JP5070142B2 - Fluid hydrostatic guide device component, tool support component, and manufacturing method thereof - Google Patents
Fluid hydrostatic guide device component, tool support component, and manufacturing method thereof Download PDFInfo
- Publication number
- JP5070142B2 JP5070142B2 JP2008159677A JP2008159677A JP5070142B2 JP 5070142 B2 JP5070142 B2 JP 5070142B2 JP 2008159677 A JP2008159677 A JP 2008159677A JP 2008159677 A JP2008159677 A JP 2008159677A JP 5070142 B2 JP5070142 B2 JP 5070142B2
- Authority
- JP
- Japan
- Prior art keywords
- sintered body
- component
- silicon nitride
- bearing
- sialon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Ceramic Products (AREA)
- Jigs For Machine Tools (AREA)
- Magnetic Bearings And Hydrostatic Bearings (AREA)
Description
本発明は、流体静圧案内軸受部品、工具支持部品、およびこれらの製造方法に関する。 The present invention relates to a hydrostatic pressure guide bearing component, a tool support component, and a manufacturing method thereof.
流体静圧案内軸受とは、移動部である軸と固定部である軸受けの間に高圧の潤滑流体を強制的に供給して潤滑流体膜を形成し、この膜によって負荷を発生させて軸を支持する軸受けをいう。潤滑流体が空気である流体静圧案内軸受は空気静圧軸受と呼ばれ、潤滑流体が油である静圧流体案内軸受は油静圧軸受、潤滑流体が水である静圧流体案内軸受は水静圧軸受とも呼ばれる。 Hydrostatic pressure guide bearings form a lubricating fluid film by forcibly supplying a high-pressure lubricating fluid between a shaft that is a moving part and a bearing that is a fixed part. A bearing to support. A hydrostatic pressure guide bearing in which the lubricating fluid is air is called an aerostatic bearing, a hydrostatic fluid guide bearing in which the lubricating fluid is oil is an oil hydrostatic bearing, and a hydrostatic fluid guide bearing in which the lubricating fluid is water is water. Also called a hydrostatic bearing.
一般に流体静圧案内軸受は、摩擦がほとんど無いために回転摩擦によるトルクが極めて小さいことや、回転精度も高いこと等から、精密工作機械の主軸に広く使用されている。しかし、精密工作機械の主軸に採用される空気静圧軸受は、隙間が数μmと小さいため高速回転により発生する熱により部材が熱膨張・変形して軸受隙間が小さくなり、ハウジングと回転軸の接触事故が発生しやすくなる。このため特許文献1〜3には、熱膨張係数が小さく剛性の高い窒化珪素材料で回転軸を作製する技術が開示されている。これにより、回転時の軸受隙間の変動が抑制されて接触事故を防止でき、さらには軸受の温度変化に伴う剛性の変化も防止できるとされる。また、特許文献1には、空気静圧軸受を利用した直線案内装置の移動部であるスライダを窒化珪素等のセラミックス製とすると、移動部が往復運動する際に発生する慣性力を低減させることができることも開示されている。
In general, hydrostatic pressure guide bearings are widely used for the spindles of precision machine tools because they have almost no friction and therefore have extremely low torque due to rotational friction and high rotational accuracy. However, since the hydrostatic bearing used for the spindle of precision machine tools has a small gap of only a few μm, the member is thermally expanded and deformed by heat generated by high-speed rotation, and the bearing gap becomes small. Contact accidents are likely to occur. For this reason,
特許文献4には、高い復元力により軸線の傾きを自律補正できる液体静圧回転軸を備えた支持装置およびこれを用いた加工機が開示されている。この装置の静圧面を形成する材料を窒化珪素またはサイアロン等のセラミックスとすると、熱膨張係数を鋼材の1/10程度とできるために、静圧隙間を変化させにくくできるとされる。さらに、前記材料をサイアロン等とすると、軸線の傾きがより補正しやすくなるので、工具やワークの位置変動を小さくできるとされる。また、これらの材料は比重が非常に小さいため、サーボ回転駆動における駆動エネルギーの削減とレスポンスの高速化による高精度化も達成されるとされる。
特許文献5には、高精度加工装置、高精度測定装置、半導体製造装置、または半導体検査装置に使用される空気静圧直線案内装置の基台をセラミックスまたは石により作製し、基台上に取付けられる吸引レールを前記基台と同等の熱膨張係数を持つ低膨張鋳物等で作製する技術が開示されている。これにより、基台と吸引レール間の熱膨張の差によって、装置が変形するという、いわゆるバイメタル効果が低減され、加工精度の低下を抑制できるとしている。セラミックスとしては、アルミナ、ムライト、窒化珪素材料が例示されている。
In
特許文献6〜8には、光学素子やその成形用金型を切削または研削加工する3軸以上の加工自由度を有する精密多軸加工機において、その直動液体静圧スライドを窒化珪素またはサイアロンで作製する技術が開示されている。窒化珪素またはサイアロンの室温における線熱膨張係数は1.5×10−6/Kであり、鉄鋼材料の1/10程度であるため、静圧スライド上に取り付けた工具やワークの位置が温度により変動しにくいとされる。また、窒化珪素またはサイアロンは、破壊靭性が6.0MPam1/2と、セラミックスの中では比較的高いため、割れにくく、かつヤング率が290GPaと鋳鉄の2.5倍程度と高いため変形しにくいという利点も有するとされる。さらに、窒化珪素またはサイアロンは、比重が3.3と軽いため、スライド駆動時に発生する慣性力等の制御負荷が小さく、機械的なレスポンスが向上する。よって、直動液体静圧スライドを窒化珪素またはサイアロンで作製すると、装置のサーボ帯域が向上して制御性が良くなり、高速かつ高精度な加工が実現できるとされる。
In
特許文献9、10には、取外し、取付けが容易であり、潤滑流体として水を用いた直動静圧スライドが開示されている。この直動静圧スライドを構成する部品として、セラミックス製のガイドウェイやスライドウェイが開示されており、セラミックスの具体例として、アルミナ、ムライト、窒化珪素材料が開示されている。
このように、サイアロンまたは窒化珪素材料は、その低熱膨張性、高剛性、低比重(軽量)性のため、超精密加工機の静圧回転軸や直動の静圧スライダ部材として有用であることが知られている。
これらの特許文献に示されるとおり、サイアロンまたは窒化珪素材料(以下これらを合わせて「サイアロン等」ともいう)が超精密加工機の部品として有用であることは古くから広く知られている。しかしながら、実際には、超精密加工機の工具テーブルや、超精密加工機の流体静圧案内装置の回転軸やスライドの材料として全く普及していないのが現状である。この理由としては、サイアロン等の高精度加工が難しく、さらにはその加工困難性から、サイアロン等からなる部品の価格が非常に高くなってしまうことが考えられる。サイアロン等は、従来、タービン等の高温で高強度が要求される部材や、工具等の高耐磨耗部材として開発されてきた。すなわち、サイアロン等は、セラミックス材料の中でも高強度かつ高靭性であって、高温でも高い機械的強度を有するため、難加工性の材料として知られている。 As shown in these patent documents, it has long been widely known that sialon or silicon nitride materials (hereinafter collectively referred to as “sialon or the like”) are useful as parts of ultraprecision machines. However, in reality, it is not widely used at all as a material for a rotating shaft or a slide of a tool table of an ultraprecision machine or a hydrostatic pressure guide device of an ultraprecision machine. The reason for this is that high-precision machining of sialon or the like is difficult, and the cost of parts made of sialon or the like is very high due to the difficulty of machining. Sialon and the like have been conventionally developed as members that require high strength at high temperatures, such as turbines, and high wear-resistant members such as tools. That is, sialon or the like is known as a difficult-to-work material because it has high strength and toughness among ceramic materials and has high mechanical strength even at high temperatures.
このように切削加工が困難であるサイアロン等は、ダイヤモンド砥石による研削、またはダイヤンド遊離砥粒による研磨により加工される。しかし、サイアロン等の研削においては、研削抵抗が非常に高いため、加工切込み量や工具移動スピードを大きくできないという問題がある。また、この研削においては、工具の目詰まりが発生しやすいため、工具を頻繁にドレッシングする必要がある。このため、グライデングセンターや円筒研削盤を用いて研削する場合に、金属材料の何十倍〜何百倍もの加工時間が必要となる。このため、サイアロン等を加工してなる部品はコストが高くなる。さらに、研削抵抗が高く、砥石の目詰まりが発生しやすいため、サイアロン等は、高精度な研削加工が困難であるという問題もある。例えば金属材料は、比較的容易に真円度0.1μm以下の超高精度で円筒体に加工ができる。しかし、サイアロン等は、このような超高精度に円筒体に加工することは不可能であった。 Thus, sialon or the like, which is difficult to cut, is processed by grinding with a diamond grindstone or polishing with diamond free abrasive grains. However, grinding of sialon or the like has a problem that the cutting depth and tool moving speed cannot be increased because the grinding resistance is very high. Further, in this grinding, since the tool is easily clogged, it is necessary to dress the tool frequently. For this reason, when grinding using a grinding center or a cylindrical grinder, the processing time of tens to hundreds of times that of a metal material is required. For this reason, parts made by processing sialon or the like are expensive. Furthermore, since the grinding resistance is high and clogging of the grindstone is likely to occur, sialon and the like also have a problem that high-precision grinding is difficult. For example, a metal material can be processed into a cylindrical body with super high accuracy with a roundness of 0.1 μm or less with relative ease. However, Sialon and the like cannot be processed into a cylindrical body with such an extremely high accuracy.
サイアロン等は平面研磨(「ラップ」ともいう)における加工性も十分でない。例えば、サイアロン等が平面研磨されるときの体積除去スピードは、99.5%純度アルミナの体積除去スピードの1/2以下である。平面研磨における体積除去スピードが遅いと、研磨時間が長くなるとともに面ダレによる平面度の低下を招いてしまう。そのため、修正のための時間、すなわち、仕上げ加工時間が増大する。
以上から、サイアロン等の難加工性が、超精密加工機用部品への適用を妨げているといえる。
Sialon and the like do not have sufficient workability in flat polishing (also referred to as “lapping”). For example, the volume removal speed when sialon or the like is subjected to surface polishing is 1/2 or less of the volume removal speed of 99.5% purity alumina. If the volume removal speed in the flat surface polishing is slow, the polishing time becomes long and flatness decreases due to surface sagging. Therefore, the time for correction, that is, the finishing time increases.
From the above, it can be said that difficult processability such as sialon prevents application to parts for ultra-precision processing machines.
これらの事情を鑑み、本発明は、加工性を大幅に改善したサイアロン焼結体または窒化珪素焼結体を含む超精密加工機に最適な部品を提供することを目的とする。 In view of these circumstances, an object of the present invention is to provide an optimal part for an ultra-precision processing machine including a sialon sintered body or a silicon nitride sintered body with greatly improved workability.
発明者らは鋭意検討した結果、特定の製法により得られたサイアロン焼結体または窒化珪素焼結体が前記課題を解決できることを見出し、本発明を完成させた。すなわち、前記課題は以下の本発明により解決される。
[1]β−窒化珪素粉末に焼結助剤を添加して焼結してなるサイアロン焼結体または窒化珪素焼結体を含む、流体静圧案内装置部品または工具支持部品。
[2]前記焼結体の曲げ強度は、400〜600MPa、ヤング率は、260GPa以上、室温における熱膨張係数は、1.5×10−6/K以下、比重は、3.27以下である、[1]記載の部品。
[3]前記焼結体の、SEPB法による破壊靭性値は、4〜5.5MPa・m1/2である、[1]または[2]記載の部品。
[4]前記焼結体の研削抵抗は、α−窒化珪素粉末に焼結助剤を添加して焼結してなるサイアロン焼結体または窒化珪素焼結体の前記研削における研削抵抗の80%以下であり、かつ、
前記焼結体のラップ盤を用いた研磨における体積除去スピードは、α−窒化珪素粉末に焼結助剤を添加して焼結してなるサイアロン焼結体または窒化珪素焼結体の前記研磨における体積除去スピードの1.5倍以上である、[1]〜[3]いずれかに記載の部品。
[5]前記β−窒化珪素粉末は、結晶部分におけるβ型結晶の割合が、80%以上である、[1]〜[4]いずれかに記載の部品。
[6]前記焼結体は、等軸状の結晶組織を有する、[1]〜[5]いずれかに記載の部品。
[7]前記流体静圧案内装置部品は、油静圧軸受、水静圧軸受または空気静圧軸受を利用した直線案内装置のガイド部品、スライダ部品、もしくはテーブル部品、あるいは、
油静圧軸受、水静圧軸受または空気静圧軸受を利用した回転軸装置の軸部品、軸受ハウジング部品、軸受スラスト板部品、もしくはテーブル部品である、[1]〜[6]いずれかに記載の部品。
[8]前記工具支持部品は、工具を保持する工具台、または工具台を保持する工具テーブルである、[1]〜[7]いずれかに記載の部品。
[9]β−窒化珪素粉末に焼結助剤を添加して焼結してなるサイアロン焼結体または窒化珪素焼結体を準備する工程、および
前記焼結体を研削または研磨する工程を含む、流体静圧案内軸受部品、または工具支持部品の製造方法。
As a result of intensive studies, the inventors have found that a sialon sintered body or a silicon nitride sintered body obtained by a specific production method can solve the above problems, and completed the present invention. That is, the said subject is solved by the following this invention.
[1] A hydrostatic pressure guide device part or a tool support part including a sialon sintered body or a silicon nitride sintered body obtained by sintering a β-silicon nitride powder with a sintering aid added thereto.
[2] The bending strength of the sintered body is 400 to 600 MPa, the Young's modulus is 260 GPa or more, the thermal expansion coefficient at room temperature is 1.5 × 10 −6 / K or less, and the specific gravity is 3.27 or less. [1].
[3] The part according to [1] or [2], wherein the sintered body has a fracture toughness value by SEPB method of 4 to 5.5 MPa · m 1/2 .
[4] The grinding resistance of the sintered body is 80% of the grinding resistance in grinding of a sialon sintered body or a silicon nitride sintered body obtained by sintering a α-silicon nitride powder with a sintering aid added thereto. And
The volume removal speed in polishing using a lapping machine of the sintered body is the same as that in polishing of a sialon sintered body or a silicon nitride sintered body formed by adding a sintering aid to α-silicon nitride powder and sintering. The component according to any one of [1] to [3], which is 1.5 times or more the volume removal speed.
[5] The component according to any one of [1] to [4], wherein the β-silicon nitride powder has a β-type crystal ratio in a crystal portion of 80% or more.
[6] The component according to any one of [1] to [5], wherein the sintered body has an equiaxed crystal structure.
[7] The fluid hydrostatic guide device component is a guide component, a slider component, or a table component of a linear guide device using an oil hydrostatic bearing, a hydrostatic bearing or an air hydrostatic bearing, or
[1] to [6], which is a shaft component, a bearing housing component, a bearing thrust plate component, or a table component of a rotary shaft device using an oil hydrostatic bearing, a hydrostatic bearing or an air hydrostatic bearing. Parts.
[8] The component according to any one of [1] to [7], wherein the tool support component is a tool table that holds a tool or a tool table that holds a tool table.
[9] including a step of preparing a sialon sintered body or a silicon nitride sintered body obtained by adding a sintering aid to β-silicon nitride powder and sintering, and a step of grinding or polishing the sintered body , Fluid hydrostatic guide bearing component, or tool support component manufacturing method.
本発明により、加工性を大幅に改善したサイアロン焼結体または窒化珪素焼結体を含む超精密加工機に最適な部品が提供できる。 According to the present invention, it is possible to provide an optimal part for an ultra-precision processing machine including a sialon sintered body or a silicon nitride sintered body with greatly improved workability.
1.本発明の焼結体
本発明の流体静圧案内軸受部品または工具支持部品は、β−窒化珪素粉末に焼結助剤を添加して焼結してなるサイアロン焼結体または窒化珪素焼結を含むことを特徴とする。
窒化珪素にはα型(六方晶)とβ型(六方晶)の2つの結晶型があり、α型は比較的低温で生成し、β型は高温で生成することが知られている。通常、サイアロンまたは窒化珪素焼結体は、α型窒化珪素粉末(α−Si3N4粉末)またはβ型窒化珪素粉末(β−Si3N4粉末)を焼結して得られる。いずれの原料を用いても、得られる焼結体はβ型であることが知られている。すなわち、α−Si3N4粉末またはβ−Si3N4粉末を焼結して得られる窒化珪素焼結体はβ−Si3N4であり、サイアロン焼結体はβ−サイアロンである。
β−サイアロンは、β−Si3N4にAl(アルミニウム)とO(酸素)が固溶した固溶体であり、一般にSi6−ZAlZON8−Z(Z≦4.2)の式で表される。現在製造されているほとんどのサイアロンまたは窒化珪素焼結体はα−Si3N4粉末を出発原料としている。
1. Sintered body of the present invention The hydrostatic pressure guide bearing part or tool support part of the present invention comprises a sialon sintered body or silicon nitride sintered body obtained by sintering a β-silicon nitride powder with a sintering aid added thereto. It is characterized by including.
Silicon nitride has two crystal types, α-type (hexagonal) and β-type (hexagonal). It is known that α-type is generated at a relatively low temperature and β-type is generated at a high temperature. Usually, a sialon or silicon nitride sintered body is obtained by sintering α-type silicon nitride powder (α-Si 3 N 4 powder) or β-type silicon nitride powder (β-Si 3 N 4 powder). Whichever raw material is used, it is known that the obtained sintered body is β-type. That is, a silicon nitride sintered body obtained by sintering α-Si 3 N 4 powder or β-Si 3 N 4 powder is β-Si 3 N 4 , and a sialon sintered body is β-sialon.
β-sialon is a solid solution in which Al (aluminum) and O (oxygen) are dissolved in β-Si 3 N 4 , and is generally represented by the formula Si 6-Z Al Z ON 8-Z (Z ≦ 4.2). expressed. Most sialon or silicon nitride sintered bodies currently produced start with α-Si 3 N 4 powder.
サイアロンまたは窒化珪素焼結体は、α−Si3N4粉末等を窒素雰囲気下1700〜1800℃で焼結して得られる。焼結において、焼結助剤として添加された酸化物と窒化珪素粉末表面のシリカ等が液相を形成し、この液相中に窒化珪素が一旦溶解し、その後析出する。この焼結は、いわゆる溶解再析出過程を経て進行する。本発明において記号「〜」はその両端の値を含む。
α−Si3N4粉末を出発原料とした場合、この溶解再析出過程でSi3N4は、α型からβ型へ結晶の相転移を起こす。この際にSi3N4の針状(長板状)結晶が多く生成し、かつ針状(長板状)結晶の交錯組織が形成される。この結晶組織を含むため、α−Si3N4粉末を焼結して得られる焼結体は高強度、高靭性であると考えられている。このように製造されたサイアロンまたは窒化珪素焼結体は、優れた機械的性能を有するが、加工性が非常に低い。以下、α−Si3N4粉末を焼結助剤の存在下で焼結して得たサイアロンまたは窒化珪素焼結体を「α原料型焼結体」とも称する。
The sialon or silicon nitride sintered body is obtained by sintering α-Si 3 N 4 powder or the like at 1700 to 1800 ° C. in a nitrogen atmosphere. In sintering, an oxide added as a sintering aid and silica on the surface of the silicon nitride powder form a liquid phase, and silicon nitride is once dissolved in the liquid phase and then precipitated. This sintering proceeds through a so-called dissolution reprecipitation process. In the present invention, the symbol “˜” includes values at both ends thereof.
When α-Si 3 N 4 powder is used as a starting material, Si 3 N 4 undergoes a crystal phase transition from α-type to β-type during this dissolution and re-precipitation process. At this time, a lot of needle-like (long plate-like) crystals of Si 3 N 4 are generated, and a cross-structure of needle-like (long plate-like) crystals is formed. Since this crystal structure is included, a sintered body obtained by sintering α-Si 3 N 4 powder is considered to have high strength and high toughness. The sialon or silicon nitride sintered body thus produced has excellent mechanical performance, but has very low workability. Hereinafter, a sialon or silicon nitride sintered body obtained by sintering an α-Si 3 N 4 powder in the presence of a sintering aid is also referred to as an “α raw material type sintered body”.
一方、β−Si3N4粉末を焼結助剤の存在下で焼結すると、Si3N4のα型からβ型への相転移が発生しないため、針状(長板状)結晶の生成が抑制される。このため結晶組織は等軸または小板状となる。このような焼結体は、針状結晶の交錯組織を含む焼結体に比べて、強度と靭性が低くなるため、加工性に優れる。以下、β−Si3N4粉末を焼結助剤の存在下で焼結して得たサイアロンまたは窒化珪素焼結体を「本発明の焼結体」とも称する。本発明の焼結体に含まれる等軸の結晶組織の割合は、85%以上が好ましく、95%以上がより好ましい。等軸の結晶組織の割合は、電子顕微鏡の画像解析によるアスペクト比測定により求められる。
本発明の結晶体の機械的性能や加工性は、原料とするβ−Si3N4の結晶部分に占めるβ型結晶の割合や、焼結条件により異なる。焼結体の製造方法に関しては後述する。
On the other hand, when β-Si 3 N 4 powder is sintered in the presence of a sintering aid, the phase transition from α-type to β-type of Si 3 N 4 does not occur. Generation is suppressed. For this reason, the crystal structure is equiaxed or platelet-shaped. Such a sintered body is excellent in workability because it has lower strength and toughness than a sintered body including a cross-structure of acicular crystals. Hereinafter, a sialon or silicon nitride sintered body obtained by sintering β-Si 3 N 4 powder in the presence of a sintering aid is also referred to as “sintered body of the present invention”. The proportion of the equiaxed crystal structure contained in the sintered body of the present invention is preferably 85% or more, and more preferably 95% or more. The proportion of the equiaxed crystal structure is determined by aspect ratio measurement by image analysis of an electron microscope.
The mechanical performance and workability of the crystal of the present invention vary depending on the proportion of β-type crystals in the crystal portion of β-Si 3 N 4 used as a raw material and the sintering conditions. A method for manufacturing the sintered body will be described later.
焼結体の強度と靭性が低いと加工性に優れるが、一方で、強度と靭性が低いと部品としたときの信頼性が低下する。本発明の焼結体は、曲げ強度が400MPa未満、靭性が4MPa・m1/2未満であると、研削や研磨をしやすくなるが、加工時のチッピングやカケが発生しやすく、かつ部品としたときの信頼性も低下しやすい。また、本発明の焼結体は、曲げ強度が600MPaを超えるか、靭性が5.5MPa・m1/2を超えると、研削や研磨がしにくくなる。加工性と部品としたときの信頼性から、本発明の焼結体の曲げ強度は、400〜600MPa、破壊靭性は4〜5.5MPa・m1/2であることが好ましい。曲げ強度は、JISR1601に準拠して求められる。破壊靭性は、JISR1607のSEPB法(Single Edge Precracked Beam法)により求められる。 When the strength and toughness of the sintered body are low, the workability is excellent. On the other hand, when the strength and toughness are low, the reliability of the parts is reduced. When the sintered body of the present invention has a bending strength of less than 400 MPa and a toughness of less than 4 MPa · m 1/2, it is easy to grind and polish, but chipping and chipping easily occur during processing, and Reliability is also likely to decline. Moreover, when the bending strength exceeds 600 MPa or the toughness exceeds 5.5 MPa · m 1/2 , the sintered body of the present invention is difficult to grind and polish. The bending strength of the sintered body of the present invention is preferably 400 to 600 MPa, and the fracture toughness is preferably 4 to 5.5 MPa · m 1/2 in view of workability and reliability when used as a part. The bending strength is determined according to JIS R1601. Fracture toughness is determined by the SEPB method (Single Edge Precracked Beam method) of JIS R1607.
本発明の焼結体のヤング率は、260GPa以上が好ましく、275GPa以上320GPa以下がより好ましい。ヤング率がこの範囲にある焼結体は、剛性が高いため外力による寸法変化を生じにくい部品を与える。ヤング率は、JISR1602に準拠して求められる。
また、本発明の焼結体の室温における熱膨張係数は1.5×10−6/K以下が好ましく、1.0×10−6/K以上1.5×10−6/K以下がより好ましい。室温における熱膨張係数がこの範囲にある本発明の焼結体は、温度変化による寸法変化、位置変化、変形、経時変化が抑制された部品を与える。熱膨張係数は、JIS R3251に準拠して求められる。
さらに本発明の焼結体の比重は、3.27以下が好ましく、3.0以上3.27以下がより好ましい。比重がこの範囲にある本発明の焼結体は、駆動時に発生する慣性力を低減できるため、制御負荷小さく機械的なレスポンスを高めた装置を与える。さらに、このような部品は、モーターのサーボ帯域を向上させるため制御性に優れた装置を与える。比重が前記範囲にある焼結体を部品として用いると高速性と高精度な加工性を両立した装置が得られる。比重は、JISR1634に準拠して求められる。
The Young's modulus of the sintered body of the present invention is preferably 260 GPa or more, and more preferably 275 GPa or more and 320 GPa or less. A sintered body having a Young's modulus in this range gives a component that is less likely to undergo dimensional changes due to external force because of its high rigidity. The Young's modulus is determined according to JIS R1602.
Further, the thermal expansion coefficient of the sintered body of the present invention at room temperature is preferably 1.5 × 10 −6 / K or less, more preferably 1.0 × 10 −6 / K or more and 1.5 × 10 −6 / K or less. preferable. The sintered body of the present invention having a thermal expansion coefficient at room temperature in this range gives a component in which dimensional change, position change, deformation, and change with time are suppressed. A thermal expansion coefficient is calculated | required based on JISR3251.
Furthermore, the specific gravity of the sintered body of the present invention is preferably 3.27 or less, more preferably 3.0 or more and 3.27 or less. Since the sintered body of the present invention having a specific gravity within this range can reduce the inertial force generated during driving, it provides a device with a small control load and an improved mechanical response. Furthermore, such a component provides a device with excellent controllability to improve the servo bandwidth of the motor. When a sintered body having a specific gravity within the above range is used as a part, an apparatus that achieves both high speed and high precision workability can be obtained. Specific gravity is calculated | required based on JISR1634.
2.本発明の流体静圧案内軸受部品または工具支持部品
本発明の流体静圧案内装置部品または工具支持部品(以下これらを合わせて「本発明の部品」ともいう)は、前述の本発明の焼結体を含む。本発明の部品が、本発明の焼結体を含むとは、部品の全部または一部が本発明の焼結体で構成されることを意味する。
2. The hydrostatic pressure guide bearing component or tool support component of the present invention The hydrostatic pressure guide device component or tool support component of the present invention (hereinafter also referred to as "the component of the present invention") is the sintered component of the present invention described above. Including the body. That the part of the present invention includes the sintered body of the present invention means that all or part of the part is composed of the sintered body of the present invention.
(1)流体静圧案内装置部品
流体静圧案内装置部品とは、流体静圧案内装置の部品である。流体静圧案内装置とは、前述のとおり、移動体(回転軸またはスライド)と固定体(軸受またはガイド)の間に高圧の潤滑流体を強制的に供給して潤滑流体膜を形成し、この膜によって負荷を発生させて軸を支持する軸受である。流体静圧案内装置部品の好ましい例には、油静圧軸受、水静圧軸受または空気静圧軸受を利用した直線案内装置の部品が含まれる。油静圧軸受、水静圧軸受または空気静圧軸受を利用した直線案内装置とは、ガイド(固定体)と、このガイドに沿って直線案内方向に移動できるスライダ(移動体)からなる装置であって、ガイドとスライダとの間に、油・水または空気を軸受用流体として供給してなる装置である。スライダは、工具等を保持するためのテーブルを有していてもよい。本発明の焼結体は、これらのガイド、スライダ、テーブルの部品に好適である。
図1は直線案内の断面模式図を示しており、図1aの(A)、図1bの(C)、(D)、(E)はガイドをスライダで抱え込むタイプ、図1aの(B)はスライダをガイドで抱え込むタイプを示す。図1a、b中、1はスライダ、3はガイド、5は軸受(「ベアリング」ともいうことがある)、7は基台、10はテーブル、12は工具、14は工具台、16はリニアモーターである。
(1) Fluid static pressure guide device component The fluid static pressure guide device component is a component of the fluid static pressure guide device. As described above, the hydrostatic pressure guide device forms a lubricating fluid film by forcibly supplying a high-pressure lubricating fluid between a moving body (rotating shaft or slide) and a stationary body (bearing or guide). It is a bearing that supports a shaft by generating a load with a film. Preferred examples of the hydrostatic pressure guide device component include a linear guide device component using an oil hydrostatic bearing, a hydrostatic bearing, or an air hydrostatic bearing. A linear guide device using an oil hydrostatic bearing, a hydrostatic bearing or an air hydrostatic bearing is a device comprising a guide (fixed body) and a slider (moving body) that can move in the linear guide direction along the guide. In this apparatus, oil / water or air is supplied as a bearing fluid between the guide and the slider. The slider may have a table for holding a tool or the like. The sintered body of the present invention is suitable for these guide, slider, and table parts.
FIG. 1 is a schematic cross-sectional view of a linear guide. (A) in FIG. 1A, (C), (D), and (E) in FIG. 1b are types in which the guide is held by a slider, and (B) in FIG. Indicates the type in which the slider is held by a guide. In FIGS. 1a and 1b, 1 is a slider, 3 is a guide, 5 is a bearing (sometimes referred to as “bearing”), 7 is a base, 10 is a table, 12 is a tool, 14 is a tool base, and 16 is a linear motor. It is.
本発明の焼結体は、油静圧案内、水静圧案内または空気静圧案内でリニアモーター駆動される装置の部品として特に有用である(図1a(A)参照)。リニアモーター駆動の装置においては、移動体(スライダ1、テーブル10等)が軽量化されると、リニアモーター16のパワーを小さくできるため、リニアモーター16の発熱を大きく削減できるからである。リニアモーター16の発熱が削減されると、装置を構成する各部品の温度による寸法変化も小さくなるので、加工機の経時的なドリフトを大幅に低減できる。
また、一般に、静圧案内装置は摩擦係数が非常に小さいため、スライダ1が反転する際のロストモーションやスライダ1の姿勢変化が大きな問題となる。しかし、スライダ1等を軽量化すると、これらのロストモーションや姿勢の変化を大幅に削減でき、加工製品表面に発生する模様を大幅に削減できる。すなわち、本発明の焼結体は比重が鋳鉄の40%と小さいため、移動体部品の材質のみを鋳鉄から本発明の焼結体にそのまま置き換えるだけでも、移動体部品重量を現行の重量の40%にでき、前述のとおりの利点が得られる。さらに、本発明の焼結体は、剛性が鋳鉄の2倍以上と高いため、部品を薄肉化できる。そのため部品をさらに軽量化でき、部品の重量を鋳鉄部品の1/10とすることもできる。
The sintered body of the present invention is particularly useful as a part of a device that is driven by a linear motor by an oil static pressure guide, a water static pressure guide, or an air static pressure guide (see FIG. 1A (A)). This is because in the linear motor drive device, if the moving body (
In general, since the static pressure guide device has a very small coefficient of friction, lost motion when the
さらに、油静圧軸受等を利用した直線案内装置においては、ガイド3の形状に沿ってスライダ1が動くため、スライダ1の運動精度はガイド3の形状によって決定される。よって、ガイド3の形状が変化すると、工具の移動精度も低下しやすい。このためガイド3の形状の変化を低減させる必要がある。しかしながら一般に、ガイド3の近傍にはリニアモーター16が設置されている。よって、リニアモーター16の発熱によりガイド3の温度が変化すると、熱膨張によりガイド3の形状は変化してしまう。その点、このガイド3に熱膨張係数が鋳鉄の1/10である本発明の焼結体を適用すると、前記の問題が起こりにくく高精度な加工が可能となる。
Furthermore, in a linear guide device using a hydrostatic bearing or the like, the
流体静圧案内装置部品のもう一つの好ましい例には、油静圧軸受、水静圧軸受または空気静圧軸受を利用した回転軸装置の部品が含まれる。油静圧軸受、水静圧軸受または空気静圧軸受を利用した回転軸装置とは、回転軸とこの軸を回転可能に位置決めし、かつ保持する軸受からなる装置であって、軸と軸受の間に油、水または空気を供給してなる装置である。この回転軸装置は、回転体のラジアル方向を受ける軸受ハウジング、回転体の軸方向に働く力を受け止めるための軸受スラスト板、または、工具等を保持するための工具テーブルを有していてもよい。図2は、油静圧軸受、水静圧軸受または空気静圧軸受を利用した回転軸装置の例の断面模式図である。図2中、20は回転軸、22は軸受ハウジング、23は軸受スラスト板であり、その他の符号は図1と同様に定義される。本発明の焼結体は、これらの部品に好適である。これらの部品を含む回転軸装置は、直線案内装置と同様のメリットがある。直線案内装置のスライダ(図1a、bにおける1)は、回転軸装置の軸(図2の20)と軸受スラスト板(図2の23)に、直線案内装置のガイド(図1図1a、bにおける3)は、回転軸装置の軸受ハウジング(図2の22)に相当する。 Another preferred example of the hydrostatic pressure guide device component includes a rotary shaft device component using an oil hydrostatic bearing, a hydrostatic bearing or an air hydrostatic bearing. A rotary shaft device using an oil hydrostatic bearing, a water hydrostatic bearing or an air hydrostatic bearing is a device comprising a rotary shaft and a bearing that rotatably positions and holds the shaft. It is a device that supplies oil, water or air between them. This rotary shaft device may have a bearing housing that receives the radial direction of the rotating body, a bearing thrust plate that receives the force acting in the axial direction of the rotating body, or a tool table that holds a tool or the like. . FIG. 2 is a schematic cross-sectional view of an example of a rotary shaft device using an oil hydrostatic bearing, a water hydrostatic bearing, or an air hydrostatic bearing. In FIG. 2, 20 is a rotating shaft, 22 is a bearing housing, 23 is a bearing thrust plate, and other symbols are defined as in FIG. The sintered body of the present invention is suitable for these parts. The rotating shaft device including these components has the same merit as the linear guide device. The linear guide device slider (1 in FIGS. 1a and 1b) is connected to the shaft of the rotary shaft device (20 in FIG. 2) and the bearing thrust plate (23 in FIG. 2). 3) corresponds to the bearing housing (22 in FIG. 2) of the rotary shaft device.
(2)工具支持部品
本発明の工具支持部品は、前述の本発明の焼結体を含む。工具支持部品とは、工具を保持する工具台、または工具台を保持する工具テーブルをいう。工具とは、物体を加工するための道具であるが、本発明においては物体を切削または研削するためのバイトや砥石である。工具テーブルは、位置を微調整できる装置を備えていてもよい。このような工具テーブルは微調テーブルとも呼ばれる。
工具台や工具テーブルは、加工時の研削液や研削ミストを直接に浴びることがあるため、温度変化による形状の変化がおこりやすい。このため、これらの部品に熱膨張係数が鋳鉄の1/10、アルミニウムの1/18である本発明の焼結体を適用すると、温度変化による形状の変化を低減できるので、高精度の加工が可能となる。工具台や工具テーブルは、流体静圧案内装置部品のスライダ(図1a、bにおける1)等に備えられていてもよい。
(2) Tool support component The tool support component of this invention contains the sintered compact of the above-mentioned this invention. The tool support component refers to a tool table that holds a tool or a tool table that holds a tool table. The tool is a tool for processing an object. In the present invention, the tool is a cutting tool or a grindstone for cutting or grinding an object. The tool table may include a device that can finely adjust the position. Such a tool table is also called a fine adjustment table.
Since the tool table and the tool table may be directly exposed to grinding fluid or grinding mist during processing, the shape is likely to change due to temperature changes. For this reason, if the sintered body of the present invention having a thermal expansion coefficient of 1/10 of cast iron and 1/18 of aluminum is applied to these parts, the shape change due to temperature change can be reduced, so that high-precision processing is possible. It becomes possible. The tool table and the tool table may be provided on a slider (1 in FIGS. 1a and 1b) of the hydrostatic pressure guide device component.
(3)超精密加工機
本発明の部品は、超精密加工機の部品として好適である。超精密加工機とは、光学材料やそれらを成型するための金型、および半導体材料をナノメートルオーダーで加工するための機械をいう。超精密加工機の例には、3軸以上の加工自由度を有する精密多軸加工機が含まれる。
(3) Ultra-precision machine The parts of the present invention are suitable as parts of an ultra-precision machine. The ultra-precision processing machine refers to a machine for processing optical materials, molds for molding them, and semiconductor materials on the nanometer order. Examples of the ultra-precision machine include a precision multi-axis machine having a machining degree of 3 axes or more.
3.本発明の部品の製造方法
本発明の部品は、(1)β−窒化珪素粉末に焼結助剤を添加して焼結してなるサイアロン焼結体または窒化珪素焼結を準備する工程、および(2)前記焼結体を研削または研磨する工程を経て製造されることが好ましい。
3. Manufacturing method of component of the present invention The component of the present invention includes (1) a step of preparing a sialon sintered body or silicon nitride sintered by adding a sintering aid to β-silicon nitride powder and sintering, and (2) It is preferable to manufacture through a step of grinding or polishing the sintered body.
(1)の工程
本工程では、β−窒化珪素粉末に焼結助剤を添加して焼結して得たサイアロン焼結体または窒化珪素焼結体を準備する。準備するとはβ−窒化珪素粉末に焼結助剤を添加して焼結して焼結体を製造することを含む。以下、本発明の焼結体の製造方法について説明する。
原料であるβ型窒化珪素粉末(β−Si3N4粉末)は、市販品を購入して準備してよい。β−Si3N4粉末は、結晶部分におけるβ型結晶の割合が、80%以上が好ましく、90%以上がより好ましい。このような粉末を原料とすると、加工性に優れ、かつ部品としたときの機械的特性のバランスに優れた焼結体が得られるからである。β−Si3N4粉末の結晶部分におけるβ型結晶の割合は、粉末X線回折法により求められる。また、β−Si3N4粉末の平均粒径は特に限定されないが、0.1〜3μmであることが好ましい。平均粒径は、レーザー回折散乱法により求められる。
Step (1) In this step, a sialon sintered body or a silicon nitride sintered body obtained by adding a sintering aid to β-silicon nitride powder and sintering it is prepared. Preparing includes adding a sintering aid to β-silicon nitride powder and sintering to produce a sintered body. Hereinafter, the manufacturing method of the sintered compact of this invention is demonstrated.
The raw material β-type silicon nitride powder (β-Si 3 N 4 powder) may be prepared by purchasing a commercial product. In the β-Si 3 N 4 powder, the proportion of β-type crystals in the crystal portion is preferably 80% or more, and more preferably 90% or more. When such a powder is used as a raw material, a sintered body having excellent workability and excellent balance of mechanical properties when used as a part can be obtained. The proportion of β-type crystals in the crystal portion of β-Si 3 N 4 powder can be determined by a powder X-ray diffraction method. The average particle size of the β-Si 3 N 4 powder is not particularly limited, but preferably 0.1 to 3 m. The average particle diameter is determined by a laser diffraction scattering method.
本発明の製造方法は、焼結助剤を用いる。焼結助剤とは、焼結の促進や安定化のために添加される物質である。焼結助剤としては公知のものを用いてよいが、その例には、酸化イットリウム、アルミナ、窒化アルミニウム及び窒化アルミニウムのポリタイプが含まれる。また焼結助剤の添加量は、通常は、原料粉末と焼結助剤の合計中5〜15重量%程度であるが、本発明においては、原料粉末と焼結助剤の合計中、7〜12重量%が好ましい。焼結助剤の量が前記範囲にあると、本発明の焼結体が得られやすいからである。 The production method of the present invention uses a sintering aid. The sintering aid is a substance added for the purpose of promoting and stabilizing the sintering. Known sintering aids may be used, examples of which include yttrium oxide, alumina, aluminum nitride and aluminum nitride polytypes. The amount of the sintering aid added is usually about 5 to 15% by weight in the total of the raw material powder and the sintering aid, but in the present invention, 7% in the total of the raw material powder and the sintering aid. ˜12% by weight is preferred. This is because when the amount of the sintering aid is within the above range, the sintered body of the present invention is easily obtained.
β−Si3N4粉末と焼結助剤は予め混合されて焼結されることが好ましい。焼結は、窒素中1700〜1800℃で実施されることが好ましい。 It is preferable that the β-Si 3 N 4 powder and the sintering aid are mixed in advance and sintered. Sintering is preferably carried out at 1700-1800 ° C. in nitrogen.
(2)の工程
本工程では、前記工程で得た本発明の焼結体を研削または研磨する。本発明の焼結体は、平面研削された後に研磨加工されることが好ましい。このように平面の高精度仕上げがなされた部品は、スライダ部品やテーブル部品に好適である。平面研削加工は、平面研削盤を用いて公知の方法で行えばよい。
本発明の焼結体は、前述のとおり、α原料型焼結体に比べて極めて優れた加工性を有する。研削における加工性は、研削時の研削面の法線方向の研削抵抗を公知の動力計で測定して評価できる。本発明の焼結体の研削抵抗は、同じ条件でα原料型焼結体を研削したときの研削抵抗の80%以下であることが好ましい。研削抵抗は、平面研削、円筒研削または自由曲面研削において測定してよい。この際の加工性の比較に用いられるα原料型焼結体と本発明の焼結体は、焼結原料の結晶構造が異なる以外は、同条件で焼結されたものを用いる。例えば、原料粉末の粒径、焼結助剤の種類と量、焼結温度、焼結雰囲気は同じとされる。
Step (2) In this step, the sintered body of the present invention obtained in the above step is ground or polished. The sintered body of the present invention is preferably polished after surface grinding. Thus, the parts having a high-precision surface finish are suitable for slider parts and table parts. The surface grinding process may be performed by a known method using a surface grinding machine.
As described above, the sintered body of the present invention has extremely excellent workability compared to the α raw material type sintered body. The workability in grinding can be evaluated by measuring the grinding resistance in the normal direction of the ground surface during grinding with a known dynamometer. The grinding resistance of the sintered body of the present invention is preferably 80% or less of the grinding resistance when the α raw material type sintered body is ground under the same conditions. The grinding resistance may be measured in surface grinding, cylindrical grinding or free-form surface grinding. The α raw material type sintered body used for comparison of workability at this time and the sintered body of the present invention are those sintered under the same conditions except that the crystal structure of the sintered raw material is different. For example, the particle size of the raw material powder, the type and amount of the sintering aid, the sintering temperature, and the sintering atmosphere are the same.
また、平面加工がなされた本発明の焼結体は、続いてラップ盤を用いた研磨により、平面度、平行度または直角度の仕上げがなされることが好ましい。一般に、セラミックスの研磨には、鋳鉄や銅製のラップ盤と、ダイヤモンドの遊離砥粒が用いられる。このときに用いられるダイヤモンド砥粒は、粒径が10μm以下であり、かなり微小である。このため、α原料型焼結体をラップ盤を用いて研磨する場合、研磨における時間当たりの体積減少(「体積除去スピード」ともいう)は速くない。砥粒の粒径を大きくすると焼結体の体積除去スピードは向上するが、表面粗さが粗くなる。表面が粗い部品は、流体静圧案内装置等のガイドや軸受面等には適さない。しかしながら、本発明の焼結体は、優れた加工性を有するので、前述の微粒砥粒により研磨を行っても、α原料型焼結体に比べ体積除去スピードが速い。本発明の焼結体のラップ盤を用いた研磨における体積除去スピードは、同条件でα原料型焼結体を研磨したときの体積除去スピードの1.5倍以上であることが好ましい。体積除去スピードは、より詳しくは、予めある程度の平面度(1μm程度)および表面粗さ(Ra=0.4μm程度)に調整された平面を研磨して求められる。平面度はレーザー干渉計により、表面粗さはJIS B 0651に基づき表面粗さ計にて測定される。この加工性の比較に用いられるα原料型焼結体と本発明の焼結体は、前述のとおり、焼結原料の結晶構造が異なる以外は、同条件で焼結されたものを用いる。 Moreover, it is preferable that the sintered body of the present invention that has undergone planar processing is finished with flatness, parallelism, or squareness by subsequent polishing using a lapping machine. In general, for polishing ceramics, a lapping machine made of cast iron or copper and free abrasive grains of diamond are used. The diamond abrasive used at this time has a particle size of 10 μm or less, and is extremely fine. For this reason, when the α raw material type sintered body is polished using a lapping machine, the volume reduction per hour in polishing (also referred to as “volume removal speed”) is not fast. Increasing the grain size of the abrasive grains improves the volume removal speed of the sintered body, but increases the surface roughness. A component having a rough surface is not suitable for a guide or a bearing surface of a hydrostatic pressure guide device or the like. However, since the sintered body of the present invention has excellent workability, the volume removal speed is faster than that of the α raw material type sintered body even when the above-mentioned fine abrasive grains are used for polishing. The volume removal speed in the polishing using the lapping machine of the sintered body of the present invention is preferably 1.5 times or more the volume removal speed when the α raw material type sintered body is polished under the same conditions. More specifically, the volume removal speed is obtained by polishing a plane that has been adjusted to a certain degree of flatness (about 1 μm) and surface roughness (Ra = 0.4 μm) in advance. The flatness is measured with a laser interferometer, and the surface roughness is measured with a surface roughness meter based on JIS B 0651. As described above, the α raw material type sintered body used for comparison of the workability and the sintered body of the present invention are those sintered under the same conditions except that the crystal structure of the sintered raw material is different.
本発明の焼結体は円筒体に加工されてもよい。本発明の焼結体を円筒体に加工する場合は、円筒研削盤を用いた研削が施されることが好ましい。円筒面は、平面のように遊離砥粒による仕上げ研磨加工を行うことができないので、研削のみで高精度に仕上げ加工される必要がある。特に、本発明の焼結体を超精密加工機の回転軸または軸受ハウジングに加工する場合は、真円度0.1μm以下の超高精度の研削が必要となる。一般に、このような超高精度が必要な加工では、本発明の焼結体を加工する砥石の軸のニゲや砥石のボンド層の弾性変形の影響が、精度低下に大きな影響を与える。このとき、被加工物の研削抵抗が大きいと、砥石の軸のニゲや砥石のボンド層の弾性変形がより大きくなり、加工精度がより低下するおそれがある。α原料型焼結体は、その研削抵抗が金属材料に比べて非常に高く、また他のセラミックス材料と比較してもかなり高いため、高精度に円筒体へ加工することが極めて難しい。その点、本発明の焼結体は、研削抵抗をα原料型焼結体よりも低減できるので、高い精度で円筒体へ加工できる。本発明の焼結体は、このような研削における研削抵抗が、同じ条件でα原料型焼結体を研削したときの研削抵抗に比べて、80%以下であることが好ましい。 The sintered body of the present invention may be processed into a cylindrical body. When the sintered body of the present invention is processed into a cylindrical body, it is preferable to perform grinding using a cylindrical grinder. Since the cylindrical surface cannot be finished and polished with loose abrasive grains unlike a flat surface, it needs to be finished with high precision only by grinding. In particular, when the sintered body of the present invention is processed into a rotating shaft or a bearing housing of an ultra-precision processing machine, ultra-high precision grinding with a roundness of 0.1 μm or less is required. In general, in such processing that requires ultra-high precision, the influence of elastic deformation of the grindstone shaft for machining the sintered body of the present invention and the grindstone bond layer has a significant effect on accuracy degradation. At this time, when the grinding resistance of the workpiece is large, the elastic deformation of the grindstone shaft dented or the grindstone bond layer becomes larger, and the processing accuracy may be further lowered. Since the α raw material type sintered body has a very high grinding resistance compared to a metal material and considerably higher than other ceramic materials, it is extremely difficult to process it into a cylindrical body with high accuracy. In this respect, the sintered body of the present invention can reduce the grinding resistance as compared with the α raw material type sintered body, and can be processed into a cylindrical body with high accuracy. In the sintered body of the present invention, the grinding resistance in such grinding is preferably 80% or less compared to the grinding resistance when the α raw material type sintered body is ground under the same conditions.
[実施例A]
β−Si3N4粉末を出発原料として、焼結助剤に酸化イットリウム、酸化アルミニウム、窒化アルミニウムポリタイプを用い、1700〜1800℃の常圧焼結の条件でZ=0.5のβ−サイアロン焼結体を作製した。
[比較例B]
β−Si3N4粉末の代わりにα−Si3N4粉末を用いる以外は実施例Aと同様にしてZ=0.5のβ−サイアロン焼結体を作製した。
[比較例C]
α−Si3N4粉末を出発原料とし、酸化イットリウム5wt%とアルミナ5wt%を焼結助剤として、1700〜1800℃の常圧焼結の条件でβ−Si3N4焼結体を作製した。
[Example A]
Using β-Si 3 N 4 powder as a starting material, using yttrium oxide, aluminum oxide, and aluminum nitride polytype as a sintering aid, β = β = Z = 0.5 under normal pressure sintering conditions of 1700 to 1800 ° C. A sialon sintered body was produced.
[Comparative Example B]
A β-sialon sintered body with Z = 0.5 was produced in the same manner as in Example A except that α-Si 3 N 4 powder was used instead of β-Si 3 N 4 powder.
[Comparative Example C]
Using β-Si 3 N 4 powder as a starting material, 5 wt% of yttrium oxide and 5 wt% of alumina as sintering aids, a β-Si 3 N 4 sintered body is produced under conditions of normal pressure sintering at 1700 to 1800 ° C. did.
これらの焼結体の機械的特性等を、既に述べた規格に準拠して評価し、表1に示した。
実施例Aで得た焼結体の曲げ強度は490MPa、破壊靭性値は4.5MPa・m1/2であった。一方、比較例Bで得た焼結体の曲げ強度は700MPa、破壊靭性値は6.2MPa・m1/2、比較例Cで得た焼結体の曲げ強度は880MPa、破壊靭性値6.8MPa・m1/2と高い曲げ強度と破壊靭性値を示した。
The mechanical properties and the like of these sintered bodies were evaluated according to the standards already described and are shown in Table 1.
The sintered body obtained in Example A had a bending strength of 490 MPa and a fracture toughness value of 4.5 MPa · m 1/2 . On the other hand, the bending strength of the sintered body obtained in Comparative Example B is 700 MPa, the fracture toughness value is 6.2 MPa · m 1/2 , the bending strength of the sintered body obtained in Comparative Example C is 880 MPa, and the fracture toughness value is 6. A high bending strength and fracture toughness value of 8 MPa · m 1/2 were exhibited.
このようにして得た焼結体を以下に示す条件で加工し、加工性を評価した。
<研磨試験>
各例で得た焼結体を、平面度=1μm、表面粗さRa=0.4μmに平面研削して試験片を得た。その後、この試験片を研磨した。研磨は、鋳鉄製のラップ盤と、砥粒として平均粒径6μmのダイヤモンドスラリーを用いて行った。研磨時の面圧は6N/cm2となるように重石を用いて調整した。
結果を図3に示した。図3は、研磨時間と除去体積の相関を表し、傾きが体積除去スピード、すなわち加工性(「加工能率」ともいう)を表す。図3から計算される体積除去スピードは、加工能率の最も悪い比較例Cの焼結体を1とすると、比較例Bの焼結体は1.28、実施例Aの焼結体は2.42である。つまり、β−Si3N4粉末を焼結助剤の存在下で焼結して得た本発明のサイアロン焼結体の体積除去スピードは、α原料型窒化珪素である比較例Cの焼結体の2.4倍、α原料型のサイアロンである比較例Bの焼結体の1.9倍であることが明らかとなった。
The sintered body thus obtained was processed under the following conditions to evaluate workability.
<Polishing test>
The sintered body obtained in each example was surface ground to flatness = 1 μm and surface roughness Ra = 0.4 μm to obtain a test piece. Thereafter, this test piece was polished. Polishing was performed using a lapping machine made of cast iron and diamond slurry having an average particle diameter of 6 μm as abrasive grains. The surface pressure at the time of polishing was adjusted using a heavy stone so as to be 6 N / cm 2 .
The results are shown in FIG. FIG. 3 shows the correlation between the polishing time and the removal volume, and the slope represents the volume removal speed, that is, the workability (also referred to as “working efficiency”). The volume removal speed calculated from FIG. 3 is 1.28 for the sintered body of Comparative Example C having the worst processing efficiency, and 1.2 for the sintered body of Comparative Example B, and 2. 42. In other words, the volume removal speed of the sialon sintered body of the present invention obtained by sintering β-Si 3 N 4 powder in the presence of a sintering aid is the same as that of Comparative Example C, which is α-source silicon nitride. It was found to be 2.4 times that of the sintered body and 1.9 times that of the sintered body of Comparative Example B, which is an α material type sialon.
<研削試験>
各例で得た焼結体を平面研削して、幅100mm×長さ100mm×厚み18mmの直方体型の試験片を得た。この試験片の側面は、平面度=2μm、表面粗さRa=0.8μmであった。次に、この側面(18×100mm)をφ10のダイヤモンド砥石♯140を用いて研削し、その加工性を評価した。このときの研削条件は、砥石回転数8000rpm、回転方向ダウンカット、切込み0.04mm/回、研削送り速度500mm/minとした。研削抵抗はキスラー動力計にて測定した。図4にその結果を示した。図4は、加工時の法線方向の研削抵抗と除去体積の関係を示す。図から分かるように、実施例Aの焼結体の研削抵抗は、初期段階で比較例Cの焼結体の75%程度であり、終期段階では比較例Cの焼結体の70%以下であった。
<Grinding test>
The sintered body obtained in each example was surface ground to obtain a rectangular parallelepiped test piece having a width of 100 mm, a length of 100 mm, and a thickness of 18 mm. The side surface of this test piece had a flatness = 2 μm and a surface roughness Ra = 0.8 μm. Next, this side surface (18 × 100 mm) was ground using a φ10 diamond grindstone # 140, and its workability was evaluated. The grinding conditions at this time were a grinding wheel rotation speed of 8000 rpm, a rotation direction down cut, a cutting depth of 0.04 mm / time, and a grinding feed speed of 500 mm / min. Grinding resistance was measured with a Kistler dynamometer. The results are shown in FIG. FIG. 4 shows the relationship between the grinding resistance in the normal direction and the removal volume during processing. As can be seen, the grinding resistance of the sintered body of Example A is about 75% of the sintered body of Comparative Example C in the initial stage and 70% or less of the sintered body of Comparative Example C in the final stage. there were.
<精密円筒研削加工試験>
実施例Aの焼結体と比較例Cの焼結体について、円筒研削盤を行いφ100×60mmの円柱を作製した。このとき、最終仕上げは、砥石にレジンボンド#1500のダイヤモンド砥石を用い、精密にツルーイング・ドレッシングした後、砥石周速度を2000m/minとして行った。仕上げ加工後の真円度測定結果を図5、図6に示した。真円度は、JIS B 7451に準じて測定された。実施例Aの焼結体を研削して得た円柱の真円度は0.08μmであり、非常に精密な真円度加工が可能であることが示された。一方、比較例Cの焼結体を研削して得た円柱の真円度は0.34μmであり、精密な真円度加工が困難であることが示された。
<Precision cylindrical grinding test>
The sintered body of Example A and the sintered body of Comparative Example C were subjected to a cylindrical grinder to produce a φ100 × 60 mm column. At this time, the final finishing was performed by using a resin bond # 1500 diamond grindstone as a grindstone, precisely truing and dressing, and then the grindstone peripheral speed was 2000 m / min. The roundness measurement results after finishing are shown in FIGS. The roundness was measured according to JIS B 7451. The circularity of the cylinder obtained by grinding the sintered body of Example A was 0.08 μm, indicating that extremely precise roundness processing is possible. On the other hand, the roundness of the cylinder obtained by grinding the sintered body of Comparative Example C was 0.34 μm, indicating that precise roundness processing was difficult.
これらの結果を表1にまとめる。
本発明により、加工性を大幅に改善したサイアロン焼結体または窒化珪素焼結体を含む超精密加工機に最適な部品が提供できる。 According to the present invention, it is possible to provide an optimal part for an ultra-precision processing machine including a sialon sintered body or a silicon nitride sintered body with greatly improved workability.
1 スライダ
3 ガイド
5 軸受
7 基台
10 テーブル
12 工具
14 工具台
16 リニアモーター
20 回転軸
22 軸受ハウジング
23 軸受スラスト板
DESCRIPTION OF
Claims (8)
前記焼結体の曲げ強度は、400〜600MPa、ヤング率は、260GPa以上、室温における熱膨張係数は、1.5×10 −6 /K以下、比重は、3.27以下である、流体静圧案内装置部品または工具支持部品。 β- silicon nitride powder by adding a sintering aid composed of sintered Sialon sintered body or a silicon nitride sintered body only contains,
The sintered body has a bending strength of 400 to 600 MPa, a Young's modulus of 260 GPa or more, a thermal expansion coefficient at room temperature of 1.5 × 10 −6 / K or less, and a specific gravity of 3.27 or less. Pressure guide device parts or tool support parts.
前記焼結体のラップ盤を用いた研磨における体積除去スピードは、α−窒化珪素粉末に焼結助剤を添加して焼結してなるサイアロン焼結体または窒化珪素焼結体の前記研磨における体積除去スピードの1.5倍以上である、請求項1又は2に記載の部品。 The grinding resistance of the sintered body is 80% or less of the grinding resistance in the grinding of a sialon sintered body or a silicon nitride sintered body obtained by adding a sintering aid to α-silicon nitride powder and sintering. ,And,
The volume removal speed in polishing using a lapping machine of the sintered body is the same as that in polishing of a sialon sintered body or a silicon nitride sintered body formed by adding a sintering aid to α-silicon nitride powder and sintering. The component according to claim 1 or 2, wherein the component is 1.5 times or more the volume removal speed.
油静圧軸受、水静圧軸受または空気静圧軸受を利用した回転軸装置の軸部品、軸受ハウジング部品、軸受スラスト板部品、もしくはテーブル部品である、請求項1〜5のいずれか一項に記載の部品。 The hydrostatic pressure guide device component is a guide component, a slider component, or a table component of a linear guide device using an oil hydrostatic bearing, a hydrostatic bearing or an air hydrostatic bearing, or
The shaft component, bearing housing component, bearing thrust plate component, or table component of a rotary shaft device using an oil hydrostatic bearing, a hydrostatic bearing, or an air hydrostatic bearing, according to any one of claims 1 to 5. The listed parts.
β−窒化珪素粉末に焼結助剤を添加して焼結してなるサイアロン焼結体または窒化珪素焼結体を準備する工程、および前記焼結体を研削または研磨する工程を含む、流体静圧案内装置部品、または工具支持部品の製造方法。 A hydrostatic pressure guide device component according to any one of claims 1 to 7, or a method of manufacturing a tool support component,
including a step of preparing a sialon sintered body or a silicon nitride sintered body obtained by adding a sintering aid to a β-silicon nitride powder and sintering, and a step of grinding or polishing the sintered body. A method of manufacturing a pressure guide device part or a tool support part.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008159677A JP5070142B2 (en) | 2008-06-18 | 2008-06-18 | Fluid hydrostatic guide device component, tool support component, and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008159677A JP5070142B2 (en) | 2008-06-18 | 2008-06-18 | Fluid hydrostatic guide device component, tool support component, and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010001929A JP2010001929A (en) | 2010-01-07 |
JP5070142B2 true JP5070142B2 (en) | 2012-11-07 |
Family
ID=41583815
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008159677A Active JP5070142B2 (en) | 2008-06-18 | 2008-06-18 | Fluid hydrostatic guide device component, tool support component, and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5070142B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102312921B (en) * | 2010-07-02 | 2013-05-29 | 东上国际股份有限公司 | Method for manufacturing air bearing |
US10550886B2 (en) * | 2016-07-14 | 2020-02-04 | Cascade Corporation | Nonmetallic bearing on bearing assembly |
CN108730341B (en) * | 2018-07-26 | 2023-07-18 | 中国工程物理研究院机械制造工艺研究所 | Interlocking structure and interlocking method based on pneumatic control |
CN112123199B (en) * | 2020-08-27 | 2022-07-26 | 森合(天津)科技有限公司 | Internal feedback precise closed static pressure rotary table |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56139848A (en) * | 1980-03-27 | 1981-10-31 | Makino Milling Mach Co Ltd | Spindle device for machine tool |
JP2736387B2 (en) * | 1988-07-27 | 1998-04-02 | 日本特殊陶業株式会社 | Silicon nitride-based sintered body for rolling bearing material and method for producing the same |
JPH04193763A (en) * | 1990-11-27 | 1992-07-13 | Hitachi Ltd | Non oxide sintered body having improved workability and system using the same |
JP3653533B2 (en) * | 1994-07-26 | 2005-05-25 | 独立行政法人物質・材料研究機構 | Silicon nitride composite material and method for producing the same |
JPH092878A (en) * | 1995-02-08 | 1997-01-07 | Sumitomo Electric Ind Ltd | Silicon nitride sintered compact and its production |
JPH08295568A (en) * | 1995-04-26 | 1996-11-12 | Kyocera Corp | Silicon nitride-based colored ceramics and guide member for fishing line using the same |
JP3669406B2 (en) * | 1997-12-16 | 2005-07-06 | 宇部興産株式会社 | Silicon nitride powder |
JP2002029852A (en) * | 2000-07-21 | 2002-01-29 | Ngk Spark Plug Co Ltd | Sintered silicon nitride compact, silicon nitride ball, silicon nitride bearing ball, ball bearing, motor with bearing, hard disk device and polygon scanner |
JP4588379B2 (en) * | 2004-07-21 | 2010-12-01 | 太平洋セメント株式会社 | Method for manufacturing member for semiconductor manufacturing apparatus |
JP4721768B2 (en) * | 2005-05-12 | 2011-07-13 | 京セラ株式会社 | Die casting sleeve |
JP4371158B2 (en) * | 2007-08-10 | 2009-11-25 | 株式会社フェローテックセラミックス | Black-based free-cutting ceramics and their production and use |
-
2008
- 2008-06-18 JP JP2008159677A patent/JP5070142B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2010001929A (en) | 2010-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Suzuki et al. | Development of ultrasonic vibration assisted polishing machine for micro aspheric die and mold | |
US5297365A (en) | Method of machining silicon nitride ceramics and silicon nitride ceramics products | |
JP4985451B2 (en) | Double-head grinding apparatus for workpiece and double-head grinding method for workpiece | |
JP5426319B2 (en) | Diamond cutting tool and manufacturing method thereof | |
Zhong | Ductile or partial ductile mode machining of brittle materials | |
JP4852868B2 (en) | Precision machining method | |
JP5070142B2 (en) | Fluid hydrostatic guide device component, tool support component, and manufacturing method thereof | |
JP3363587B2 (en) | Method and apparatus for processing brittle material | |
KR101908359B1 (en) | Double-headed grinding device and method for double-headed grinding of workpieces | |
JP2004223700A (en) | Processing method of transfer optical surface, processing machine, die for optical element molding and diamond tool | |
Mizutani et al. | A piezoelectric-drive table and its application to micro-grinding of ceramic materials | |
JP3819530B2 (en) | Ultra-precision truing equipment for grinding wheels | |
Bifano et al. | Fixed-abrasive grinding of brittle hard-disk substrates | |
Ahearne et al. | Ultraprecision grinding technologies in silicon semiconductor processing | |
Yin et al. | High-precision low-damage grinding of polycrystalline SiC | |
Suzuki et al. | Ultra-Precision Grinding of Micro Fresnel Shape | |
Suzuki et al. | Precision machining and measurement of micro aspheric molds | |
JP2005262431A (en) | Grinding device | |
Kim | Mirror surface grinding of ceramics using a three-axis precision CNC grinding machine | |
Moriwaki et al. | BASIC STUDY ON MACHINABIUTY OF ZIRCONIA CERAMICS IN PRECISION DIAMOND CUTTING | |
Huang et al. | Nanometric grinding of axisymmetric aspherical mould inserts for optic/photonic applications | |
Vogt et al. | Investigations on grinding tools for silicon carbide based advanced materials | |
HABU et al. | Study on grindability of fine ceramics | |
McKeown | Ultra-precision diamond machining of advanced technology components | |
JP2004114257A (en) | Spindle shaft of machine tool |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20100511 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110318 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7426 Effective date: 20110408 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20110408 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120228 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120229 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120424 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120731 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120820 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150824 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5070142 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |