JP4588379B2 - Method for manufacturing member for semiconductor manufacturing apparatus - Google Patents

Method for manufacturing member for semiconductor manufacturing apparatus Download PDF

Info

Publication number
JP4588379B2
JP4588379B2 JP2004212813A JP2004212813A JP4588379B2 JP 4588379 B2 JP4588379 B2 JP 4588379B2 JP 2004212813 A JP2004212813 A JP 2004212813A JP 2004212813 A JP2004212813 A JP 2004212813A JP 4588379 B2 JP4588379 B2 JP 4588379B2
Authority
JP
Japan
Prior art keywords
sintered body
silicon nitride
powder
semiconductor manufacturing
manufacturing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004212813A
Other languages
Japanese (ja)
Other versions
JP2006027986A (en
Inventor
中村  浩章
守 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2004212813A priority Critical patent/JP4588379B2/en
Publication of JP2006027986A publication Critical patent/JP2006027986A/en
Application granted granted Critical
Publication of JP4588379B2 publication Critical patent/JP4588379B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明はβ−サイアロン焼結体からなる半導体製造装置用部材の製造方法に関する。 The present invention relates to a method for manufacturing a member for a semiconductor manufacturing apparatus comprising a β-sialon sintered body.

半導体製造装置には、耐食性や耐熱性に優れた種々のセラミック焼結体からなる部品が使用されている。例えば、半導体製造装置用部材のひとつであるステージには、高い精度が要求されることから、剛性が高く、かつ、低熱膨張性である窒化珪素(Si)が使用されている。それに伴い、静電チャックや測長用ミラーには、窒化珪素に対する熱膨張係数を合わせるために、同様に窒化珪素が使用されている(例えば、特許文献1参照)。 Parts made of various ceramic sintered bodies having excellent corrosion resistance and heat resistance are used in semiconductor manufacturing equipment. For example, since high precision is required for a stage that is one of the members for semiconductor manufacturing equipment, silicon nitride (Si 3 N 4 ) having high rigidity and low thermal expansion is used. Accordingly, silicon nitride is similarly used for electrostatic chucks and length measuring mirrors in order to match the thermal expansion coefficient of silicon nitride (see, for example, Patent Document 1).

しかしながら、窒化珪素焼結体は硬く、研磨加工し難いといった問題を有している。この問題を解決する方法として、加工しやすい別の材料を選択する方法が考えられるが、この場合には、熱膨張係数が窒化珪素と異なるために、半導体製造装置用部材の特性や精度が低下するという問題が生ずる。また、静電チャックや測長用ミラーでは、その表面に現れるボイドの径が小さいことが望まれるために、窒化珪素焼結体の気孔率を上げることによって研磨加工性を高める方法を採ることはできず、組織の緻密性を維持しながら、研磨加工性を向上させる必要がある。
特開平7−135246号公報
However, the silicon nitride sintered body is hard and has a problem that it is difficult to polish. As a method of solving this problem, a method of selecting another material that can be easily processed can be considered. However, in this case, since the thermal expansion coefficient is different from that of silicon nitride, the characteristics and accuracy of the member for semiconductor manufacturing equipment are reduced. Problem arises. In addition, since it is desired that the diameter of voids appearing on the surface of electrostatic chucks and length measuring mirrors is small, it is necessary to increase the polishing processability by increasing the porosity of the silicon nitride sintered body. However, it is necessary to improve the polishing processability while maintaining the denseness of the structure.
Japanese Patent Laid-Open No. 7-135246

本発明はかかる事情に鑑みてなされたものであり、窒化珪素と同等の熱膨張係数を有し、緻密質で最大ボイド径が小さく、窒化珪素よりも加工性が高められたサイアロン焼結体からなる半導体製造装置用部材の製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, has a thermal expansion coefficient equivalent to that of silicon nitride, the maximum void diameter is smaller in dense, sialon sintered body workability was higher than silicon nitride It aims at providing the manufacturing method of the member for semiconductor manufacturing apparatuses which becomes .

発明者らは、上記課題について鋭意検討した結果、窒化珪素をβ−サイアロン化することにより、熱膨張係数を窒化珪素と同等に維持し、かつ、半導体製造装置用部材として十分に用いることができる微構造および機械的特性を有し、さらに、加工性の良好な材料を発明するに至った。   As a result of intensive studies on the above problems, the inventors have made β-sialon of silicon nitride, thereby maintaining a thermal expansion coefficient equal to that of silicon nitride, and can be sufficiently used as a member for a semiconductor manufacturing apparatus. The inventors have invented a material having a microstructure and mechanical properties and having good processability.

すなわち、本発明によれば、β−サイアロン焼結体からなる半導体製造装置用部材の製造方法であって、出発原料としての窒化珪素粉末を比表面積が14m /g以上となるように粉砕し、この粉砕処理された窒化珪素粉末に化学式Si 6−Z Al 8−Z におけるZ値が2以上3以下となるように酸化アルミニウム粉末を添加混合し、得られた混合粉末を所定の圧力で成形し、1600〜1800℃で焼成することにより、相対密度が90%以上であり、最大ボイド径が30μm以下であり、ヤング率が250GPa以上であり、室温における熱膨張係数が1.4×10 −6 /℃±0.30×10 −6 /℃であるβ−サイアロン焼結体からなる半導体製造装置用部材を得ることを特徴とする、半導体製造装置用部材の製造方法、が提供される。 That is, according to the present invention, beta-sialon consisting of sintered body A method of manufacturing a member for a semiconductor manufacturing apparatus, and ground to a specific surface area of the silicon nitride powder as a starting material is 14m 2 / g or more The aluminum oxide powder is added to and mixed with the pulverized silicon nitride powder so that the Z value in the chemical formula Si 6-Z Al Z O Z N 8-Z is 2 or more and 3 or less. And is fired at 1600 to 1800 ° C., the relative density is 90% or more, the maximum void diameter is 30 μm or less, the Young's modulus is 250 GPa or more, and the thermal expansion coefficient at room temperature is 1. 4 ×, characterized in that to obtain a 10 -6 /℃±0.30×10 -6 / member for a semiconductor manufacturing apparatus comprising a certain β- sialon sintered body at ° C., a manufacturing method of a semiconductor manufacturing apparatus for member There is provided.

本発明によれば、最大ボイド径が小さく、高いヤング率を有し、窒化珪素と同等の熱膨張係数を有し、しかも機械加工性に優れたβ−サイアロン焼結体からなる半導体製造装置用部材が得られる。このため高品質な半導体製造装置用部材を低い加工コストで製造することができる。 According to the present invention , the maximum void diameter is small, the Young's modulus is high, the thermal expansion coefficient is the same as that of silicon nitride, and the semiconductor manufacturing apparatus is composed of a β-sialon sintered body excellent in machinability. A member is obtained. For this reason, a high-quality member for a semiconductor manufacturing apparatus can be manufactured at a low processing cost.

本発明に係る半導体製造装置用部材は、β−サイアロン焼結体からなる。β−サイアロン焼結体は、周知の通り、窒化珪素にアルミナを固溶させた材料であり、その組成式は一般的に、Si6−ZAl8−Z、で表される。ここで、この組成式に示されるZの値(以下単に「Z値」と記す)は、アルミナの固溶量を示している。一般的にβ−サイアロン焼結体におけるZ値は0<Z<4.2の範囲であるが、本発明の半導体製造装置用部材に用いられるサイアロン焼結体では、Z値を2.0≦Z≦3.0の範囲とすることが好ましい。これは、Z値が2.0未満になると加工性が悪くなり、一方、Z値が3.0を超えるとヤング率が大きく低下するからである。 The member for a semiconductor manufacturing apparatus according to the present invention comprises a β-sialon sintered body. As is well known, the β-sialon sintered body is a material in which alumina is dissolved in silicon nitride, and its compositional formula is generally represented by Si 6-Z Al Z O Z N 8-Z . . Here, the value of Z shown in this composition formula (hereinafter simply referred to as “Z value”) indicates the solid solution amount of alumina. In general, the Z value in the β-sialon sintered body is in the range of 0 <Z <4.2. However, in the sialon sintered body used in the member for a semiconductor manufacturing apparatus of the present invention, the Z value is set to 2.0 ≦ It is preferable to be in the range of Z ≦ 3.0. This is because if the Z value is less than 2.0, the workability deteriorates, whereas if the Z value exceeds 3.0, the Young's modulus is greatly reduced.

本発明に係る半導体製造装置用部材は、相対密度が90%以上であり、最大ボイド径が30μm以下であり、ヤング率が250GPa以上であり、室温における熱膨張係数が1.4×10-6/℃±0.30×10-6/℃であり、所定の機械加工速度が所定の緻密な窒化珪素焼結体の1.5倍以上であるβ−サイアロン焼結体からなる。 The member for a semiconductor manufacturing apparatus according to the present invention has a relative density of 90% or more, a maximum void diameter of 30 μm or less, a Young's modulus of 250 GPa or more, and a thermal expansion coefficient at room temperature of 1.4 × 10 −6. / ° C. ± 0.30 × 10 −6 / ° C., and a β-sialon sintered body having a predetermined machining speed that is 1.5 times or more that of a predetermined dense silicon nitride sintered body.

これは、相対密度が90%より小さく、最大ボイド径が30μmより大きいと、緻密質でない多孔質焼結体となり、半導体製造装置用部材、特に静電チャックや測長用ミラーとしての、必要な平面度、表面粗さ、反射率が得られないからである。また、多孔質焼結体では、パーティクルの抑制が非常に困難となる。さらに、ヤング率が250GPaより小さいと、半導体製造装置用部材として用いるための機械的強度の特性を確保できなくなる。 If the relative density is smaller than 90% and the maximum void diameter is larger than 30 μm, it becomes a non-dense porous sintered body, which is necessary as a member for semiconductor manufacturing equipment, particularly as an electrostatic chuck or a mirror for length measurement. This is because flatness, surface roughness, and reflectance cannot be obtained. In addition, in the porous sintered body, it is very difficult to suppress particles. Furthermore, when the Young's modulus is less than 250 GPa, it becomes impossible to ensure the mechanical strength characteristics for use as a member for a semiconductor manufacturing apparatus.

また、室温における熱膨張係数が1.4×10-6/℃±0.30×10-6/℃の範囲外であると、半導体製造装置用部材のひとつであるステージに用いられている窒化珪素(Si)との大きな膨張差が生じるため、高い精度が得られなくなる等の問題が生ずる。例えば、ステージ材に熱膨張係数が1.40×10-6/℃である窒化珪素と共に、熱膨張係数が8.00×10-6/℃である酸化アルミニウムを測長用バーミラーとして用いた場合、双方500mmの部材で温度が1℃変化すると、窒化珪素を用いたステージの端面では700nmの偏差であるのに対して、酸化アルミニウムを用いた測長用バーミラーの端面では4μmの偏差が生じることとなり、測長用バーミラーが歪んで正確な測定ができなくなったり、破壊に至る等の問題が生ずる。さらにまた、所定の機械加工速度が所定の緻密な窒化珪素焼結体の加工速度が1.5倍より小さいと、加工コストが高くなってしまう。 Further, nitride used in the thermal expansion coefficient is outside the range of 1.4 × 10 -6 /℃±0.30×10 -6 / ℃ , which is one of semiconductor manufacturing equipment member stage at room temperature Since a large difference in expansion from silicon (Si 3 N 4 ) occurs, problems such as failure to obtain high accuracy arise. For example, when aluminum oxide having a thermal expansion coefficient of 8.00 × 10 −6 / ° C. is used as a length measuring bar mirror together with silicon nitride having a thermal expansion coefficient of 1.40 × 10 −6 / ° C. as a stage material. When the temperature is changed by 1 ° C. with both members of 500 mm, the deviation of 700 nm is caused on the end face of the stage using silicon nitride, whereas the deviation of 4 μm is caused on the end face of the bar mirror for length measurement using aluminum oxide. As a result, the length measuring bar mirror is distorted and accurate measurement cannot be performed, or there are problems such as destruction. Furthermore, when the predetermined machining speed is less than 1.5 times the predetermined dense silicon nitride sintered body, the processing cost is increased.

一般的に、β−サイアロン焼結体の製造には、焼結時の緻密化を促進するために焼結助剤が用いられる。本発明に係る半導体製造装置用部材を構成するβ−サイアロン焼結体は、焼結助剤成分として希土類元素を含むことが好ましい。具体的な希土類元素として、好ましくはランタン(La)、セリウム(Ce)、イットリウム(Y)、イットリビウム(Yb)、エルビウム(Er)、ネオジム(Nd)が挙げられる。しかし、これらに限定されるものではなく、ガドリニウム(Gd)やディスプロシウム(Dy)、サマリウム(Sm)、ユーロピウム(Eu)を用いることもできる。また、希土類元素以外の成分、例えば、マグネシウム(Mg)やアルミニウム(Al)等をさらに含んでいてもよい。   In general, in the production of a β-sialon sintered body, a sintering aid is used to promote densification during sintering. The β-sialon sintered body constituting the member for a semiconductor manufacturing apparatus according to the present invention preferably contains a rare earth element as a sintering aid component. Specific examples of the rare earth element include lanthanum (La), cerium (Ce), yttrium (Y), yttrium (Yb), erbium (Er), and neodymium (Nd). However, the present invention is not limited to these, and gadolinium (Gd), dysprosium (Dy), samarium (Sm), and europium (Eu) can also be used. Moreover, components other than rare earth elements, for example, magnesium (Mg), aluminum (Al), and the like may be further included.

このような焼結助剤は、窒化珪素粉末とアルミナ粉末と焼結助剤粉末の合計量(つまり、100重量部)に占める焼結助剤の割合が、0.1重量部以上5重量部以下となるようにすることが好ましい。これは、焼結助剤量が0.1重量部未満では焼結体の緻密化が進み難く、一方、5重量部超では後述する加工性が低下するためである。   In such a sintering aid, the proportion of the sintering aid in the total amount of silicon nitride powder, alumina powder and sintering aid powder (that is, 100 parts by weight) is 0.1 parts by weight or more and 5 parts by weight. It is preferable to be as follows. This is because if the amount of the sintering aid is less than 0.1 parts by weight, densification of the sintered body is difficult to proceed, while if it exceeds 5 parts by weight, the workability described later decreases.

また、β−サイアロン焼結体の熱膨張係数は、窒化珪素をβ−サイアロン化することにより、またZ値を変化させることによっては変化せず、焼結助剤の種類および添加量を変えることによって変化する。上述のように、β−サイアロン焼結体の製造には、所定量の焼結助剤を用いることが好ましいことから、半導体製造装置用部材を窒化珪素焼結体とβ−サイアロン焼結体から構成する場合(例えば、窒化珪素製のステージにβ−サイアロン製の測長用ミラーを取り付ける場合)には、窒化珪素焼結体とβ−サイアロン焼結体の熱膨張係数をできるだけ接近させる必要がある。上述の通り、焼結助剤の添加量を窒化珪素粉末とアルミナ粉末と焼結助剤粉末の合計量の0.1重量部以上5重量部以下とすることは、β−サイアロン焼結体の熱膨張係数を窒化珪素焼結体の熱膨張係数に近付ける効果も有する。   In addition, the coefficient of thermal expansion of the β-sialon sintered body is not changed by converting the silicon nitride into β-sialon and changing the Z value, and changing the type and amount of the sintering aid. It depends on. As described above, since it is preferable to use a predetermined amount of sintering aid for the production of the β-sialon sintered body, the semiconductor manufacturing apparatus member is made of the silicon nitride sintered body and the β-sialon sintered body. When configured (for example, when a β-sialon measuring mirror is attached to a silicon nitride stage), it is necessary to make the thermal expansion coefficients of the silicon nitride sintered body and the β-sialon sintered body as close as possible. is there. As described above, the addition amount of the sintering aid is 0.1 parts by weight or more and 5 parts by weight or less of the total amount of the silicon nitride powder, the alumina powder, and the sintering aid powder. It also has the effect of bringing the thermal expansion coefficient closer to that of the silicon nitride sintered body.

本発明に係るβ−サイアロン焼結体からなる半導体製造装置用部材の製造方法は次の通りである。出発原料としての窒化珪素粉末と酸化アルミニウム粉末、焼結助剤成分を、比表面積(BET値)が14m/g以上となるように、均一に混合粉砕する。BET値が14m/g未満の粉末では一般的に粒子径が大きいために、β−サイアロン焼結体に形成されるボイドの径が大きくなりやすい。 The manufacturing method of the member for semiconductor manufacturing apparatuses which consists of a beta-sialon sintered compact concerning the present invention is as follows. The silicon nitride powder, the aluminum oxide powder, and the sintering aid component as starting materials are uniformly mixed and pulverized so that the specific surface area (BET value) is 14 m 2 / g or more. A powder having a BET value of less than 14 m 2 / g generally has a large particle diameter, so that the diameter of voids formed in the β-sialon sintered body tends to be large.

なお、原料粉末の粉砕方法は湿式と乾式のどちらでもよい。主成分である窒化珪素粉末の比表面積が大きく、かつ、酸化アルミニウム粉末および焼結助剤粉末を合わせた状態での比表面積(BET値)が最初から14m/g以上であれば、粉砕処理を行なわずに混合処理のみで済ませることも可能である。但し、この場合において、酸化アルミニウム粉末および焼結助剤粉末のBET値が窒化珪素粉末と比較して極端に小さい場合には、組織の均一性を高める等の観点から、酸化アルミニウム粉末および焼結助剤粉末を予め粉砕するか、または全原料粉末を混合粉砕することが好ましい。 Note that the raw material powder may be pulverized by either a wet method or a dry method. If the specific surface area of the silicon nitride powder as the main component is large and the specific surface area (BET value) in the state where the aluminum oxide powder and the sintering aid powder are combined is 14 m 2 / g or more from the beginning, pulverization treatment It is also possible to perform only the mixing process without performing the process. However, in this case, when the BET values of the aluminum oxide powder and the sintering aid powder are extremely small compared to the silicon nitride powder, the aluminum oxide powder and the sintered powder are used from the viewpoint of enhancing the uniformity of the structure. It is preferable to pulverize the auxiliary powder in advance or to mix and pulverize all raw material powders.

調整された混合粉末には、成形性を高めるために所定量のバインダを加えてもよい。こうして得られた粉末を所定圧力でプレス成形し、窒素雰囲気中、1600℃〜1800℃で所定時間焼成を行う。なお、粉末にバインダが添加されている場合には、焼成処理前または焼成時に所定温度で脱脂処理を行う。混合粉末のプレス成形は、一軸プレスにより仮成形した後に冷間静水圧プレス(CIP)することが好ましい。   A predetermined amount of binder may be added to the adjusted mixed powder in order to improve moldability. The powder thus obtained is press-molded at a predetermined pressure and fired at 1600 ° C. to 1800 ° C. for a predetermined time in a nitrogen atmosphere. When a binder is added to the powder, the degreasing process is performed at a predetermined temperature before or during the baking process. The press molding of the mixed powder is preferably performed by cold isostatic pressing (CIP) after temporary molding by uniaxial pressing.

このようにして製造されたβ−サイアロン焼結体には、半導体製造装置用部材として用いるために必要な切削や研磨等の機械加工が施される。上述の通りにして作製されたβ−サイアロン焼結体は、高いヤング率を有するにもかかわらず機械加工性に優れている。具体的には、本発明に係る半導体製造装置用部材を構成するβ−サイアロン焼結体では、一般的な研磨処理(ラッピング処理)における加工速度(つまり、研磨レート)が、以下に説明する緻密質窒化珪素焼結体の場合の1.5倍以上である。   The β-sialon sintered body manufactured in this way is subjected to machining such as cutting and polishing necessary for use as a member for a semiconductor manufacturing apparatus. The β-sialon sintered body produced as described above is excellent in machinability despite having a high Young's modulus. Specifically, in the β-sialon sintered body constituting the member for a semiconductor manufacturing apparatus according to the present invention, the processing speed (that is, the polishing rate) in a general polishing process (lapping process) is a fine density described below. It is 1.5 times or more of the case of the quality silicon nitride sintered body.

ここで、研磨レートを求めるための基準となる緻密質窒化珪素焼結体(以下「基準試料」という)の製造方法および特性について説明する。基準試料は、最初に、窒化珪素粉末(粒径:0.2μm、純度:90%)90重量部に、焼結助剤として8重量部の酸化イットリウム(Y)粉末(平均粒径:0.3μm、純度:99.9%)と2重量部のスピネル(MgAl)粉末(平均粒径:0.3μm、純度:99.9%)を添加し、これに所定量のエタノールを加えて、窒化珪素製ボールを用いてボールミル処理する。このような混合粉砕処理後にエタノールを除去乾燥して得られる混合粉を300kgf/cm(=29.4MPa)で50mm×50mm×10mmの角柱形状にプレス成形し、さらにこのプレス成形体を1500kgf/cm(=147.1MPa)で冷間静水圧成形する。作製した成形体を窒素雰囲気中、昇温速度を10℃/分として1700℃に昇温し、6時間焼成する。このようにして得られる焼結体から10mm×10mm×5mmの試料片を切り出し、これを基準試料とする。 Here, a manufacturing method and characteristics of a dense silicon nitride sintered body (hereinafter referred to as a “reference sample”) which serves as a reference for obtaining a polishing rate will be described. Reference sample is first silicon nitride powder (particle size:: 0.2 [mu] m, 90% purity) 90 parts by weight, yttrium oxide 8 parts by weight as a sintering aid (Y 2 O 3) powder (average particle size : 0.3 μm, purity: 99.9%) and 2 parts by weight of spinel (MgAl 2 O 4 ) powder (average particle size: 0.3 μm, purity: 99.9%) were added, Ethanol is added and ball milled using silicon nitride balls. The mixed powder obtained by removing and drying ethanol after such a mixing and pulverizing treatment is press-molded into a prismatic shape of 50 mm × 50 mm × 10 mm at 300 kgf / cm 2 (= 29.4 MPa), and this press-molded product is further subjected to 1500 kgf / Cold isostatic pressing at cm 2 (= 147.1 MPa). The formed body is heated to 1700 ° C. in a nitrogen atmosphere at a rate of temperature increase of 10 ° C./min and fired for 6 hours. A 10 mm × 10 mm × 5 mm sample piece is cut out from the sintered body thus obtained, and this is used as a reference sample.

なお、このようにして作製された窒化珪素焼結体は、後に示す表1に比較例1として示されるように、ヤング率が315GPa、最大ボイド径が10μm、アルキメデス法による相対密度が99%で嵩密度が3.33×10kg/m、という特性を有する。また、この窒化珪素焼結体は、SEM観察による平均粒子径が1.0μm、ビッカース硬度が17.9GPa、破壊靱性値が8.7MPam1/2、4点曲げ強度が1100MPa、熱膨張係数が1.4×10-6/℃、という特性を有する。 The silicon nitride sintered body thus fabricated had a Young's modulus of 315 GPa, a maximum void diameter of 10 μm, and a relative density by Archimedes method of 99% as shown in Comparative Example 1 in Table 1 below. The bulk density is 3.33 × 10 3 kg / m 3 . Further, this silicon nitride sintered body has an average particle diameter of 1.0 μm, a Vickers hardness of 17.9 GPa, a fracture toughness value of 8.7 MPam 1/2 , a four-point bending strength of 1100 MPa, and a thermal expansion coefficient by SEM observation. It has a characteristic of 1.4 × 10 −6 / ° C.

この基準試料の研磨処理は次のようにして行われる。直径100mmφのプレートの裏面に、10mm×10mm×5mmの基準試料3個が略正三角形の頂点に位置するように10mm×10mmの面で固定する。次に、このプレートに1kg/cm(=0.098MPa)の荷重を掛けて、基準試料を銅と鋳物材質とからなる直径200mmφのラップ盤に押し当てる。このプレートは、その中心が、ラップ盤の中心からその半径の半分だけ離れた位置に位置するように配置される。そして、所定の時間間隔でラップ盤に粒径9μmのダイヤモンドスラリーを所定量吹き付けながら、このラップ盤を30rpmの速度で回転させる。なお、基準試料が取り付けられたプレートは、ラップ盤の回転時に基準試料とラップ盤との間に働く摩擦によって自由に回転できる状態で保持されている。 The polishing process for the reference sample is performed as follows. On the back surface of the plate having a diameter of 100 mmφ, three 10 mm × 10 mm × 5 mm reference samples are fixed with a surface of 10 mm × 10 mm so as to be positioned at the apex of a substantially equilateral triangle. Next, a load of 1 kg / cm 2 (= 0.098 MPa) is applied to the plate, and the reference sample is pressed against a lapping machine having a diameter of 200 mmφ made of copper and a casting material. The plate is positioned such that its center is located at a position half the radius of the center of the lapping machine. Then, the lapping machine is rotated at a speed of 30 rpm while spraying a predetermined amount of diamond slurry having a particle diameter of 9 μm on the lapping machine at a predetermined time interval. The plate to which the reference sample is attached is held in a state where it can be freely rotated by friction acting between the reference sample and the lapping machine when the lapping machine is rotated.

研磨レートは、このような研磨処理によって所定時間に研磨された試料の厚さt(μm/分)により求められる。本発明に係る半導体製造装置用部材を構成するβ−サイアロン焼結体の研磨処理もこれと同様に行われ、その研磨レートが求められる。   The polishing rate is obtained from the thickness t (μm / min) of the sample polished in a predetermined time by such a polishing process. Polishing treatment of the β-sialon sintered body constituting the member for a semiconductor manufacturing apparatus according to the present invention is similarly performed, and the polishing rate is required.

本発明に係る半導体製造装置用部材を構成するβ−サイアロン焼結体のこのような研磨処理による研磨レートは、基準試料の研磨レートの1.5倍以上である。基準試料も、その切断処理や研削処理にはダイヤモンドホイールが使用されるが、このときの処理時間等には大差は生じず、したがって処理コストも同等である。しかし、このような研磨処理によって所望の表面粗度を有する面を出す処理では、その焼結体の特性に依存して、処理時間が大きく異なり、処理コストや生産性に大きな差が生ずる。本発明に係る半導体製造装置用部材を構成するβ−サイアロン焼結体は研磨レートが高いために、生産性がよく、処理コストが低く抑えられる。   The polishing rate by such a polishing treatment of the β-sialon sintered body constituting the member for a semiconductor manufacturing apparatus according to the present invention is 1.5 times or more the polishing rate of the reference sample. As for the reference sample, a diamond wheel is used for the cutting process and the grinding process. However, there is no great difference in the processing time at this time, and therefore the processing cost is also equivalent. However, in such a process for producing a surface having a desired surface roughness by the polishing process, the processing time varies greatly depending on the characteristics of the sintered body, and the processing cost and productivity vary greatly. Since the β-sialon sintered body constituting the member for a semiconductor manufacturing apparatus according to the present invention has a high polishing rate, the productivity is good and the processing cost is kept low.

上述した特性を備えた本発明に係るβ−サイアロン焼結体からなる半導体製造装置用部材としては、例えば、静電チャックや各種リング等が挙げられるが、特に、相対密度が高く、かつ、最大ボイド径が小さく、窒化珪素と同等の熱膨張係数を有し、鏡面出しを行う研磨処理の加工性が良好であることを活かして、測長用ミラーとして用いることが好ましい。   Examples of the member for a semiconductor manufacturing apparatus made of the β-sialon sintered body according to the present invention having the above-described characteristics include an electrostatic chuck and various rings. In particular, the relative density is high and the maximum Taking advantage of the fact that the void diameter is small, the thermal expansion coefficient is the same as that of silicon nitride, and the processability of the polishing process for mirror finishing is good, it is preferably used as a length measuring mirror.

(比較例1の作製方法)
比較例1は緻密質窒化珪素焼結体であり、その製造方法については先に説明した通りであるので、ここでの詳細な説明は割愛する。
(Production method of Comparative Example 1)
Since Comparative Example 1 is a dense silicon nitride sintered body and the manufacturing method thereof is as described above, detailed description thereof is omitted here.

(β−サイアロン焼結体(比較例1を除く)の作製方法)
窒化珪素粉末、アルミナ粉末、焼結助剤成分の酸化物粉末を表1に示す組成となるように秤量し、これにエタノールを混合して、窒化珪素ボールを用いたボールミル処理を行うことにより、表1に示すBET値を有する均質な原料粉末を作製した。次に、このような混合粉砕処理後にエタノールを除去乾燥して得られる混合粉を100kgf/cm(=9.81MPa)で50mm×50mm×10mmの角柱形状にプレス成形し、さらにこのプレス成形体を1200kgf/cm(=117.68MPa)で1分間、冷間静水圧処理した。なお、このような原料粉末の成形条件は、実施例および比較例(比較例1を除く)に共通である。
(Production method of β-sialon sintered body (excluding Comparative Example 1))
By weighing silicon nitride powder, alumina powder, oxide powder of the sintering aid component so as to have the composition shown in Table 1, mixing this with ethanol, and performing a ball mill treatment using silicon nitride balls, A homogeneous raw material powder having a BET value shown in Table 1 was produced. Next, the mixed powder obtained by removing and drying ethanol after such a mixing and pulverizing treatment is press-molded into a prismatic shape of 50 mm × 50 mm × 10 mm at 100 kgf / cm 2 (= 9.81 MPa), and further this press-molded body the 1200kgf / cm 2 (= 117.68MPa) in 1 min, and cold isostatic process. In addition, the shaping | molding conditions of such raw material powder are common to an Example and a comparative example (except for the comparative example 1).

こうして作製した成形体を窒素雰囲気中、昇温速度を10℃/分として表1に示される各温度に昇温し、その温度で3時間焼成した。得られた焼結体から10mm×10mm×5mmの試料片を切り出し、研磨レートを求めるための試料とした。   The molded body thus produced was heated to each temperature shown in Table 1 at a heating rate of 10 ° C./min in a nitrogen atmosphere, and fired at that temperature for 3 hours. A 10 mm × 10 mm × 5 mm sample piece was cut out from the obtained sintered body and used as a sample for determining the polishing rate.

(焼結体の評価方法)
また、作製した焼結体の嵩密度および相対密度をアルキメデス法により、またヤング率を共振法により、最大ボイド径をSEM観察により、熱膨張係数を(JIS R3251)低熱膨張ガラスのレーザー干渉計による線膨張率の測定方法により、求めた。また、研磨レートの測定は、先に説明した通りである。
(Sintered body evaluation method)
In addition, the bulk density and relative density of the produced sintered body are determined by Archimedes method, Young's modulus is determined by resonance method, the maximum void diameter is observed by SEM, and the thermal expansion coefficient is determined by a laser interferometer of low thermal expansion glass (JIS R3251). It was determined by a method for measuring the linear expansion coefficient. The measurement of the polishing rate is as described above.

(評価結果)
表1に示されるように、各実施例に係るβ−サイアロン焼結体の室温における熱膨張係数は1.4×10-6/℃±0.25×10-6/℃の範囲内に収まっており、基準となる窒化珪素焼結体の室温における熱膨張係数の1.4×10-6/℃±0.30×10-6/℃の範囲内である。このように各実施例では、窒化珪素焼結体とともに半導体製造装置用部材を構成する場合に好ましい特性が得られている。これに対して比較例2および比較例3の室温における熱膨張係数は1.4×10-6/℃±0.30×10-6/℃の範囲外となっている。
(Evaluation results)
As shown in Table 1, the thermal expansion coefficient at room temperature of each embodiment according to Example β- sialon sintered body within the range of 1.4 × 10 -6 /℃±0.25×10 -6 / ℃ and which is in the range of 1.4 × 10 -6 /℃±0.30×10 -6 / ℃ thermal expansion coefficient at room temperature in relation to the standard silicon nitride sintered body. As described above, in each example, preferable characteristics are obtained when the semiconductor manufacturing apparatus member is configured together with the silicon nitride sintered body. Thermal expansion coefficient at room temperature of Comparative Examples 2 and 3 contrast has become outside the range of 1.4 × 10 -6 /℃±0.30×10 -6 / ℃ .

また、表1に示されるように、基準試料である比較例1のヤング率は315GPaであるが、本発明に係る実施例1〜10についても250GPa以上のヤング率が確保されており、半導体製造装置用部材として十分な特性が確保されていることが確認された。また、実施例では、相対密度が90%以上であり、かつ、最大ボイド径は30μm以下である。さらに実施例の研磨レートは160μm/hr以上となっており、基準試料たる比較例1の研磨レートの100μm/hrと比較すると1.5倍以上となっている。これらのことから、各実施例では、優れた加工性が得られ、研磨加工によって平滑な面(鏡面)を得ることが容易であることが確認された。   In addition, as shown in Table 1, the Young's modulus of Comparative Example 1 which is a reference sample is 315 GPa, but the Young's modulus of 250 GPa or more is also secured in Examples 1 to 10 according to the present invention, and semiconductor manufacturing It was confirmed that sufficient characteristics were secured as a device member. In the examples, the relative density is 90% or more, and the maximum void diameter is 30 μm or less. Further, the polishing rate of the example is 160 μm / hr or more, which is 1.5 times or more compared with the polishing rate of 100 μm / hr of Comparative Example 1 as a reference sample. From these things, in each Example, it was confirmed that the outstanding workability was obtained and it was easy to obtain a smooth surface (mirror surface) by polishing.

これに対して比較例2および比較例3を除くその他の比較例では、室温における熱膨張係数の基準は満たしているものの、研磨レートが高いものでは最大ボイド径が大きく、または相対密度が低く、あるいはヤング率が低い等、半導体製造装置用部材として用いるには機械的特性の観点から問題があった。一方、研磨レートが低いものは、半導体製造装置用部材と用いることはできるが、製品コストが高くなる問題がある。   On the other hand, in Comparative Examples other than Comparative Example 2 and Comparative Example 3, although the standard of the thermal expansion coefficient at room temperature is satisfied, the maximum void diameter is large or the relative density is low when the polishing rate is high, Or, there is a problem from the viewpoint of mechanical properties when used as a member for a semiconductor manufacturing apparatus such as a low Young's modulus. On the other hand, a material with a low polishing rate can be used as a member for a semiconductor manufacturing apparatus, but there is a problem that the product cost increases.

Figure 0004588379
Figure 0004588379

本発明の半導体製造装置用部材は、その表面を平坦に研磨処理することによって作製される静電チャックや、表面を鏡面研磨処理することによって作製される測長用ミラーに好適である。   The member for a semiconductor manufacturing apparatus of the present invention is suitable for an electrostatic chuck produced by polishing the surface thereof flatly or a length measuring mirror produced by mirror polishing the surface.

Claims (1)

β−サイアロン焼結体からなる半導体製造装置用部材の製造方法であって、出発原料としての窒化珪素粉末を比表面積が14m  A method for manufacturing a member for a semiconductor manufacturing apparatus comprising a β-sialon sintered body, wherein silicon nitride powder as a starting material has a specific surface area of 14 m 2 /g以上となるように粉砕し、この粉砕処理された窒化珪素粉末に化学式Si/ G and crushed silicon nitride powder with chemical formula Si 6−Z6-Z AlAl Z O Z N 8−Z8-Z におけるZ値が2以上3以下となるように酸化アルミニウム粉末を添加混合し、得られた混合粉末を所定の圧力で成形し、1600〜1800℃で焼成することにより、相対密度が90%以上であり、最大ボイド径が30μm以下であり、ヤング率が250GPa以上であり、室温における熱膨張係数が1.4×10The aluminum oxide powder was added and mixed so that the Z value at 2 or more and 3 or less was formed, and the obtained mixed powder was molded at a predetermined pressure and fired at 1600 to 1800 ° C., so that the relative density was 90% or more. The maximum void diameter is 30 μm or less, the Young's modulus is 250 GPa or more, and the thermal expansion coefficient at room temperature is 1.4 × 10 −6-6 /℃±0.30×10/℃±0.30×10 −6-6 /℃であるβ−サイアロン焼結体からなる半導体製造装置用部材を得ることを特徴とする、半導体製造装置用部材の製造方法。A method for producing a member for semiconductor production equipment, comprising obtaining a member for semiconductor production equipment comprising a β-sialon sintered body at / ° C.
JP2004212813A 2004-07-21 2004-07-21 Method for manufacturing member for semiconductor manufacturing apparatus Expired - Fee Related JP4588379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004212813A JP4588379B2 (en) 2004-07-21 2004-07-21 Method for manufacturing member for semiconductor manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004212813A JP4588379B2 (en) 2004-07-21 2004-07-21 Method for manufacturing member for semiconductor manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2006027986A JP2006027986A (en) 2006-02-02
JP4588379B2 true JP4588379B2 (en) 2010-12-01

Family

ID=35894775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004212813A Expired - Fee Related JP4588379B2 (en) 2004-07-21 2004-07-21 Method for manufacturing member for semiconductor manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP4588379B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5070142B2 (en) * 2008-06-18 2012-11-07 黒崎播磨株式会社 Fluid hydrostatic guide device component, tool support component, and manufacturing method thereof
CN103329257B (en) * 2011-04-15 2016-11-09 株式会社爱发科 It is of target objects by conveyer
US20170167276A1 (en) * 2015-12-09 2017-06-15 General Electric Company Article for high temperature service
US11066339B2 (en) 2017-06-08 2021-07-20 General Electric Company Article for high temperature service

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06100306A (en) * 1992-09-22 1994-04-12 Toray Ind Inc Sialon crystal particle and sintered compact of complex ceramics
JPH06172034A (en) * 1992-12-09 1994-06-21 Nippon Steel Corp Black silicon nitride-based sintered compact and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06100306A (en) * 1992-09-22 1994-04-12 Toray Ind Inc Sialon crystal particle and sintered compact of complex ceramics
JPH06172034A (en) * 1992-12-09 1994-06-21 Nippon Steel Corp Black silicon nitride-based sintered compact and its production

Also Published As

Publication number Publication date
JP2006027986A (en) 2006-02-02

Similar Documents

Publication Publication Date Title
US9440887B2 (en) Silicon nitride sintered body and wear resistant member using the same
KR100417967B1 (en) Abrasion resistance materials and preparation method therefor
JP4854482B2 (en) Boron carbide sintered body and manufacturing method thereof
JP5487099B2 (en) Wear-resistant member, wear-resistant device, and method for manufacturing wear-resistant member
JP5732037B2 (en) Wear-resistant member and method for manufacturing the same
EP1669335B1 (en) Bearing rolling ball and method for manufacturing the same
US9663407B2 (en) Silicon nitride wear resistant member and method for producing silicon nitride sintered compact
JP4588379B2 (en) Method for manufacturing member for semiconductor manufacturing apparatus
JP4500515B2 (en) Parts for semiconductor manufacturing equipment and mirrors for length measurement
JP2000256066A (en) Silicon nitride-base sintered compact, its production and wear resistant member using same
JP5825962B2 (en) Silicon nitride-based sintered body, member for molten metal using the same, and wear-resistant member
JP5150064B2 (en) Method for manufacturing wear-resistant member
JP4936724B2 (en) Silicon nitride sintered body, semiconductor manufacturing apparatus member using the same, and liquid crystal manufacturing apparatus member
JP5349525B2 (en) Rolling element
JP4939736B2 (en) Manufacturing method of sintered silicon nitride
JP4385122B2 (en) Method for producing α-sialon sintered body and α-sialon sintered body
JP2000335976A (en) Silicon nitride-based sintered compact and its production and abrasion-resistant member using the same
JP6374207B2 (en) Silicon nitride-based sintered body and impact wear-resistant member comprising the same
JPH0840776A (en) Sintered substance based on si3n4/bn and their production
JP2000086347A (en) Ceramic sintered compact and its production
JP2001130966A (en) Silicon nitride-based sintered body, method for producing the same, and silicon nitride-based abrasion resistant member by using the same
JPH09295869A (en) Sialon ceramic excellent in impact resistance and its production
JPH06116072A (en) Heat treatment of silicon nitride-silicon carbide composite sintered compact
JP2003238237A (en) Low thermal expansive ceramics and its manufacturing method
JP2002068844A (en) Silicon nitride sintered compact having property of free- cutting and production method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100908

R150 Certificate of patent or registration of utility model

Ref document number: 4588379

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees