-23 Silicon nitride bonded body, method for manufacturing the same, and member for semiconductor manufacturing apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006080618A JP4854354B2 (en) 2006-03-23 2006-03-23 Silicon nitride bonded body, method for manufacturing the same, and member for semiconductor manufacturing apparatus using the same

Publications (2)

Publication Number Publication Date
JP2007254205A true JP2007254205A (en) 2007-10-04
JP4854354B2 JP4854354B2 (en) 2012-01-18

Family

ID=38628827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006080618A Expired - Fee Related JP4854354B2 (en) 2006-03-23 2006-03-23 Silicon nitride bonded body, method for manufacturing the same, and member for semiconductor manufacturing apparatus using the same

Country Status (1)

Country Link
JP (1) JP4854354B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010150048A (en) * 2008-12-24 2010-07-08 Kyocera Corp Ceramic joined body and method for producing the same
WO2021242714A1 (en) * 2020-05-26 2021-12-02 Heraeus Conamic North America Llc Plasma resistant ceramic body formed from multiple pieces

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0969672A (en) * 1995-03-20 1997-03-11 Toshiba Corp Silicon nitride circuit board
JPH10242252A (en) * 1997-02-28 1998-09-11 Kyocera Corp Wafer heater
JPH11100275A (en) * 1997-09-26 1999-04-13 Kyocera Corp Low thermal expansion ceramic and its preparation
JP2000277592A (en) * 1999-03-19 2000-10-06 Sumitomo Osaka Cement Co Ltd Substrate holder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0969672A (en) * 1995-03-20 1997-03-11 Toshiba Corp Silicon nitride circuit board
JPH10242252A (en) * 1997-02-28 1998-09-11 Kyocera Corp Wafer heater
JPH11100275A (en) * 1997-09-26 1999-04-13 Kyocera Corp Low thermal expansion ceramic and its preparation
JP2000277592A (en) * 1999-03-19 2000-10-06 Sumitomo Osaka Cement Co Ltd Substrate holder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010150048A (en) * 2008-12-24 2010-07-08 Kyocera Corp Ceramic joined body and method for producing the same
WO2021242714A1 (en) * 2020-05-26 2021-12-02 Heraeus Conamic North America Llc Plasma resistant ceramic body formed from multiple pieces
CN115697939A (en) * 2020-05-26 2023-02-03 贺利氏科纳米北美有限责任公司 Plasma resistant ceramic body formed from multiple pieces

Also Published As

Publication number Publication date
JP4854354B2 (en) 2012-01-18

Similar Documents

Publication Publication Date Title
EP0940845A2 (en) Susceptor for semiconductor manufacturing equipment and process for producing the same
JP6651628B2 (en) High thermal conductivity silicon nitride sintered body and method for producing the same
TWI687391B (en) Method for manufacturing alumina sintered body and alumina sintered body
JP7062229B2 (en) Plate-shaped silicon nitride sintered body and its manufacturing method
JP7481509B2 (en) Sintered ceramic bodies containing magnesium aluminate spinel
WO2014157430A1 (en) Handle substrate for compound substrate for use with semiconductor
JPWO2019235594A1 (en) Plate-shaped silicon nitride sintered body and its manufacturing method
EP2924506B1 (en) Reaction sintered silicon carbide member
JP3214890B2 (en) Aluminum nitride sintered body, method for producing the same, and firing jig using the same
JP4854354B2 (en) Silicon nitride bonded body, method for manufacturing the same, and member for semiconductor manufacturing apparatus using the same
JP2007039306A (en) Silicon nitride-based sintered compact, method of manufacturing the same, member for semiconductor manufacturing apparatus and member for liquid crystal manufacturing apparatus
JP4382919B2 (en) Method for producing silicon-impregnated silicon carbide ceramic member
US11715661B2 (en) Composite sintered body and method of manufacturing composite sintered body
TWI759081B (en) Machinable ceramic composite and method for preparing the same
JP5117892B2 (en) Yttrium oxide material and member for semiconductor manufacturing equipment
JP4859267B2 (en) Aluminum nitride sintered body and manufacturing method thereof
JP3805119B2 (en) Method for producing low thermal expansion ceramics
WO2021117829A1 (en) Plate-like silicon nitride-based sintered body and method for producing same
TWI239039B (en) Wafer holder for semiconductor manufacturing device and semiconductor manufacturing device in which it is installed
JP4533994B2 (en) Plasma corrosion resistant material, manufacturing method thereof and member thereof
JP6179026B2 (en) Low thermal expansion ceramics and method for producing the same
TWI839896B (en) Silicon nitride composite materials and probe guide parts
JP2723170B2 (en) Superplastic silicon nitride sintered body
JP5219784B2 (en) Ceramic joint
JP2010083749A (en) Free-cutting ceramic composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111025

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees