JP3669406B2 - Silicon nitride powder - Google Patents

Silicon nitride powder Download PDF

Info

Publication number
JP3669406B2
JP3669406B2 JP34608797A JP34608797A JP3669406B2 JP 3669406 B2 JP3669406 B2 JP 3669406B2 JP 34608797 A JP34608797 A JP 34608797A JP 34608797 A JP34608797 A JP 34608797A JP 3669406 B2 JP3669406 B2 JP 3669406B2
Authority
JP
Japan
Prior art keywords
silicon nitride
powder
phase
weight
fraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34608797A
Other languages
Japanese (ja)
Other versions
JPH11171512A (en
Inventor
哲夫 山田
猛 山尾
哲夫 中安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP34608797A priority Critical patent/JP3669406B2/en
Publication of JPH11171512A publication Critical patent/JPH11171512A/en
Application granted granted Critical
Publication of JP3669406B2 publication Critical patent/JP3669406B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、構造用セラミックスとして使用される窒化ケイ素セラミックスの中で、特に高靭性高信頼性の窒化ケイ素セラミックスの製造用原料として好適な易焼結性の窒化ケイ素粉末に関するものである。
【0002】
【従来の技術及びその問題点】
窒化ケイ素セラミックスは、高強度、高靱性、高耐蝕性という優れた特性を有し、1000℃以下の温度で使用される構造材料や機械部品として種々の分野への用途展開が進展している。しかしながら、窒化ケイ素の焼結においては、通常Y23、Al23等の酸化物を5〜10重量%程度添加して焼結を行う為、焼結条件下で成長するSi34粒子の粒径、アスペクト比等により、得られる焼結体の破壊靭性が変化するという難点があった。このような焼結条件の変動による破壊靭性の変化を防止し、焼結条件によらず安定して高い靭性を維持し得る窒化ケイ素セラミックスを製造する為に、Y23、MgO、Al23等の焼結助剤の探索やCr2N、NbB、TaSi2、ZrSi2等の硬質粒子による分散強化の検討と併行し、焼結体製造原料として好適な特性を有する原料粉末の開発が行われている。
【0003】
従来、窒化ケイ素粉末の製法としては、(1)金属ケイ素粉末の直接窒化法、(2)シリカ粉末の還元窒化法、(3)ハロゲン化ケイ素とアンモニアとを反応させるイミド分解法等が知られている。これらの方法で製造された窒化ケイ素粉末は、製造履歴が異なるためか、金属不純物量、酸素含有量、粒径等が同じ値であっても、粉末の焼結性や得られる焼結体の特性に大きな相違がある。一般的には、上記(3)の方法で製造された窒化ケイ素粉末が、易焼結性であり、かつ優れた焼結体性能を示すと言われている。
【0004】
粉末特性と焼結性及び焼結体特性とに関する研究の進展につれ、焼結性及び焼結体特性の支配因子が解明されてきた結果、上記の製造履歴の影響は絶対的なものではなく、種々の粉末特性の交互作用であることが徐々に分かってきた。この点について以下に説明する。
窒化ケイ素の結晶形態には、α相とβ相の2種類が存在し、β相は酸素を固溶しない純粋な窒化ケイ素であるのに対して、α相は結晶格子内に酸素を固溶することが知られている。窒化ケイ素の焼結においては、昇温過程において焼結助剤と窒化ケイ素粒子表面のシリカとが反応して液相が生成し、この液相への窒化ケイ素の溶解と、β相としての再析出により緻密化が進行する。この為、焼結体製造原料としてはα相分率の高い窒化ケイ素粉末が望ましいと言われている。
【0005】
ところが従来法では、粉末X線回折法により結晶相の同定と定量を行ってきた為、アモルファスを含む相組成(β相分率、α相分率及びアモルファス分率)と焼結性及び焼結体特性との相関の解析が十分ではなかった。
特開昭63−147867号公報には、β相含有率2%未満のα−Si34粉末とβ相含有率10%以上のSi34粉末とを混合して、β相含有率を2〜30%の範囲に調整したSi34粉末を使用することにより、Si3492wt%、Al234wt%、Y236wt%という配合組成で、高密度高強度な窒化ケイ素焼結体を製造する方法が開示されている。
しかしながら、使用した原料粉末の中心粒径が0.5μmというやや粗いものであったため、低β相含有率の粉末ではα→β相転移の速度が遅く、総量10wt%の酸化物を添加しても高密度な焼結体は得られていない。
また、特開平2−175662号公報には、α相含有率98%以上、平均粒径0.3〜0.5μmのSi34粉末と焼結助剤とからなる成形体を1600〜1800℃で焼結することによる室温から高温まで高強度な窒化ケイ素質焼結体の製造方法が開示されている。
しかしながら、使用した原料粉末の粉末特性としては、平均粒径とα相含有率以外は記載がなく、これら以外の粉体特性が焼結性及び焼結体特性に及ぼす効果については、全く言及されていない。また、SiO2含有量6モル%未満では、高密度な焼結体が得られていない。
【0006】
また、Analytical Chemistry第59巻、第23号の2794〜2797ページには、29Si核のマジック角回転核磁気共鳴分光法により測定されたSi34粉末のβ相分率、α相分率及びアモルファス分率が記載されている。しかしながら、この文献には焼結体製造原料の必須要件である比表面積と化学組成(酸素含有量、炭素含有量など)については、全く言及されていない。焼結体製造原料としてのSi34粉末には比表面積、粒度分布及び化学組成(酸素含有量、炭素含有量など)に最適値があり、これらの特性が最適値を逸脱した粉末では、相組成(β相分率、α相分率及びアモルファス分率)が制御されていても十分な焼結性及び焼結体特性が発現しない。
【0007】
以上の公知文献では、原料粉末の相組成と他の粉体特性との交互作用の効果については、全く無視されていた。しかしながら、このような種々の粉体特性の交互作用の解明が、粉体特性と焼結性及び焼結体特性との相関を解明する上で、非常に重要な事項であることはいうまでもないことである。したがって、従来技術では、高靭性、高信頼性等の優れた特性を有する窒化ケイ素セラミックスを再現性良く安定的に製造することは困難であった。
本発明の目的は、上記課題を解決し、高靭性高信頼性の窒化ケイ素セラミックスを再現性良く安定して製造できる窒化ケイ素粉末を提供することにある。
【0008】
【課題を解決するための手段】
本発明者等は、窒化ケイ素の粉体特性と焼結性及び焼結体特性との関係について種々検討した結果、焼結性及び焼結体特性を支配する因子としては、相組成(β相分率、α相分率及びアモルファス分率)、比表面積、酸素含有量、表面酸素含有量、炭素含有量、粒度分布、凝集度及び結晶子径があり、特に、29Si核のマジック角回転核磁気共鳴分光法により測定された相組成、比表面積、酸素含有量、表面酸素含有量及び炭素含有量がそれぞれ特定範囲にある窒化ケイ素粉末が、上記の目的を達成するものであることを知見した。
【0009】
本発明は、上記の知見に基づいてなされたもので、29Si核のマジック角回転核磁気共鳴分光法により測定したアモルファス分率が6.5〜18重量%、α相分率が70〜93.5重量%、β相分率が23.5重量%以下であり、比表面積が5〜25m2/gであることを特徴とする窒化ケイ素粉末を提供するものである。
また本発明は、これらの粉末特性に加えて、更に、酸素含有量が0.8〜2.0重量%、表面酸素含有量が0.3〜0.8重量%、炭素含有量が0.12重量%以下であることを特徴とする窒化ケイ素粉末を提供するものである。
【0010】
以下、本発明の窒化ケイ素粉末について詳述する。
本発明の窒化ケイ素粉末は、29Si核のマジック角回転核磁気共鳴分光法により測定したアモルファス分率が6.5〜18重量%、好ましくは7.0〜15重量%、α相分率が70〜93.5重量%、好ましくは83〜92.5重量%、β相分率が23.5重量%以下、好ましくは10重量%以下であり、比表面積が5〜25m2/g、好ましくは7〜20m2/gであることを特徴とする窒化ケイ素粉末である。
【0011】
アモルファス窒化ケイ素はα相やβ相などの結晶質窒化ケイ素よりも高活性であり、焼結時における構成原子の物質移動を加速して、迅速な緻密化を実現する。この為、アモルファス分率が6.5重量%未満の低濃度となると、緻密化速度が低下して、焼結性が悪くなる。アモルファス成分が18重量%よりも多く存在すると、アモルファス成分は微細である為に、成形体内部に不均一を生じ、成形欠陥が焼結後も残留気孔、ミクロクラックとして残存してしまい、焼結体の強度を低下させる原因となる。窒化ケイ素粉末のアモルファス分率は種々の方法によって測定することが可能であるが、特に、29Si核のマジック角回転核磁気共鳴分光法により、再現性よく測定することができる。
【0012】
結晶質窒化ケイ素についても、α相の粒子とβ相の粒子とでは、窒化ケイ素の焼結挙動に異なった寄与を及ぼす。即ち、昇温過程で生成した焼結助剤−シリケート系液相に、α相粒子は迅速に溶解するのに対して、β相粒子の溶解速度は遅く、α相粒子の方が緻密化に有利である。この為、α分率が70重量%未満になると緻密化速度が低下して、通常の焼結条件では高密度な焼結体が得られなくなる。α分率が93.5重量%を越えると、アモルファス成分の濃度が低下するので、やはり緻密化速度が低下して、焼結性が悪くなる。
窒化ケイ素粉末中のβ相粒子は、結晶子径が0.10μm以下の微粒になると焼結時のα→β相転移を促進する核として作用し、相転移を低温で迅速に進行させる作用があるものと考えられる。これにより緻密化速度は上昇して、高密度な焼結体が得られる。β相粒子の結晶子径が0.10μm超になると、このような成長核としての機能が失われる為、β相分率が上記範囲内にあっても、本発明の効果は得られない。
【0013】
さらに、β相の割合が23.5重量%以下であると、β相粒子の析出時に異方的な粒成長が起こり、アスペクト比の高い柱状結晶が多数生成して、破壊靭性が向上する。β相の割合が23.5重量%を越えると、焼結時のα→β相転移に伴う柱状結晶の成長が抑制され、等軸結晶が増加して、アスペクト比の高い柱状結晶の割合が減少する為に、焼結体の破壊靭性が低下する。
焼結の進行自体は、原料粉末の粒径を小さくして、比表面積を上げるほど促進される。この為、比表面積が5m2/g未満の粉末は緻密化速度が遅く、焼結助剤を大量に添加しない限り高密度な焼結体は得られない。比表面積が25m2/gを越えると成形体の嵩密度が低下し、焼結時の収縮が増大するばかりでなく、焼結収縮が不均一となって、焼結体が変形したり、ミクロクラックが発生するので好ましくない。
【0014】
また、本発明の窒化ケイ素粉末は、酸素含有量が0.8〜2.0重量%、好ましくは0.9〜1.8重量%、表面酸素含有量が0.3〜0.8重量%、好ましくは0.4〜0.7重量%、炭素含有量が0.12重量%以下、好ましくは0.10重量%以下である。
酸素含有量が0.8重量%未満になると、昇温過程において生成する焼結助剤−シリケート系液相の量が不足し、また粘度も高くなるので、緻密化が阻害される。酸素含有量が2.0重量%を越えると、得られる焼結体の機械的性質が低下する。特に、破壊靭性の低下と高温強度の低下が顕著である。
窒化ケイ素の緻密化においては表面酸素が重要な役割を果たす。表面酸素含有量が0.3重量未満になると、焼結過程初期における焼結助剤−シリケート系液相の生成量が不足する為、粒界気孔が成長して、高密度な焼結体が得られない。表面酸素含有量が0.8重量%を越えると、得られる焼結体の機械的性質が低下する。特に、破壊靭性の低下が顕著である。
原料粉末中の炭素は、焼結時に添加される酸化物助剤と反応して一酸化炭素ガスを発生し、これが残留気孔の発生原因となる為に、0.12重量%以下にする必要がある。
【0015】
本発明の窒化ケイ素粉末におけるβ相分率、α相分率及びアモルファス分率は29Si核のマジック角回転核磁気共鳴分光法により測定した。窒化ケイ素の29Si核マジック角回転核磁気共鳴(MAS NMR)測定についてはAnalytical Chemistry第59巻、第23号の2794〜2797ページに記載のブロッホ・ディケイ法で実施した。測定サンプルの相組成(β相分率、α相分率及びアモルファス分率)の解析精度を高める為に、以下に記述するコンピューターによるスペクトル分離シミュレーションを併用して、解析を行った。
α-Si3429Si MAS NMRスペクトルはSi原子の占有サイトの違いから2本に分離することが知られており、一方β-Si34及びアモルファスSi34の吸収スペクトルは1本であり、特にアモルファスSi34の場合には線幅の広いピークである。そこで、これら4本のピークをカーブフィッティングシミュレーションにより分離し、各吸収ピークの積分強度からそれぞれの成分の存在割合を求めた。ただし、各吸収ピークは非線型であり、一義的に決まらない。そこで、個々の吸収ピークの形状としては、ローレンツ(Lorentz)型とガウス(Gauss)型の中間である擬Voigt関数を仮定した。この関数は次式で表される。
【0016】
【数1】

Figure 0003669406
【0017】
である。更に各吸収ピークは左右非対称であることから、左右のLorentz/Gaussの割合と、半値幅が異なっているものとした。また、基準となる完全結晶性の粉末(α-及びβ-Si34)とアモルファス粉末のスペクトルから求めたピーク形状のLorentz/Gaussの割合と半値幅を固定して、個々のスペクトル測定データのカーブフィッティングを行い、その結果に基づいて各々の粉末試料のアモルファス成分の割合を求めた。なお、カーブフィッティング計算は、修正Marquart法による非線型最小自乗法のプログラムにより行った。ちなみに、修正Marquart法は最も優れた非線型最小自乗法の解法であり、例えばリートベルト解析プログラムRietan等で採用されている。
従来のスペクトル解析手法では、β相分率、α相分率及びアモルファス分率を精度良く算出することが困難であった為、アモルファス分率が6.5〜18重量%の窒化ケイ素粉末を再現性良く製造するという試みが行われていなかった。本発明では、修正Marquart法という非線型最小自乗法により少量のアモルファス分率の定量精度を向上させることができ、アモルファス分率を制御した窒化ケイ素粉末を製造することが可能となった。
【0018】
また、酸素含有量はLECO法により測定し、表面酸素含有量は日本セラミックス協会誌第101巻、第12号(1993年出版)の1419〜1422頁に記載の化学分析法により測定した。酸素含有量と表面酸素含有量との差が内部酸素含有量となる。
さらに、粒度分布も粉末の焼結性及び焼結体特性に影響を及ぼす重要な因子である。レーザー回折法により測定した重量基準の粒度分布より求めた二次粒子のメジアン平均径D2と一次粒子の平均粒径D1との比である凝集度指標D2/D1が1.5〜5.0の範囲にあることが望ましい。凝集度指標が1.5よりも小さいと焼結性が阻害され、逆に5.0よりも大きいと焼結体の組織が不均一となり、残留ポア、マイクロクラック等が生成して、所望の高強度高信頼性を実現することができない。尚、一次粒子の平均粒径は、工業材料誌第38巻第12号第114頁に記載されているように、TEM写真より二次粒子を構成している一次粒子を二次元的に透明シートにトレースし、画像解析装置により処理して求めたものである。
【0019】
次に、本発明の窒化ケイ素粉末を製造する方法について説明する。
本発明の窒化ケイ素粉末は、金属ケイ素粉末の直接窒化法、シリカ粉末の還元窒化法、イミド分解法等、種々の方法で製造することができるが、結晶相の割合、内部酸素量、二次粒子径、一次粒子径、比表面積等の粉末特性を任意に調整できるイミド分解法が最も適している。イミド分解法では、例えば、イミドの比表面積を550〜950m2/g、軽装密度を0.035〜0.065g/cm3に調整し、1400〜1700℃の温度条件下で結晶化させることにより製造することができる。
【0020】
金属ケイ素粉末の直接窒化法では、例えば、α相分率70%以上及び比表面積10m2/g以上の窒化ケイ素粉末を比表面積10m2/g以上及び酸素含有量2.0重量%以下の金属ケイ素粉末に5〜20重量%添加混合し、混合物を、水素ガスと窒素ガスとの混合雰囲気下あるいはアンモニアガスと窒素ガスとの混合雰囲気下、昇温速度10〜50℃/hで1400〜1600℃まで昇温することにより、本発明の窒化ケイ素粉末を製造することができる。生成粉末の結晶相を制御する為には、特に、雰囲気中の水素分圧と、原料の金属ケイ素粉末の仕込量及び充填密度に注意を払う必要がある。生成粉末は、必要に応じて、粉砕及び酸処理により、粒度調整と不純物除去を行い、所望の粉末を得る。
【0021】
本発明の窒化ケイ素粉末は、従来の窒化ケイ素粉末の場合と同様な方法、例えば、酸化アルミニウム、酸化イットリウム、酸化マグネシウム等の焼結助剤と混合し、混合物を所定の形状に成形した後、焼結することにより、窒化ケイ素セラミックス(焼結体)を製造することができる。上記成形圧力は、0.5〜10ton/cm2程度とすれば良く、また上記焼結条件は、焼結温度1500〜2000℃、雰囲気圧力0.5〜100気圧、焼結時間1〜10時間程度とすれば良い。
【0022】
本発明の窒化ケイ素粉末を用いて製造された、窒化ケイ素セラミックス(焼結体)は、特に破壊靭性が高く、高強度高ワイブル係数であることから、本発明の窒化ケイ素粉末は、1300℃以下の温度で使用されるターボローター、エンジンバルブ、ディーゼルエンジン副燃焼室等の熱機関用部品や機械部品として用いられる窒化ケイ素セラミックスの製造用原料として、特に好適なものである。
【0023】
【実施例】
以下に本発明の実施例を比較例と共に挙げ、本発明を更に詳しく説明する。
実施例1〜14及び比較例1〜8
下記の製造方法(イミド分解法)及び下記〔表1〕に示す製造条件により、窒化ケイ素粉末をそれぞれ製造した。得られた窒化ケイ素粉末の粉末特性を、下記〔表2〕に示す。
〔窒化ケイ素粉末の製造方法〕
0℃に冷却された直径30cm、高さ45cmの縦型反応槽内の空気を窒素ガスで置換した後、所定量の液体アンモニア及びトルエンを仕込んだ。反応槽では、上層の液体アンモニアと下層のトルエンとに分離した。予め調製した四塩化ケイ素20〜35重量%、残部トルエンよりなる溶液を、導管を通じて、ゆっくり撹拌されている下層に供給した。トルエン溶液の供給と共に、上下層の界面近傍に白色の反応生成物が析出した。
反応終了後、反応液を濾過層に移送し、生成物を濾別して、液体アンモニアで四回バッチ洗浄し、精製シリコンジイミドを得た。
【0024】
反応の際の四塩化ケイ素と液体アンモニアとの比率(体積基準)を1/50〜2/50の範囲で変化させることにより、比表面積550〜950m2/gのシリコンジイミドを合成した。なお、前記の反応の初期段階には、液体アンモニアは大過剰に存在するが、反応の進行によりアンモニアが消費されるため、液体アンモニアも連続的に反応槽へ供給することになる。そして、定常状態において反応槽内へ供給する四塩化ケイ素と液体アンモニアとの体積比率を1/50〜2/50の範囲で変化させることにより、比表面積550〜950m2/gのシリコンジイミドを合成した。
また、生成シリコンジイミドを乾燥する際の乾燥時間と撹拌回転数を変えることにより、シリコンジイミドの軽装密度を0.035〜0.075g/cm3の範囲で変化させた。
【0025】
生成したシリコンジイミドを、下記〔表1〕に記載した酸素濃度を有する窒素ガスを流通させながら1000℃で加熱分解させて、非晶質窒化ケイ素粉末を得た。次いで、得られた非晶質窒化ケイ素粉末を振動ミルにて摩砕処理した後、電気炉にて、窒素雰囲気下、〔表1〕に記載の条件(昇温速度、最高温度及び同温度での保持時間、炉内CO濃度)で加熱、焼成して、灰白色の窒化ケイ素粉末を得た。
尚、炉内のCO濃度は、流通させる窒素ガスの純度(酸素濃度、露点)と流量により調整した。
得られた窒化ケイ素粉末の走査型電子顕微鏡による観察では、0.05〜0.5μmの等軸的な粒状粒子のみが認められた。また、窒化ケイ素粉末の塩素含有量は、いづれの場合にも50ppm以下であった。
【0026】
〔標準窒化ケイ素サンプルの調製〕
実施例1で得られた1000℃仮焼のアモルファスSi34粉末を、再度窒素雰囲気中1100℃で2時間焼成することにより、29Si MAS NMR測定用の標準アモルファスSi34サンプルを、同様に、同実施例で得られた1500℃焼成のα-Si34粉末を、再度 窒素雰囲気中1750℃で2時間焼成することにより、29Si MAS NMR測定用の標準α-Si34サンプルを調製した。さらに、実施例1で得られた1000℃仮焼のアモルファスSi34粉末に0.3重量%の酸化イットリウムを添加し、窒素雰囲気中1750℃で4時間焼成することにより、29Si MAS NMR測定用の標準β-Si34サンプルを調製した。
【0027】
【表1】
Figure 0003669406
【0028】
【表2】
Figure 0003669406
【0029】
使用試験例
実施例1〜13及び比較例1〜8で得られた窒化ケイ素粉末を原料に用いて、下記の製造方法によりそれぞれの焼結体を作製した。得られた焼結体の嵩密度はアルキメデス法で測定した。焼結体よりJIS R1601に準拠した3x4x40mm相当の抗折試験片を切り出し、JISR 1601に準拠して、外スパン30mm、内スパン10mm、クロスヘッドスピード0.5mm/minの条件で四点曲げ試験を行った。室温における曲げ強度は40本の平均値である。高温での曲げ試験は、窒素雰囲気中で試験片を1300℃に10分間保持した後、8本以上の試験片について強度測定を行い、平均値を算出した。また、抗折試験片を空気中1300℃で50時間加熱して酸化させ、酸化後の四点曲げ強度を測定した。測定は試験片10本づつについて実施した到達密度及び曲げ強度(室温強度、室温強度のワイブル係数、高温強度並びに酸化後強度)の測定結果を下記〔表3〕に示す。
【0030】
【表3】
Figure 0003669406
【0031】
【発明の効果】
本発明の窒化ケイ素粉末は、高靭性高信頼性の窒化ケイ素セラミックスを再現性良く安定して製造できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an easily sinterable silicon nitride powder particularly suitable as a raw material for producing high-toughness and highly reliable silicon nitride ceramics among silicon nitride ceramics used as structural ceramics.
[0002]
[Prior art and its problems]
Silicon nitride ceramics has excellent properties such as high strength, high toughness, and high corrosion resistance, and its application development to various fields is progressing as a structural material and a machine part used at a temperature of 1000 ° C. or less. However, since silicon nitride is usually sintered by adding about 5 to 10% by weight of an oxide such as Y 2 O 3 or Al 2 O 3 , Si 3 N grown under sintering conditions is used. There was a problem that the fracture toughness of the obtained sintered body changed depending on the particle size, aspect ratio, etc. of the four particles. In order to prevent such a change in fracture toughness due to fluctuations in sintering conditions and to produce silicon nitride ceramics that can stably maintain high toughness regardless of the sintering conditions, Y 2 O 3 , MgO, Al 2 In parallel with the search for sintering aids such as O 3 and the study of dispersion strengthening with hard particles such as Cr 2 N, NbB, TaSi 2 , ZrSi 2 , development of raw material powder with suitable characteristics as a raw material for producing sintered bodies Has been done.
[0003]
Conventionally, as a method for producing silicon nitride powder, (1) direct nitridation method of metal silicon powder, (2) reductive nitridation method of silica powder, (3) imide decomposition method in which silicon halide and ammonia are reacted are known. ing. The silicon nitride powder produced by these methods has different production histories, or even if the metal impurity amount, oxygen content, particle size, etc. are the same value, the sinterability of the powder and the obtained sintered body There are significant differences in properties. In general, it is said that the silicon nitride powder produced by the method (3) is easily sinterable and exhibits excellent sintered body performance.
[0004]
As the research on powder characteristics, sinterability and sintered body characteristics progresses, the controlling factors of sinterability and sintered body characteristics have been elucidated. As a result, the influence of the above manufacturing history is not absolute, It has gradually been found that this is an interaction of various powder properties. This will be described below.
There are two types of crystal forms of silicon nitride, α-phase and β-phase. Β-phase is pure silicon nitride that does not dissolve oxygen, whereas α-phase dissolves oxygen in the crystal lattice. It is known to do. In the sintering of silicon nitride, the sintering aid reacts with the silica on the surface of the silicon nitride particles during the temperature rising process to form a liquid phase. The silicon nitride is dissolved in the liquid phase and re-treated as a β phase. Densification proceeds by precipitation. For this reason, it is said that silicon nitride powder having a high α phase fraction is desirable as a sintered compact production raw material.
[0005]
However, in the conventional method, the identification and quantification of the crystal phase has been carried out by the powder X-ray diffraction method, so the phase composition including the amorphous phase (β phase fraction, α phase fraction and amorphous fraction), sinterability and sintering Analysis of correlation with body characteristics was not enough.
The JP 63-147867 discloses, by mixing a beta phase content less than 2% α-Si 3 N 4 powder and beta-phase content of 10% or more the Si 3 N 4 powder, beta phase content By using Si 3 N 4 powder adjusted to a range of 2-30%, Si 3 N 4 92 wt%, Al 2 O 3 4 wt%, Y 2 O 3 6 wt%, high density and high strength A method for producing a silicon nitride sintered body is disclosed.
However, since the raw material powder used had a slightly coarse center particle size of 0.5 μm, the powder of low β phase content has a slow rate of α → β phase transition, and a total amount of 10 wt% oxide was added. However, a high-density sintered body has not been obtained.
Japanese Patent Application Laid-Open No. 2-175661 discloses a molded body composed of Si 3 N 4 powder having an α phase content of 98% or more and an average particle size of 0.3 to 0.5 μm and a sintering aid, 1600 to 1800. A method for producing a high-strength silicon nitride sintered body from room temperature to high temperature by sintering at 0 ° C. is disclosed.
However, as the powder characteristics of the raw material powder used, there is no description other than the average particle diameter and the α phase content, and the effects of other powder characteristics on the sinterability and sintered body characteristics are completely mentioned. Not. Moreover, when the SiO 2 content is less than 6 mol%, a high-density sintered body is not obtained.
[0006]
In addition, Analytical Chemistry Vol. 59, No. 23, pages 2794 to 2797 includes the β phase fraction and α phase fraction of Si 3 N 4 powder measured by magic angle rotation nuclear magnetic resonance spectroscopy of 29 Si nucleus. And the amorphous fraction. However, this document does not mention any specific surface area and chemical composition (oxygen content, carbon content, etc.), which are essential requirements for the sintered compact production raw material. Si 3 N 4 powder as a sintered body manufacturing raw material has optimum values for specific surface area, particle size distribution and chemical composition (oxygen content, carbon content, etc.). Even if the phase composition (β phase fraction, α phase fraction and amorphous fraction) is controlled, sufficient sinterability and sintered body characteristics are not exhibited.
[0007]
In the above-mentioned known documents, the effect of the interaction between the phase composition of the raw material powder and other powder characteristics has been completely ignored. However, it goes without saying that the elucidation of such interaction between various powder characteristics is a very important matter in clarifying the correlation between the powder characteristics and the sinterability and sintered body characteristics. It is not. Therefore, it has been difficult for the prior art to stably produce silicon nitride ceramics having excellent characteristics such as high toughness and high reliability with good reproducibility.
An object of the present invention is to solve the above-mentioned problems and to provide a silicon nitride powder that can stably produce a tough and highly reliable silicon nitride ceramic with good reproducibility.
[0008]
[Means for Solving the Problems]
As a result of various studies on the relationship between the powder characteristics of silicon nitride, the sinterability, and the sintered body characteristics, the present inventors have determined that the factors governing the sinterability and the sintered body characteristics include the phase composition (β phase Fraction, α phase fraction and amorphous fraction), specific surface area, oxygen content, surface oxygen content, carbon content, particle size distribution, cohesion and crystallite size, especially the magic angle rotation of 29 Si nucleus Finding that silicon nitride powders with specific ranges of phase composition, specific surface area, oxygen content, surface oxygen content and carbon content measured by nuclear magnetic resonance spectroscopy achieve the above-mentioned objectives did.
[0009]
The present invention has been made on the basis of the above findings. The amorphous fraction measured by magic angle rotation nuclear magnetic resonance spectroscopy of 29 Si nuclei is 6.5 to 18% by weight, and the α phase fraction is 70 to 93. The present invention provides a silicon nitride powder characterized by having a .beta.-phase fraction of 5 wt% and a β phase fraction of 23.5 wt% or less and a specific surface area of 5 to 25 m 2 / g.
In addition to these powder characteristics, the present invention further has an oxygen content of 0.8 to 2.0% by weight, a surface oxygen content of 0.3 to 0.8% by weight, and a carbon content of 0.00. The present invention provides a silicon nitride powder characterized by being 12% by weight or less.
[0010]
Hereinafter, the silicon nitride powder of the present invention will be described in detail.
The silicon nitride powder of the present invention has an amorphous fraction measured by magic angle rotation nuclear magnetic resonance spectroscopy of 29 Si nucleus of 6.5 to 18% by weight, preferably 7.0 to 15% by weight, and an α phase fraction. 70 to 93.5% by weight, preferably 83 to 92.5% by weight, β phase fraction is 23.5% by weight or less, preferably 10% by weight or less, and specific surface area is 5 to 25 m 2 / g, preferably Is a silicon nitride powder characterized by being 7 to 20 m 2 / g.
[0011]
Amorphous silicon nitride is more active than crystalline silicon nitride such as α phase and β phase, and accelerates mass transfer of constituent atoms during sintering to achieve rapid densification. For this reason, when the amorphous fraction is a low concentration of less than 6.5% by weight, the densification rate decreases and the sinterability deteriorates. If the amorphous component is present in an amount of more than 18% by weight, since the amorphous component is fine, non-uniformity occurs inside the molded body, and molding defects remain as residual pores and microcracks after sintering. Causes the strength of the body to decrease. The amorphous fraction of silicon nitride powder can be measured by various methods, but in particular, it can be measured with good reproducibility by means of magic angle rotation nuclear magnetic resonance spectroscopy of 29 Si nuclei.
[0012]
Also for crystalline silicon nitride, α phase particles and β phase particles contribute differently to the sintering behavior of silicon nitride. In other words, the α-phase particles dissolve rapidly in the sintering aid-silicate liquid phase generated during the heating process, whereas the β-phase particles dissolve at a slower rate, and the α-phase particles become more dense. It is advantageous. For this reason, when the α fraction is less than 70% by weight, the densification rate decreases, and a high-density sintered body cannot be obtained under normal sintering conditions. If the α fraction exceeds 93.5% by weight, the concentration of the amorphous component decreases, so the densification rate also decreases and the sinterability deteriorates.
The β-phase particles in the silicon nitride powder act as nuclei that promote the α → β phase transition during sintering when the crystallite diameter becomes 0.10 μm or less, and the phase transition proceeds rapidly at low temperatures. It is thought that there is. As a result, the densification rate is increased and a high-density sintered body is obtained. When the crystallite diameter of the β phase particles exceeds 0.10 μm, such a function as a growth nucleus is lost, and therefore the effect of the present invention cannot be obtained even if the β phase fraction is within the above range.
[0013]
Furthermore, if the proportion of β phase is 23.5 wt% or less, anisotropic grain growth occurs during precipitation of β phase particles, a large number of columnar crystals having a high aspect ratio are generated, and fracture toughness is improved. If the proportion of β phase exceeds 23.5% by weight, the growth of columnar crystals accompanying the α → β phase transition during sintering is suppressed, the number of equiaxed crystals increases, and the proportion of columnar crystals with a high aspect ratio increases. Due to the decrease, the fracture toughness of the sintered body decreases.
The progress of the sintering itself is promoted as the particle size of the raw material powder is reduced and the specific surface area is increased. For this reason, a powder having a specific surface area of less than 5 m 2 / g has a low densification rate, and a high-density sintered body cannot be obtained unless a large amount of a sintering aid is added. When the specific surface area exceeds 25 m 2 / g, not only the bulk density of the molded body is reduced and the shrinkage during sintering is increased, but also the sintering shrinkage becomes uneven, the sintered body is deformed, Since cracks occur, it is not preferable.
[0014]
The silicon nitride powder of the present invention has an oxygen content of 0.8 to 2.0% by weight, preferably 0.9 to 1.8% by weight, and a surface oxygen content of 0.3 to 0.8% by weight. , Preferably 0.4 to 0.7% by weight, and the carbon content is 0.12% by weight or less, preferably 0.10% by weight or less.
When the oxygen content is less than 0.8% by weight, the amount of the sintering aid-silicate liquid phase generated in the temperature raising process is insufficient and the viscosity is increased, so that densification is inhibited. When the oxygen content exceeds 2.0% by weight, the mechanical properties of the obtained sintered body are lowered. In particular, the decrease in fracture toughness and the decrease in high temperature strength are remarkable.
Surface oxygen plays an important role in densification of silicon nitride. If the surface oxygen content is less than 0.3 wt., The amount of formation of the sintering aid-silicate liquid phase in the initial stage of the sintering process is insufficient, so that grain boundary pores grow and a high-density sintered body is formed. I can't get it. When the surface oxygen content exceeds 0.8% by weight, the mechanical properties of the obtained sintered body are lowered. In particular, the decrease in fracture toughness is significant.
The carbon in the raw material powder reacts with the oxide auxiliary agent added at the time of sintering to generate carbon monoxide gas, which causes the generation of residual pores, so it is necessary to make it 0.12% by weight or less. is there.
[0015]
The β phase fraction, α phase fraction and amorphous fraction in the silicon nitride powder of the present invention were measured by magic angle rotation nuclear magnetic resonance spectroscopy of 29Si nuclei. The 29 Si nuclear magic angle rotation nuclear magnetic resonance (MAS NMR) measurement of silicon nitride was carried out by the Bloch Decay method described in Analytical Chemistry Vol. 59, No. 23, pages 2794 to 2797. In order to improve the analysis accuracy of the phase composition (β phase fraction, α phase fraction, and amorphous fraction) of the measurement sample, analysis was performed in combination with a spectrum separation simulation by a computer described below.
The 29 Si MAS NMR spectrum of α-Si 3 N 4 is known to separate into two due to the difference in the occupied sites of Si atoms, while the absorption spectra of β-Si 3 N 4 and amorphous Si 3 N 4 are One, particularly in the case of amorphous Si 3 N 4 , is a peak with a wide line width. Therefore, these four peaks were separated by curve fitting simulation, and the existence ratio of each component was determined from the integrated intensity of each absorption peak. However, each absorption peak is non-linear and is not uniquely determined. Therefore, the shape of each absorption peak is assumed to be a pseudo-Voigt function that is intermediate between the Lorentz type and the Gauss type. This function is expressed by the following equation.
[0016]
[Expression 1]
Figure 0003669406
[0017]
It is. Furthermore, since each absorption peak is left-right asymmetric, the left-right Lorentz / Gauss ratio and the half-value width are different. In addition, each spectrum measurement data is fixed by fixing the Lorentz / Gauss ratio and half width of the peak shape obtained from the spectra of the completely crystalline powder (α- and β-Si 3 N 4 ) and the amorphous powder. Curve fitting was performed, and the ratio of the amorphous component of each powder sample was determined based on the result. The curve fitting calculation was performed by a non-linear least square method program based on the modified Marquart method. Incidentally, the modified Marquart method is the best non-linear least-squares solution, and is adopted, for example, by Rietveld analysis program Rietan.
Since it was difficult to calculate the β phase fraction, α phase fraction, and amorphous fraction with high accuracy by the conventional spectral analysis method, the silicon nitride powder with an amorphous fraction of 6.5 to 18% by weight was reproduced. No attempt has been made to manufacture with good performance. In the present invention, the quantitative accuracy of a small amount of amorphous fraction can be improved by a modified least square method called Marquart's method, and silicon nitride powder with controlled amorphous fraction can be produced.
[0018]
The oxygen content was measured by the LECO method, and the surface oxygen content was measured by the chemical analysis method described in pages 1419 to 1422 of the Journal of the Ceramic Society of Japan, Vol. 101, No. 12 (published in 1993). The difference between the oxygen content and the surface oxygen content is the internal oxygen content.
Furthermore, the particle size distribution is also an important factor affecting the sinterability of the powder and the properties of the sintered body. The aggregation index D 2 / D 1, which is the ratio of the median average diameter D 2 of the secondary particles and the average particle diameter D 1 of the primary particles obtained from the weight-based particle size distribution measured by the laser diffraction method, is 1.5 to It is desirable to be in the range of 5.0. If the cohesion index is less than 1.5, the sinterability is hindered. Conversely, if it exceeds 5.0, the structure of the sintered body becomes non-uniform and residual pores, microcracks, etc. are generated, High strength and high reliability cannot be realized. The average particle size of the primary particles is as follows. The primary particles constituting the secondary particles are two-dimensionally transparent from the TEM photograph as described in Industrial Materials Journal Vol. 38, No. 12, page 114. And obtained by processing with an image analysis apparatus.
[0019]
Next, a method for producing the silicon nitride powder of the present invention will be described.
The silicon nitride powder of the present invention can be produced by various methods such as a direct nitridation method of metal silicon powder, a reductive nitridation method of silica powder, and an imide decomposition method. An imide decomposition method that can arbitrarily adjust powder properties such as particle size, primary particle size, and specific surface area is most suitable. In the imide decomposition method, for example, by adjusting the specific surface area of imide to 550 to 950 m 2 / g, the light weight density to 0.035 to 0.065 g / cm 3 , and crystallizing under a temperature condition of 1400 to 1700 ° C. Can be manufactured.
[0020]
In the direct nitriding method of the metal silicon powder, for example, a silicon nitride powder having an α phase fraction of 70% or more and a specific surface area of 10 m 2 / g or more is a metal having a specific surface area of 10 m 2 / g or more and an oxygen content of 2.0% by weight or less. 5 to 20% by weight of silicon powder is added and mixed, and the mixture is 1400 to 1600 at a heating rate of 10 to 50 ° C./h in a mixed atmosphere of hydrogen gas and nitrogen gas or in a mixed atmosphere of ammonia gas and nitrogen gas. By raising the temperature to 0 ° C., the silicon nitride powder of the present invention can be produced. In order to control the crystal phase of the resulting powder, it is necessary to pay particular attention to the hydrogen partial pressure in the atmosphere, the amount of raw material metal silicon powder charged, and the packing density. The produced powder is subjected to particle size adjustment and impurity removal by pulverization and acid treatment as necessary to obtain a desired powder.
[0021]
The silicon nitride powder of the present invention is mixed with a sintering aid such as aluminum oxide, yttrium oxide, and magnesium oxide in the same manner as in the case of conventional silicon nitride powder, and after the mixture is formed into a predetermined shape, By sintering, silicon nitride ceramics (sintered body) can be produced. The molding pressure may be about 0.5 to 10 ton / cm 2, and the sintering conditions are a sintering temperature of 1500 to 2000 ° C., an atmospheric pressure of 0.5 to 100 atm, and a sintering time of 1 to 10 hours. It should be a degree.
[0022]
Since the silicon nitride ceramics (sintered body) produced using the silicon nitride powder of the present invention has particularly high fracture toughness and high strength and high Weibull coefficient, the silicon nitride powder of the present invention is 1300 ° C. or lower. It is particularly suitable as a raw material for producing silicon nitride ceramics used as heat engine parts and mechanical parts such as turbo rotors, engine valves, diesel engine auxiliary combustion chambers, etc., used at the above temperatures.
[0023]
【Example】
Examples of the present invention will be described below together with comparative examples to explain the present invention in more detail.
Examples 1-14 and Comparative Examples 1-8
Silicon nitride powders were respectively produced according to the following production method (imide decomposition method) and production conditions shown in [Table 1] below. The powder characteristics of the obtained silicon nitride powder are shown in [Table 2] below.
[Method for producing silicon nitride powder]
After replacing air in a vertical reaction tank having a diameter of 30 cm and a height of 45 cm cooled to 0 ° C. with nitrogen gas, predetermined amounts of liquid ammonia and toluene were charged. In the reaction tank, it was separated into upper liquid ammonia and lower toluene. A previously prepared solution consisting of 20-35% by weight silicon tetrachloride and the balance toluene was fed through a conduit to the slowly stirred lower layer. With the supply of the toluene solution, a white reaction product was deposited near the interface between the upper and lower layers.
After completion of the reaction, the reaction solution was transferred to a filtration layer, the product was filtered off, and washed with liquid ammonia four times to obtain purified silicon diimide.
[0024]
Silicon diimide having a specific surface area of 550 to 950 m 2 / g was synthesized by changing the ratio (volume basis) of silicon tetrachloride and liquid ammonia during the reaction in the range of 1/50 to 2/50. In the initial stage of the reaction, liquid ammonia is present in a large excess. However, since ammonia is consumed as the reaction proceeds, liquid ammonia is also continuously supplied to the reaction vessel. Then, silicon diimide having a specific surface area of 550 to 950 m 2 / g is synthesized by changing the volume ratio of silicon tetrachloride to be supplied into the reaction tank in a steady state to liquid ammonia in the range of 1/50 to 2/50. did.
Moreover, the light weight density of silicon diimide was changed in the range of 0.035-0.075 g / cm < 3 > by changing the drying time and stirring rotation speed at the time of drying produced | generated silicon diimide.
[0025]
The produced silicon diimide was thermally decomposed at 1000 ° C. while flowing nitrogen gas having the oxygen concentration described in the following [Table 1] to obtain amorphous silicon nitride powder. Next, the obtained amorphous silicon nitride powder was ground with a vibration mill, and then in an electric furnace under a nitrogen atmosphere under the conditions described in [Table 1] (temperature increase rate, maximum temperature and the same temperature). And holding time, CO concentration in the furnace) to obtain an off-white silicon nitride powder.
The CO concentration in the furnace was adjusted by the purity (oxygen concentration, dew point) and flow rate of the nitrogen gas to be circulated.
When the obtained silicon nitride powder was observed with a scanning electron microscope, only 0.05 to 0.5 μm equiaxed granular particles were observed. The chlorine content of the silicon nitride powder was 50 ppm or less in any case.
[0026]
[Preparation of standard silicon nitride sample]
By calcination of the amorphous Si 3 N 4 powder calcined at 1000 ° C. obtained in Example 1 for 2 hours at 1100 ° C. in a nitrogen atmosphere, a standard amorphous Si 3 N 4 sample for 29 Si MAS NMR measurement was obtained. Similarly, the α-Si 3 N 4 powder calcined at 1500 ° C. obtained in the same example was again calcined at 1750 ° C. for 2 hours in a nitrogen atmosphere, so that standard α-Si 3 N for 29 Si MAS NMR measurement was obtained. Four samples were prepared. Further, 0.3 wt% yttrium oxide was added to the 1000 ° C. calcined amorphous Si 3 N 4 powder obtained in Example 1, and the mixture was baked at 1750 ° C. for 4 hours in a nitrogen atmosphere to obtain 29 Si MAS NMR. A standard β-Si 3 N 4 sample for measurement was prepared.
[0027]
[Table 1]
Figure 0003669406
[0028]
[Table 2]
Figure 0003669406
[0029]
Usage Test Examples Using the silicon nitride powders obtained in Examples 1 to 13 and Comparative Examples 1 to 8 as raw materials, respective sintered bodies were produced by the following production methods. The bulk density of the obtained sintered body was measured by the Archimedes method. A bending test piece equivalent to 3 × 4 × 40 mm conforming to JIS R1601 is cut out from the sintered body, and a four-point bending test is performed in accordance with JISR 1601 under conditions of an outer span of 30 mm, an inner span of 10 mm, and a crosshead speed of 0.5 mm / min. went. The bending strength at room temperature is an average value of 40 pieces. In the bending test at a high temperature, after holding the test piece at 1300 ° C. for 10 minutes in a nitrogen atmosphere, the strength of eight or more test pieces was measured and the average value was calculated. Moreover, the bending test piece was heated and oxidized in air at 1300 ° C. for 50 hours, and the four-point bending strength after oxidation was measured. The measurement results of the ultimate density and bending strength (room temperature strength, room temperature strength Weibull coefficient, high temperature strength, and post-oxidation strength) performed for 10 test pieces are shown in Table 3 below.
[0030]
[Table 3]
Figure 0003669406
[0031]
【The invention's effect】
The silicon nitride powder of the present invention can stably produce a tough and highly reliable silicon nitride ceramic with good reproducibility.

Claims (2)

29Si核のマジック角回転核磁気共鳴分光法により測定したアモルファス分率が6.5〜18重量%、α相分率が70〜93.5重量%、β相分率が23.5重量%以下であり、比表面積が5〜25m2/gであることを特徴とする窒化ケイ素粉末。 The amorphous fraction measured by magic angle rotation nuclear magnetic resonance spectroscopy of 29 Si nucleus is 6.5 to 18% by weight, the α phase fraction is 70 to 93.5% by weight, and the β phase fraction is 23.5% by weight. A silicon nitride powder having a specific surface area of 5 to 25 m 2 / g. 酸素含有量が0.8〜2.0重量%、表面酸素含有量が0.3〜0.8重量%、炭素含有量が0.12重量%以下であることを特徴とする請求項1記載の窒化ケイ素粉末。An oxygen content of 0.8 to 2.0 wt%, the surface oxygen content of 0.3 to 0.8 wt%, according to claim 1, wherein the carbon content is 0.12 wt% or less Silicon nitride powder.
JP34608797A 1997-12-16 1997-12-16 Silicon nitride powder Expired - Lifetime JP3669406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34608797A JP3669406B2 (en) 1997-12-16 1997-12-16 Silicon nitride powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34608797A JP3669406B2 (en) 1997-12-16 1997-12-16 Silicon nitride powder

Publications (2)

Publication Number Publication Date
JPH11171512A JPH11171512A (en) 1999-06-29
JP3669406B2 true JP3669406B2 (en) 2005-07-06

Family

ID=18381057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34608797A Expired - Lifetime JP3669406B2 (en) 1997-12-16 1997-12-16 Silicon nitride powder

Country Status (1)

Country Link
JP (1) JP3669406B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5070142B2 (en) * 2008-06-18 2012-11-07 黒崎播磨株式会社 Fluid hydrostatic guide device component, tool support component, and manufacturing method thereof
JP5407999B2 (en) * 2010-03-31 2014-02-05 宇部興産株式会社 Method for producing crystalline silicon nitride powder
KR20150126840A (en) * 2013-03-08 2015-11-13 우베 고산 가부시키가이샤 Method for producing nitride phosphor, silicon nitride powder for nitride phosphor, and nitride phosphor
US20160159648A1 (en) * 2013-07-11 2016-06-09 Ube Industries, Ltd. Silicon nitride powder for mold release agent of casting mold for casting polycrystalline silicon ingot and method for manufacturing said silicon nitride powder, slurry containing said silicon nitride powder, casting mold for casting polycrystalline silicon ingot and method for manufacturing same, and method for manufacturing polycrystalline silicon ingot using said casting mold
EP3156366A4 (en) * 2014-06-16 2017-11-29 UBE Industries, Ltd. Silicon nitride powder, silicon nitride sintered body and circuit substrate, and production method for said silicon nitride powder

Also Published As

Publication number Publication date
JPH11171512A (en) 1999-06-29

Similar Documents

Publication Publication Date Title
US4571331A (en) Ultrafine powder of silicon carbide, a method for the preparation thereof and a sintered body therefrom
US6214309B1 (en) Sinterable carbides from oxides using high energy milling
CN1413176A (en) Process for forming 312 phase materials and process for sintering the same
US4040848A (en) Polycrystalline silicon articles containing boron by sintering
US4346068A (en) Process for preparing high-purity α-type silicon nitride
JP3669406B2 (en) Silicon nitride powder
JPH0812306A (en) Silicon nitride powder
EP0143122A2 (en) An ultrafine powder of silcon carbide, a method for the preparation thereof and a sintered body therefrom
JP3438928B2 (en) Method for producing silicon nitride powder
JP3475614B2 (en) Silicon diimide
JP3997596B2 (en) Silicon nitride powder
US5585084A (en) Silicon nitride powder
WO2020241700A1 (en) Silicon nitride powder and method for producing same, and method for producing silicon nitride sintered body
RU2799378C1 (en) Method for producing silicon carbide powder
Jiang et al. Pretreatment and sintering of Si3N4 powder synthesized by the high-temperature self-propagation method
JP3648963B2 (en) Silicon nitride powder
JPH1179848A (en) Silicon carbide sintered compact
RU2802961C1 (en) Method for producing 4h polytype silicon carbide powder
JP2726694B2 (en) Conductive silicon carbide sintered body and method for producing the same
JPH11292631A (en) Low-temperature sintering of silicon carbide powder
JPH02199065A (en) Sintered silicon carbide having high thermal conductivity and production thereof
JPH09221308A (en) Nitrogen-containing silane compound
JP2846375B2 (en) Aluminum nitride powder and method for producing the same
JP3536494B2 (en) Nitrogen-containing silane compounds
JP2732408B2 (en) Conductive silicon carbide sintered body and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050405

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080422

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100422

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110422

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120422

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120422

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120422

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120422

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130422

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130422

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term