JP5407999B2 - Method for producing crystalline silicon nitride powder - Google Patents

Method for producing crystalline silicon nitride powder Download PDF

Info

Publication number
JP5407999B2
JP5407999B2 JP2010083605A JP2010083605A JP5407999B2 JP 5407999 B2 JP5407999 B2 JP 5407999B2 JP 2010083605 A JP2010083605 A JP 2010083605A JP 2010083605 A JP2010083605 A JP 2010083605A JP 5407999 B2 JP5407999 B2 JP 5407999B2
Authority
JP
Japan
Prior art keywords
silicon nitride
nitride powder
nitrogen
silane compound
crystalline silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010083605A
Other languages
Japanese (ja)
Other versions
JP2011213546A (en
Inventor
耕司 柴田
慎輔 治田
猛 山尾
俊啓 藤田
昌宏 野尻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2010083605A priority Critical patent/JP5407999B2/en
Publication of JP2011213546A publication Critical patent/JP2011213546A/en
Application granted granted Critical
Publication of JP5407999B2 publication Critical patent/JP5407999B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Ceramic Products (AREA)

Description

本発明は、高温構造材料として有用な窒化ケイ素質焼結体の製造用原料として好適な粒状結晶のみからなる高純度な結晶質窒化ケイ素粉末の製造方法に関するものである。   The present invention relates to a method for producing a high-purity crystalline silicon nitride powder comprising only granular crystals suitable as a raw material for producing a silicon nitride sintered body useful as a high-temperature structural material.

非晶質窒化ケイ素粉末及び/又は含窒素シラン化合物を不活性ガス雰囲気下又は還元性ガス雰囲気下に焼成して、結晶質窒化ケイ素粉末を製造する方法は既に知られている。例えば、非特許文献1にはモノシラン−アンモニア系気相反応により生成した非晶質窒化ケイ素粉末を加熱処理して結晶質窒化ケイ素粉末を合成する方法が記載されている。同文献によれば、窒化ケイ素の結晶化は非常に大きな発熱を伴う反応であって、非晶質窒化ケイ素の圧粉体を加熱すると、1450℃付近から結晶化熱によって赤熱状態となり、急激な温度上昇とともに結晶化が数秒以内に完了してしまうことが報告されている。その際、圧粉体はバラバラに砕けて粉化してしまう。   A method for producing a crystalline silicon nitride powder by calcining an amorphous silicon nitride powder and / or a nitrogen-containing silane compound in an inert gas atmosphere or a reducing gas atmosphere is already known. For example, Non-Patent Document 1 describes a method of synthesizing crystalline silicon nitride powder by heat-treating amorphous silicon nitride powder produced by a monosilane-ammonia-based gas phase reaction. According to this document, crystallization of silicon nitride is a reaction accompanied by a very large exotherm, and when a green compact of amorphous silicon nitride is heated, it becomes a red-hot state due to crystallization heat from around 1450 ° C. It has been reported that crystallization completes within seconds with increasing temperature. At that time, the green compact breaks apart into powder.

また、特許文献1には、四塩化ケイ素−アンモニア系気相反応により合成した非晶質窒化ケイ素粉末を圧縮成形した後、1550〜1750℃で焼成するという、繊維状結晶質窒化ケイ素よりなる物品の製造方法が開示されている。同文献によれば非晶質窒化ケイ素の圧密成形物の嵩密度は0.1〜0.8g/cmである。更に、非特許文献2には、シリコンジイミドの熱分解により合成した非晶質窒化ケイ素粉末をホットプレス焼結した場合の緻密化及び結晶化挙動が記載されている。 Patent Document 1 discloses an article made of fibrous crystalline silicon nitride, in which an amorphous silicon nitride powder synthesized by a silicon tetrachloride-ammonia gas phase reaction is compression-molded and then fired at 1550 to 1750 ° C. A manufacturing method is disclosed. According to this document, the bulk density of the compacted product of amorphous silicon nitride is 0.1 to 0.8 g / cm 3 . Further, Non-Patent Document 2 describes densification and crystallization behavior when amorphous silicon nitride powder synthesized by thermal decomposition of silicon diimide is hot-press sintered.

ところで、一般的に、非晶質窒化ケイ素粉末の焼成により得られる結晶質窒化ケイ素粉末には、結晶化時に針状結晶又は柱状結晶が多数生成する為に充填密度が低いという欠点があった。従って、これを焼結原料として用いた場合には、嵩密度の低い成形体しか得られないという問題があった。そこで、このような欠点を解消すべく、微細な粒状結晶からなる結晶質窒化ケイ素粉末を製造する方法が種々提案されている。   By the way, in general, the crystalline silicon nitride powder obtained by firing the amorphous silicon nitride powder has a drawback that the packing density is low because a large number of needle-like crystals or columnar crystals are formed during crystallization. Therefore, when this was used as a sintering raw material, there was a problem that only a compact with a low bulk density was obtained. Therefore, various methods for producing crystalline silicon nitride powder composed of fine granular crystals have been proposed in order to eliminate such drawbacks.

例えば、特許文献2にはケイ素として0.1g/cm以上の軽装密度を有する含窒素シラン化合物を、1350〜1550℃の温度範囲全域における昇温速度を15℃/分以上に制御して1550℃以上1700℃未満にまで加熱することを特徴とする窒化ケイ素粉末の製造方法が開示されている。この発明によれば、針状結晶を含まない粒状結晶のみからなる窒化ケイ素粉末を製造することができる。 For example, Patent Document 2 discloses that a nitrogen-containing silane compound having a light loading density of 0.1 g / cm 3 or more as silicon is controlled to have a temperature rise rate of 15 ° C./min or more in the entire temperature range of 1350 to 1550 ° C. A method for producing a silicon nitride powder, characterized by heating to a temperature not lower than 1 ° C. and lower than 1700 ° C. is disclosed. According to this invention, the silicon nitride powder which consists only of the granular crystal which does not contain an acicular crystal | crystallization can be manufactured.

しかしながら、その実施例からもわかるように、この発明は小規模な焼成実験に基づくものであり、量産規模での粉末焼成を考えた場合には、解決すべき問題点が残されている。即ち、窒化ケイ素の結晶化が進行すると考えられる1350℃付近に非晶質窒化ケイ素粉末を加熱すると、結晶化熱の発生により粉体層の温度は著しく上昇して、昇温速度が数十〜数千℃/分となってしまい、これを制御するには種々の工夫を凝らさなければならない。しかし、特許文献2にはこの問題点を解決するための手段についてはまったく記載されていない。   However, as can be seen from the examples, the present invention is based on a small-scale firing experiment, and there are still problems to be solved when considering powder firing on a mass production scale. That is, when the amorphous silicon nitride powder is heated to around 1350 ° C. where crystallization of silicon nitride is considered to proceed, the temperature of the powder layer is remarkably increased due to the generation of crystallization heat, and the rate of temperature rise is several tens to Several thousand degrees centigrade / minute is required, and various measures must be taken to control this. However, Patent Document 2 does not describe any means for solving this problem.

非晶質窒化ケイ素粉末の結晶化時の伝熱を制御する方法も提案されている。例えば、特許文献3には非晶質窒化ケイ素粉末及び/又は含窒素シラン化合物を圧縮成形して、嵩密度0.3〜0.8g/cm、短軸径1mm以上、かつ長軸径20mm以下の顆粒状にすること、及び昇温過程において1200〜1400℃の温度範囲全域における昇温速度を10℃/分以下とすることと、焼成時における顆粒状物の軽装密度が0.15〜0.52g/cmであることを特徴とする結晶質窒化ケイ素粉末の製造方法が開示されている。また、特許文献4には、非晶質窒化ケイ素粉末及び/又は含窒素シラン化合物を圧縮成形して、嵩密度0.3〜0.8g/cm、短軸径1mm以上、かつ長軸径20mm以下の顆粒状物とし、該顆粒状物を連続焼成炉を用いた1400〜1700℃の温度で焼成することと、焼成時における顆粒状物の軽装密度が0.15〜0.52g/cmであることを特徴とする結晶質窒化ケイ素粉末の製造方法が開示されている。 A method for controlling heat transfer during crystallization of amorphous silicon nitride powder has also been proposed. For example, in Patent Document 3, an amorphous silicon nitride powder and / or a nitrogen-containing silane compound is compression molded to have a bulk density of 0.3 to 0.8 g / cm 3 , a minor axis diameter of 1 mm or more, and a major axis diameter of 20 mm. Making the following granules, and setting the heating rate in the entire temperature range of 1200 to 1400 ° C. to 10 ° C./min or less in the temperature rising process, and the light weight density of the granular material during firing is 0.15 to A method for producing crystalline silicon nitride powder characterized by 0.52 g / cm 3 is disclosed. Patent Document 4 discloses that amorphous silicon nitride powder and / or nitrogen-containing silane compound is compression-molded to have a bulk density of 0.3 to 0.8 g / cm 3 , a minor axis diameter of 1 mm or more, and a major axis diameter. The granular material is 20 mm or less, and the granular material is fired at a temperature of 1400 to 1700 ° C. using a continuous firing furnace, and the light weight density of the granular material at the time of firing is 0.15 to 0.52 g / cm. No. 3 , a method for producing crystalline silicon nitride powder is disclosed.

結晶質窒化ケイ素粉末を低コストで大量に生産するためには、非晶質窒化ケイ素粉末及び/又は含窒素シラン化合物を窒素含有不活性ガス雰囲気下又は窒素含有還元性ガス雰囲気下に焼成して、結晶質窒化ケイ素粉末を得るのに際し、非晶質窒化ケイ素粉末及び/又は含窒素シラン化合物を嵩密度の高い顆粒状物にすることが重要であるし、例えばカーボン製ルツボに充填して電気炉で焼成する上においては、顆粒状物の軽装密度が高いことが望ましい。   In order to produce a large amount of crystalline silicon nitride powder at low cost, an amorphous silicon nitride powder and / or a nitrogen-containing silane compound is fired in a nitrogen-containing inert gas atmosphere or a nitrogen-containing reducing gas atmosphere. In order to obtain crystalline silicon nitride powder, it is important to make amorphous silicon nitride powder and / or nitrogen-containing silane compound into a granular material having a high bulk density. In firing in a furnace, it is desirable that the light weight density of the granular material is high.

しかしながら、特許文献3及び4においては、非晶質窒化ケイ素粉末及び/又は含窒素シラン化合物を嵩密度0.8g/cm以上の顆粒状物に成形しようとすると、成形圧力が5ton/cm以上の高圧力を必要とし実用的ではなくなるとして、高嵩密度化について解決ができていない。また、焼成時における顆粒状物の軽装密度を0.52g/cm以上にすると、顆粒状物集合体の熱容量が大きくなりすぎるばかりでなく、密充填により顆粒状物の隙間が小さくなりすぎて輻射による伝熱が低下し、焼結に適した粒状の結晶質窒化ケイ素が得られなくなるとして、顆粒状物の高軽装密度化も解決できていない。 However, in Patent Documents 3 and 4, when an amorphous silicon nitride powder and / or a nitrogen-containing silane compound is molded into a granular material having a bulk density of 0.8 g / cm 3 or more, the molding pressure is 5 ton / cm 2. Since the above high pressure is required and it becomes impractical, there is no solution for increasing the bulk density. Moreover, if the light weight density of the granular material at the time of firing is 0.52 g / cm 3 or more, not only the heat capacity of the granular material aggregate becomes too large, but also the gap between the granular materials becomes too small due to close packing. Since the heat transfer due to radiation is reduced and granular crystalline silicon nitride suitable for sintering cannot be obtained, it has not been possible to solve the problem of increasing the density of granular materials.

米国特許4101616号公報(1978)U.S. Pat. No. 4,161,616 (1978) 特公昭61−11886号公報Japanese Patent Publication No. 61-11886 特開平4−209706号公報JP-A-4-209706 特開平5−148032号公報Japanese Patent Laid-Open No. 5-148032

セラミック・ブレティン57巻6号(1978)、P579〜586Ceramic Bulletin Vol.57 No.6 (1978), P579-586 米国ナショナル・テクニカル・インフォメーション・サービス ファイナル・アニュアル・レポートA−C3316号報告書(1974年)US National Technical Information Service Final Annual Report A-C3316 Report (1974)

本発明の課題は、非晶質窒化ケイ素粉末及び/又は含窒素シラン化合物を、窒素含有不活性ガス雰囲気下又は窒素含有還元性ガス雰囲気下に焼成して、結晶質窒化ケイ素粉末を得るのに際し、嵩密度の高い非晶質窒化ケイ素粉末及び/又は含窒素シラン化合物の顆粒状物を成形し、制御された昇温条件により焼成することで、粒子形状及びサイズの一定した高品質の結晶質窒化ケイ素粉末を低コストで大量に生産できる新規な製造方法を提供することである。   An object of the present invention is to obtain a crystalline silicon nitride powder by firing an amorphous silicon nitride powder and / or a nitrogen-containing silane compound in a nitrogen-containing inert gas atmosphere or a nitrogen-containing reducing gas atmosphere. A high-quality crystalline material with a constant particle shape and size by molding a granular material of amorphous silicon nitride powder and / or nitrogen-containing silane compound with high bulk density and firing under controlled temperature rise conditions It is to provide a novel production method capable of producing a large amount of silicon nitride powder at low cost.

本発明者らは、前記課題を解決するため鋭意検討を積み重ねた結果、非晶質窒化ケイ素粉末及び/又は含窒素シラン化合物を圧縮成形して、嵩密度0.8g/cm超〜1.0g/cm以下、短軸径1mm以上、かつ長軸径20mm以下の顆粒状物とすること、及び昇温過程において、1000〜1200℃の温度範囲全域における昇温速度を10℃/分以下とすることによって、焼結に適した粒状粒子からなる結晶質窒化ケイ素粉末を低コストで大量に生産できることを見出した。 As a result of intensive studies to solve the above problems, the present inventors have compression-molded an amorphous silicon nitride powder and / or a nitrogen-containing silane compound, and have a bulk density of 0.8 g / cm 3 to 1. A granular material having a minor axis diameter of 1 mm or more and a major axis diameter of 20 mm or less is set to 0 g / cm 3 or less. Thus, it has been found that a crystalline silicon nitride powder composed of granular particles suitable for sintering can be produced in large quantities at low cost.

こうして、本発明は、下記を提供する。
(1)非晶質窒化ケイ素粉末及び/又は含窒素シラン化合物を窒素含有不活性ガス雰囲気下又は窒素含有還元性ガス雰囲気下に焼成して、結晶質窒化ケイ素粉末を製造するに際し、非晶質窒化ケイ素粉末及び/又は含窒素シラン化合物を圧縮成形して、嵩密度0.8g/cm超〜1.0g/cm以下、短軸径1mm以上、長軸径20mm以下の顆粒状物とすること、及び昇温過程において、1000〜1200℃の温度範囲全域における昇温速度を10℃/分以下とすることを特徴とする結晶質窒化ケイ素粉末の製造方法。
Thus, the present invention provides the following.
(1) Amorphous silicon nitride powder and / or nitrogen-containing silane compound is baked in a nitrogen-containing inert gas atmosphere or a nitrogen-containing reducing gas atmosphere to produce a crystalline silicon nitride powder. A silicon nitride powder and / or a nitrogen-containing silane compound is compression molded to form a granular material having a bulk density of 0.8 g / cm 3 to 1.0 g / cm 3 or less, a minor axis diameter of 1 mm or more, and a major axis diameter of 20 mm or less. And a temperature rising rate in the entire temperature range of 1000 to 1200 ° C. is 10 ° C./min or less in the temperature raising process.

(2)焼成時における顆粒状物の軽装密度が0.52g/cm超〜0.80g/cm以下であることを特徴とする上記(1)の結晶質窒化ケイ素粉末の製造方法。 (2) The method for producing a crystalline silicon nitride powder according to the above (1), wherein the light weight density of the granular material at the time of firing is more than 0.52 g / cm 3 to 0.80 g / cm 3 or less.

(3)圧縮成形される非晶質窒化ケイ素粉末及び/又は含窒素シラン化合物の軽装密度が0.10〜0.30g/cmであることを特徴とする上記(1)又は(2)の結晶質窒化ケイ素粉末の製造方法。 (3) The light weight density of the amorphous silicon nitride powder and / or the nitrogen-containing silane compound to be compression-molded is 0.10 to 0.30 g / cm 3 , wherein the above (1) or (2) Method for producing crystalline silicon nitride powder.

(4)圧縮成形される非晶質窒化ケイ素粉末及び/又は含窒素シラン化合物の製造を、ハロゲン化シラン化合物を液体アンモニアと混合して反応させ、ハロゲン化シラン化合物を無溶媒かあるいはハロゲン化シラン化合物濃度が50vol%以上の不活性有機溶媒の溶液として液体アンモニア中に設置した供給口から吐出させて供給する方法で行うことを特徴とする上記(1)〜(3)に記載の結晶質窒化ケイ素粉末の製造方法。   (4) Production of compression-molded amorphous silicon nitride powder and / or nitrogen-containing silane compound is allowed to react by mixing a halogenated silane compound with liquid ammonia, and the halogenated silane compound is solvent-free or halogenated silane. The crystalline nitriding according to any one of (1) to (3) above, which is carried out by a method of supplying a solution of an inert organic solvent having a compound concentration of 50 vol% or more by discharging from a supply port installed in liquid ammonia A method for producing silicon powder.

(5)前記の非晶質窒化ケイ素粉末及び/又は含窒素シラン化合物の製造において、ハロゲン化シラン化合物を無溶媒かあるいはハロゲン化シラン化合物濃度が50vol%以上の不活性有機溶媒の溶液として供給する際の吐出線速度を5cm/sec以上とすることを特徴とする、上記(4)に記載の結晶質窒化ケイ素粉末の製造方法。   (5) In the production of the amorphous silicon nitride powder and / or the nitrogen-containing silane compound, the halogenated silane compound is supplied without solvent or as a solution of an inert organic solvent having a halogenated silane compound concentration of 50 vol% or more. The method for producing crystalline silicon nitride powder according to (4) above, wherein the discharge linear velocity is 5 cm / sec or more.

(6)前記の非晶質窒化ケイ素粉末及び/又は含窒素シラン化合物の製造において、反応温度が−10〜40℃の範囲内、反応圧力が0.3〜1.6MPa(絶対圧)の範囲内であることを特徴とする、上記(4)または(5)に記載の結晶質窒化ケイ素粉末の製造方法。   (6) In the production of the amorphous silicon nitride powder and / or the nitrogen-containing silane compound, the reaction temperature is in the range of −10 to 40 ° C., and the reaction pressure is in the range of 0.3 to 1.6 MPa (absolute pressure). The method for producing a crystalline silicon nitride powder according to (4) or (5) above, wherein

本発明によれば、粒径の揃った等軸粒状粒子からなり、充填特性、焼結特性等に優れた結晶質窒化ケイ素粉末を、低コストで生産性良く大量に製造することができる。   According to the present invention, it is possible to produce a large amount of crystalline silicon nitride powder composed of equiaxed granular particles having uniform particle diameters and excellent in filling characteristics, sintering characteristics, etc. at low cost and with high productivity.

本発明の実施例2で得られた粉末の走査型電子顕微鏡写真である。It is a scanning electron micrograph of the powder obtained in Example 2 of this invention. 本発明の実施例7で得られた粉末の走査型電子顕微鏡写真である。It is a scanning electron micrograph of the powder obtained in Example 7 of this invention. 本発明の比較例4で得られた粉末の走査型電子顕微鏡写真である。It is a scanning electron micrograph of the powder obtained in Comparative Example 4 of the present invention.

以下に、本発明を詳しく説明する。   The present invention is described in detail below.

本発明においては、軽装密度が0.10〜0.30g/cmの含窒素シラン化合物を用いる。含窒素シラン化合物としては、シリコンジイミド、シリコンテトラアミド、シリコンニトロゲンイミド、シリコンクロルイミド等が挙げられ、これらは、公知方法、例えば、四塩化ケイ素、四臭化ケイ素、四沃化ケイ素等のハロゲン化ケイ素とアンモニアとを気相で反応させる方法、液状の前記ハロゲン化ケイ素と液体アンモニアとを反応させる方法等によって製造される。 In the present invention, a nitrogen-containing silane compound having a light packing density of 0.10 to 0.30 g / cm 3 is used. Examples of the nitrogen-containing silane compound include silicon diimide, silicon tetraamide, silicon nitrogen imide, silicon chlorimide, etc., and these include known methods such as silicon tetrachloride, silicon tetrabromide, silicon tetraiodide and the like. It is produced by a method of reacting silicon halide with ammonia in a gas phase, a method of reacting the liquid silicon halide with liquid ammonia, or the like.

非晶質窒化ケイ素粉末は、公知方法、例えば、前記含窒素シラン化合物を酸素含有量5%以下の窒素又はアンモニアガス雰囲気下に600〜1200℃の範囲の温度で加熱分解する方法、四塩化ケイ素、四臭化ケイ素、四沃化ケイ素等のハロゲン化ケイ素とアンモニアとを高温で反応させる方法等によって製造される。好ましくは後述の製法で製造できる。   The amorphous silicon nitride powder is obtained by a known method, for example, a method in which the nitrogen-containing silane compound is thermally decomposed at a temperature in the range of 600 to 1200 ° C. in a nitrogen or ammonia gas atmosphere having an oxygen content of 5% or less, silicon tetrachloride. And silicon halides such as silicon tetrabromide and silicon tetraiodide, and a method of reacting ammonia at a high temperature. Preferably, it can be produced by the production method described later.

本発明における粉末の軽装密度は、JIS R9301−2−3に準拠した手法で求めた。具体的には、振動を防ぎ、静置した容量既知の容器中に粉末を自由に落下させて集めた粉末の質量を求め、この質量を等量の水の体積で割った値から算出した。   The light packing density of the powder in the present invention was determined by a method based on JIS R9301-2-3. Specifically, the mass of the powder collected by allowing the powder to freely fall into a container of known capacity that was allowed to stand still was collected and this mass was divided by the volume of an equal amount of water.

前記の公知の手法で普通に製造した含窒素シラン化合物及び非晶質窒化ケイ素は非常に微細な粒子からなり、平均粒径は、通常、0.005〜0.05μmであることから、粉末状態では非常に嵩高く、一般には、軽装密度が0.045〜0.090g/cm程度である。さらに、このような含窒素シラン化合物及び非晶質窒化ケイ素から圧縮成形される顆粒状物の嵩密度は0.3〜0.8g/cm程度にしかならない。しかしながら、原料粉末に、軽装密度0.10〜0.30g/cmの含窒素シラン化合物及び/又は非晶質窒化ケイ素を用いれば、嵩密度の高い顆粒状物を製造することができる。 The nitrogen-containing silane compound and amorphous silicon nitride that are usually produced by the above-mentioned known methods are composed of very fine particles, and the average particle size is usually 0.005 to 0.05 μm. Is very bulky and generally has a light weight density of about 0.045 to 0.090 g / cm 3 . Furthermore, the bulk density of the granular material compression-molded from such a nitrogen-containing silane compound and amorphous silicon nitride is only about 0.3 to 0.8 g / cm 3 . However, if a nitrogen-containing silane compound and / or amorphous silicon nitride having a light packing density of 0.10 to 0.30 g / cm 3 is used as the raw material powder, a granular material having a high bulk density can be produced.

軽装密度0.10〜0.30g/cmの含窒素シラン化合物は、例えば、以下の方法で製造することができる。さらに、軽装密度が0.10〜0.30g/cmの非晶質窒化ケイ素粉末は、軽装密度0.10〜0.30g/cmの含窒素シラン化合物を酸素含有量5%以下の窒素又はアンモニアガス雰囲気下に600〜1200℃の範囲の温度で加熱分解することで製造することができる。 A nitrogen-containing silane compound having a light packing density of 0.10 to 0.30 g / cm 3 can be produced, for example, by the following method. Further, amorphous silicon nitride powder of diatomaceous density 0.10~0.30g / cm 3 is loosed density 0.10~0.30g / cm 3 of the nitrogen-containing silane oxygen content less than 5% of the nitrogen compound Or it can manufacture by thermally decomposing at the temperature of the range of 600-1200 degreeC in ammonia gas atmosphere.

本発明で用いる、軽装密度0.10〜0.30g/cmの含窒素シラン化合物は、ハロゲン化シランと液体アンモニアとの反応に際し、ハロゲン化シランを無溶媒か、或いは少量の有機溶媒で希釈した溶液として供給することによって合成することができる。ハロゲン化シランとしては、SiF、HSiF、HSiF、HSiF、HSiF、HSiF等の弗化シラン、SiCl、HSiCl、HSiCl、HSiCl等の塩化シラン、SiBr、HSiBr、HSiBr、HSiBr等の臭化シラン、SiI、HSiI、HSiI、HSiI等のヨウ化シランを使用することができる。また、RSiX、RSiX、RSiX(Rはアルキル又はアルコキシ基、Xはハロゲン)等のハロゲン化シランも使用することができる。 The nitrogen-containing silane compound having a light loading density of 0.10 to 0.30 g / cm 3 used in the present invention is diluted with a small amount of organic solvent or no solvent in the reaction of halogenated silane with liquid ammonia. It can synthesize | combine by supplying as a prepared solution. Examples of halogenated silanes include fluorinated silanes such as SiF 4 , H 2 SiF 6 , HSiF 3 , H 3 SiF 5 , H 3 SiF, and H 5 SiF 3 , SiCl 4 , HSiCl 3 , H 2 SiCl 2 , and H 3 SiCl. silane chloride etc., can be used SiBr 4, HSiBr 3, H 2 SiBr 2, H 3 bromide silane such as SiBr, the SiI 4, HSiI 3, H 2 SiI 2, H 3 iodide silane such as SiI . Further, RSiX 3, R 2 SiX 2 , R 3 SiX (R is an alkyl or alkoxy group, X is a halogen) can also be used halogenated silane such.

ハロゲン化シランの希釈に使用する有機溶媒は、ハロゲン化シランを溶解し、ハロゲン化シランや液体アンモニアと反応しないものの中から適宜選択して使用することができる。例えば、n−ペンタン、n−ヘキサン、n−ヘプタン、n−オクタンなどのような炭素数5〜12の鎖状の脂肪族炭化水素、シクロヘキサンやシクロオクタンのような環状の脂肪族炭化水素、トルエン、キシレンなどの芳香族炭化水素などを挙げることが出来る。有機溶媒とハロゲン化シランとの混合溶液における好ましいハロゲン化シラン濃度は、50vol%以上、より好ましくは66vol%以上である。50vol%未満の濃度では、生成する含窒素シラン化合物粉末について軽装密度の充分な増加が得られない。   The organic solvent used for diluting the halogenated silane can be appropriately selected from those which dissolve the halogenated silane and do not react with the halogenated silane or liquid ammonia. For example, C5-C12 chain aliphatic hydrocarbons such as n-pentane, n-hexane, n-heptane, n-octane, cyclic aliphatic hydrocarbons such as cyclohexane and cyclooctane, toluene And aromatic hydrocarbons such as xylene. The preferable halogenated silane concentration in the mixed solution of the organic solvent and the halogenated silane is 50 vol% or more, more preferably 66 vol% or more. If the concentration is less than 50 vol%, a sufficient increase in light weight density cannot be obtained for the nitrogen-containing silane compound powder produced.

上記の方法の実施において、ハロゲン化シランを無溶媒あるいは少量の有機溶媒で希釈した溶液として供給する際の吐出口は反応器内の液体アンモニア中に設置される。このときの供給口からの吐出線速度は5cm/sec以上、さらには8cm/sec以上に保つことが好ましい。上限は特に制約はないが、一般的には200cm/sec以下でよい。   In carrying out the above method, a discharge port for supplying the halogenated silane as a solution without solvent or diluted with a small amount of an organic solvent is installed in liquid ammonia in the reactor. At this time, the discharge linear velocity from the supply port is preferably maintained at 5 cm / sec or more, more preferably 8 cm / sec or more. The upper limit is not particularly limited, but is generally 200 cm / sec or less.

反応器内に不活性ガスを導入せずに本発明を実施する場合の適切な反応温度範囲は−10〜40℃、より好ましくは0〜30℃である。圧力の好適な範囲は0.3〜1.6MPa、より好ましくは0.4〜1.6MPaである(絶対圧)。   A suitable reaction temperature range when carrying out the present invention without introducing an inert gas into the reactor is -10 to 40 ° C, more preferably 0 to 30 ° C. A suitable range of pressure is 0.3 to 1.6 MPa, more preferably 0.4 to 1.6 MPa (absolute pressure).

ハロゲン化シランを無溶媒あるいは少量の有機溶媒で希釈した溶液として供給する際の供給ポンプの吐出圧力は、限定されるものではないが、反応器の圧力に対し5.9MPa以上、さらに好ましくは、7.8MPa以上、さらに好ましくは9.8MPa以上の圧力差を出せる装置の能力を有することが望まれる。   The discharge pressure of the supply pump when supplying the halogenated silane without solvent or as a solution diluted with a small amount of an organic solvent is not limited, but is preferably 5.9 MPa or more with respect to the pressure of the reactor, It is desirable to have the capability of an apparatus capable of producing a pressure difference of 7.8 MPa or more, more preferably 9.8 MPa or more.

反応器におけるハロゲン化シランと液体アンモニアの混合比率は、ハロゲン化シラン体積/液体アンモニア体積=0.01〜0.1である。   The mixing ratio of the halogenated silane and liquid ammonia in the reactor is halogenated silane volume / liquid ammonia volume = 0.01 to 0.1.

上記の方法で生成する含窒素シラン化合物は、製造後の軽装密度が0.10〜0.30g/cmであることができるが、そのほか、限定するわけではないが、一般的に、真密度は1.4〜1.9g/cm、より好ましくは1.5〜1.7g/cm、比表面積は700〜1100m/g、より好ましくは800〜1000m/gにすることができる。
上記の方法で生成する含窒素シラン化合物は、室温付近でも容易にNHを吸収又は放出し、Si1315,Si1212,Si11などの種々の組成式で存在し得るSi−N−H系化合物である。この含窒素シラン化合物は、Si(NH)という式で表されることも多いが、ケイ素に結合したイミノ基又はアミノ基を有する化合物であると考えて化学式Si(NH(式中、xは1又は2であり、yは2〜4である)で表されることもある。あるいは、組成式として表わすとSi(NH(xは0.7〜1.3、yは1.8〜2.2)が一般的であるが、この組成式の範囲に限定されるものではない。
The nitrogen-containing silane compound produced by the above method can have a light weight density after production of 0.10 to 0.30 g / cm 3 , but is not limited thereto. Is 1.4 to 1.9 g / cm 3 , more preferably 1.5 to 1.7 g / cm 3 , and the specific surface area can be 700 to 1100 m 2 / g, more preferably 800 to 1000 m 2 / g. .
The nitrogen-containing silane compound produced by the above method easily absorbs or releases NH 3 even near room temperature, and has various compositions such as Si 6 N 13 H 15 , Si 6 N 12 H 12 , and Si 6 N 11 H 9. Si—N—H compounds that may exist in the formula. This nitrogen-containing silane compound is often represented by the formula Si (NH) 2 , but is considered to be a compound having an imino group or amino group bonded to silicon, and has the chemical formula Si (NH x ) y (wherein , X is 1 or 2, and y is 2-4. Alternatively, Si (NH x ) y (x is 0.7 to 1.3, y is 1.8 to 2.2) is generally expressed as a composition formula, but is limited to the range of this composition formula. It is not a thing.

前記含窒素シラン化合物及び非晶質窒化ケイ素を原料粉末として顆粒状物を成形すると、嵩密度が0.8g/cm超〜1.0g/cm以下、短軸径1mm以上、かつ長軸径20mm以下の顆粒状物を成形することができる。 When a granular product is formed using the nitrogen-containing silane compound and amorphous silicon nitride as raw material powder, the bulk density is more than 0.8 g / cm 3 to 1.0 g / cm 3 or less, the minor axis diameter is 1 mm or more, and the major axis Granules having a diameter of 20 mm or less can be formed.

本発明においては、非晶質窒化ケイ素粉末及び/又は含窒素シラン化合物を窒素含有不活性ガス雰囲気下、又は窒素含有還元性ガス雰囲気下に焼成して結晶質窒化ケイ素粉末を製造するに際し、非晶質窒化ケイ素粉末及び/又は含窒素シラン化合物を圧縮成形して、嵩密度0.8g/cm超〜1.0g/cm以下、短軸径1mm以上、かつ長軸径20mm以下の顆粒状物とし、昇温過程において1000〜1200℃の温度範囲全域における昇温速度を10℃/分以下に制御して該顆粒状物を焼成する。 In the present invention, the amorphous silicon nitride powder and / or the nitrogen-containing silane compound is baked in a nitrogen-containing inert gas atmosphere or a nitrogen-containing reducing gas atmosphere to produce a crystalline silicon nitride powder. Granules obtained by compression-molding crystalline silicon nitride powder and / or nitrogen-containing silane compound to have a bulk density of 0.8 g / cm 3 to 1.0 g / cm 3 or less, a minor axis diameter of 1 mm or more, and a major axis diameter of 20 mm or less. In the temperature rising process, the granular material is fired by controlling the temperature rising rate in the entire temperature range of 1000 to 1200 ° C. to 10 ° C./min or less.

窒素含有不活性ガスとしては、窒素又は窒素とアルゴン、ヘリウム等の混合ガスが挙げられる。また、窒素含有還元性ガスとしては、アンモニア、ヒドラジン等の高温での熱分解により窒素ガスを放出するもの又は窒素と水素、一酸化炭素等の混合ガスが挙げられる。   Examples of the nitrogen-containing inert gas include nitrogen or a mixed gas such as nitrogen and argon, helium. Moreover, as nitrogen-containing reducing gas, what discharge | releases nitrogen gas by thermal decomposition at high temperature, such as ammonia and hydrazine, or mixed gas, such as nitrogen, hydrogen, and carbon monoxide, is mentioned.

非晶質窒化ケイ素粉末及び/又は含窒素シラン化合物を圧縮成形して顆粒状物にするためには、粉末をゴム型内に充填して等方的圧力を印加するラバープレス成型、金属型に粉末を充填してピストンで加圧するプレス成型、又は打錠成型、穴付きロールで粉末を圧縮して押し固めるブリケット成型等、種々の成型方法を採用することができる。   In order to compress the amorphous silicon nitride powder and / or the nitrogen-containing silane compound into granules, the powder is filled into a rubber mold and isotropic pressure is applied to a rubber press mold or a metal mold. Various molding methods such as press molding in which powder is filled and pressed with a piston, tableting molding, or briquette molding in which powder is compressed by a roll with a hole and pressed can be employed.

本発明での顆粒状物の嵩密度は0.8g/cm超〜1.0g/cm以下である。顆粒状物の嵩密度が0.8g/cmよりも低くなると、軽装密度が低くなり、例えばカーボン製ルツボで焼成する際の充填量が少なくなり、生産性が低下し製造コストの上昇を招く。一方、嵩密度が1.0g/cmを超える顆粒を成形するためには、5ton/cm以上の高圧が必要となるので、実用上好ましくない。0.85g/cm〜0.95g/cm以下が好ましい。 The bulk density of the granular material in the present invention is more than 0.8 g / cm 3 to 1.0 g / cm 3 or less. When the bulk density of the granular material is lower than 0.8 g / cm 3 , the light weight density is lowered, for example, the filling amount when firing with a carbon crucible is reduced, the productivity is lowered, and the production cost is increased. . On the other hand, in order to form a granule having a bulk density exceeding 1.0 g / cm 3 , a high pressure of 5 ton / cm 2 or more is required, which is not preferable in practice. 0.85g / cm 3 ~0.95g / cm 3 or less.

本発明では顆粒状物の寸法を、短軸径1mm以上、長軸径20mm以下に規定している。顆粒状物の寸法(例えば短軸径)が1mmよりも小さくなると、顆粒間の隙間が小さくなりすぎ、輻射による伝熱の効果が小さくなる。この為、顆粒状物集合体の伝熱が悪くなり、焼成時の顆粒間の温度分布が拡大して、急激な発熱により針状結晶が生成しやすくなるので好ましくない。短軸径1mm以上、長軸径20mm以下、好ましくは短軸径2.5mm以上、長軸径18mm以下、さらに好ましくは短軸径5mm以上、長軸径15mm以下という適度な寸法の顆粒を使用すれば、伝熱状態が良好で、結晶化熱の系外への放出もスムーズになり、発熱による顆粒状物の急速昇温を最小限にとめることができる。その結果、後述の実施例に示されるような微細な粒状結晶のみからなる結晶質窒化ケイ素粉末が得られる。   In the present invention, the size of the granular material is defined as a minor axis diameter of 1 mm or more and a major axis diameter of 20 mm or less. If the size of the granular material (for example, the short axis diameter) is smaller than 1 mm, the gap between the granules becomes too small, and the effect of heat transfer by radiation becomes small. For this reason, the heat transfer of the granular material aggregate is deteriorated, the temperature distribution between the granules during firing is expanded, and acicular crystals are likely to be generated due to rapid heat generation, which is not preferable. Use granules with moderate dimensions of short axis diameter of 1 mm or more and major axis diameter of 20 mm or less, preferably minor axis diameter of 2.5 mm or more and major axis diameter of 18 mm or less, more preferably minor axis diameter of 5 mm or more and major axis diameter of 15 mm or less. Then, the heat transfer state is good, the release of crystallization heat to the outside of the system is smooth, and the rapid temperature rise of the granular material due to heat generation can be minimized. As a result, a crystalline silicon nitride powder consisting only of fine granular crystals as shown in the examples described later is obtained.

更に、顆粒状物の寸法(例えば長軸径)が20mmよりも大きくなると、個々の顆粒状物内部の温度分布が問題となってくる。すなわち、結晶化熱による顆粒状物内部の蓄熱が大きくなりすぎるため温度が上がりすぎて、柱状結晶又は棒状結晶を多量に含む結晶質窒化ケイ素粉末が生成し、好ましくない。また、高温安定相であり焼結に対して好ましくないβ型窒化ケイ素の生成割合も増加してしまう。   Further, when the size of the granular material (for example, the major axis diameter) is larger than 20 mm, the temperature distribution inside the individual granular material becomes a problem. That is, since the heat storage inside the granular material due to the heat of crystallization becomes too large, the temperature rises too much, and a crystalline silicon nitride powder containing a large amount of columnar crystals or rod-like crystals is generated, which is not preferable. In addition, the production rate of β-type silicon nitride, which is a high-temperature stable phase and is undesirable for sintering, also increases.

本発明において、顆粒状物の軽装密度とは、ゆるみ見掛け密度ともいい、顆粒状物を、シュートを通じてゆっくりと測定用容器に落下させて、その重さと体積から算出した値である。測定用容器は、通常50φ×50hのメスシリンダーが用いられるが、顆粒状物が大きい場合には、それに応じて測定用容器も大きいものを用いればよい。本発明における顆粒状物の軽装密度は0.52g/cm超〜0.80g/cm以下である。軽装密度0.52g/cm以下では生産性が低下して好ましくない。一方、軽装密度が0.80g/cmよりも大きくなると充填量が多くなるので、顆粒状物集合体の熱容量が大きくなりすぎるばかりでなく、密充填により顆粒状物間の隙間が小さくなって、輻射による熱伝導度が低下する。従って、熱容量と熱伝導度のバランスが崩れ、結晶化時の発熱が大きくなって、柱状結晶又は棒状結晶を多く含む結晶質窒化ケイ素を生成するので好ましくない。0.55g/cm超〜0.70g/cm以下が好ましい。 In the present invention, the light weight density of the granular material is also referred to as a loose apparent density, and is a value calculated from the weight and volume of the granular material slowly dropped into a measuring container through a chute. As the measurement container, a graduated cylinder of 50φ × 50h is usually used. However, when the granular material is large, a measurement container having a large size may be used. Diatomaceous density of the granulate according to the present invention is less than 0.52 g / cm 3 super ~0.80g / cm 3. If the light packing density is 0.52 g / cm 3 or less, the productivity is not preferable. On the other hand, when the light packing density is larger than 0.80 g / cm 3 , the filling amount increases, so that not only the heat capacity of the granular material aggregate becomes too large, but also the gap between the granular materials becomes smaller due to close packing. The thermal conductivity due to radiation decreases. Therefore, the balance between the heat capacity and the thermal conductivity is lost, the heat generated during crystallization is increased, and crystalline silicon nitride containing a large amount of columnar crystals or rod-like crystals is generated, which is not preferable. 0.55 g / cm 3 super ~0.70g / cm 3 or less.

本発明においては、前記の顆粒状物の焼成に当たり、昇温過程において1000〜1200℃の温度範囲全域における昇温速度を10℃/分以下に制御してゆっくりと昇温する。このような緩速昇温は非晶質窒化ケイ素の粒成長による表面エネルギーの減少、結晶核の発生密度の確保、及び結晶化初期における粒成長の抑制に対して有効な手段である。保持温度が1000℃よりも低温では、このような効果は認められず、逆に1200℃よりも高温になると、急激な結晶化が進行して、生成する結晶質窒化ケイ素粉末の粉体特性(粒子形状、粒子径、結晶相等)を制御することが困難になる。   In the present invention, when the granular material is fired, the temperature is slowly raised by controlling the temperature raising rate in the entire temperature range of 1000 to 1200 ° C. to 10 ° C./min or less in the temperature raising process. Such a slow temperature increase is an effective means for reducing the surface energy due to the amorphous silicon nitride grain growth, ensuring the generation density of crystal nuclei, and suppressing the grain growth in the initial stage of crystallization. Such an effect is not observed when the holding temperature is lower than 1000 ° C., and conversely, when the holding temperature is higher than 1200 ° C., rapid crystallization proceeds and the powder characteristics of the generated crystalline silicon nitride powder ( It becomes difficult to control the particle shape, particle diameter, crystal phase, and the like.

本発明において、1000〜1200℃の温度範囲全域における昇温速度は10℃/分以下である。昇温速度が10℃/分を超えると1200℃以上に昇温した際に急激な結晶化が起こり、結晶化熱による温度上昇が最高数百℃近くまでに達して、所望の微粒結晶よりなるα型窒化ケイ素粉末が得られなくなる。1000〜1200℃の温度範囲全域における昇温速度は8℃/分以下が好ましく、5℃/分以下がより好ましく、3〜0.5℃/分が特に好ましい。また、特に1000〜1100℃における保持時間が過度に長すぎると、核発生の若干抑制された状況下で結晶成長が進行するので、生成する粒状結晶の形状は多面体状のきれいなものになるが、粒子径はかえって大きくなり、焼結には好ましくない比表面積の小さな粉末となってしまう。   In this invention, the temperature increase rate in the whole temperature range of 1000-1200 degreeC is 10 degrees C / min or less. When the rate of temperature rise exceeds 10 ° C./min, rapid crystallization occurs when the temperature is raised to 1200 ° C. or higher, and the temperature rise due to the heat of crystallization reaches up to several hundreds of degrees C., thereby forming a desired fine crystal. α-type silicon nitride powder cannot be obtained. The heating rate in the entire temperature range of 1000 to 1200 ° C is preferably 8 ° C / min or less, more preferably 5 ° C / min or less, and particularly preferably 3 to 0.5 ° C / min. In particular, if the holding time at 1000 to 1100 ° C. is excessively long, crystal growth proceeds in a state in which nucleation is slightly suppressed, so that the shape of the generated granular crystal becomes a beautiful polyhedral shape, On the contrary, the particle diameter becomes larger, and the powder has a small specific surface area which is not preferable for sintering.

被焼成物を前記の加熱条件で昇温し、その結晶化度を40%以上にした後は、より高温まで、例えば1700℃まで昇温しても良く、その昇温速度にも制約はない。最終的な焼成温度が1500℃の場合には、同温度に15〜60分間保持して結晶化を完了させることが好ましい。また、最終的な焼成温度が1700℃を超えると、粗大結晶が成長するばかりでなく、生成した結晶質窒化ケイ素粉末の分解が始まるので好ましくない。限定するわけではないが、結晶質窒化ケイ素粉末を得るための焼成温度は、一般的には、1400〜1700℃であり、1450〜1650℃が好ましい。   After raising the temperature of the object to be fired under the above heating conditions and setting the crystallinity to 40% or more, the temperature may be raised to a higher temperature, for example, 1700 ° C., and the rate of temperature rise is not limited. . When the final calcination temperature is 1500 ° C., it is preferable to maintain the same temperature for 15 to 60 minutes to complete crystallization. Further, if the final firing temperature exceeds 1700 ° C., not only the coarse crystals grow, but also the generated crystalline silicon nitride powder starts to decompose, which is not preferable. Although it does not necessarily limit, the calcination temperature for obtaining crystalline silicon nitride powder is generally 1400-1700 degreeC, and 1450-1650 degreeC is preferable.

非晶質窒化ケイ素粉末及び/又は含窒素シラン化合物の加熱に使用される加熱炉については、特に制限はなく、例えば高周波誘導加熱方式又は抵抗加熱方式によるバッチ炉、ロータリーキルン炉、流動化焼成炉、プッシャー炉等を使用することができる。   There is no particular limitation on the heating furnace used for heating the amorphous silicon nitride powder and / or the nitrogen-containing silane compound. A pusher furnace or the like can be used.

以下本発明を実施例に基づき詳細に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited to these Examples.

実施例及び比較例において、結晶質窒化ケイ素粉末の結晶化度は、窯業協会誌93巻4号(1985年)の394〜397頁に記載の加水分解試験により、α型結晶含有率は、セラミックス・ブレティン56巻9号(1977年)の777〜780頁に記載のX線回折法に従って算出し、比表面積は窒素ガス吸着法によるBET法で測定した。また、プレス密度は、直径13mmの金型に粉末0.65gを充填し、2ton/cmで加圧成形した後の体積により求めた。 In the examples and comparative examples, the crystallinity of the crystalline silicon nitride powder was determined by the hydrolysis test described in pages 394 to 397 of Journal of Ceramics Association, Vol. 93, No. 4 (1985). -It calculated according to the X-ray-diffraction method of 777-780 of bulletin 56 vol.9 (1977), and the specific surface area was measured by BET method by a nitrogen gas adsorption method. Moreover, the press density was calculated | required by the volume after filling 0.65g of powders in the metal mold | die with a diameter of 13 mm, and press-molding by 2 ton / cm < 2 >.

顆粒状物の嵩密度はケロシンを溶媒としたアルキメデス法で測定した。顆粒状物の軽装密度とは、ゆるみ見掛け密度ともいい、顆粒状物を容器に自然落下させたときの密度である。従って、顆粒状物を焼成ルツボ等の容器に充填したときの充填密度と同じである。顆粒状物の軽装密度は、顆粒状物を、シュートを通してゆっくりと測定用容器に落下させて、顆粒状物の重さと測定用容器の体積から算出した。測定用容器は、通常、内径50mm、高さ50mmのメスシリンダーが用いられるが、サンプルが大きい場合には、それに応じて測定容器を大きいものに変えればよい。   The bulk density of the granular material was measured by Archimedes method using kerosene as a solvent. The light weight density of the granular material is also called a loose apparent density, and is a density when the granular material is naturally dropped into a container. Therefore, it is the same as the filling density when the granular material is filled in a container such as a fired crucible. The light weight density of the granular material was calculated from the weight of the granular material and the volume of the measuring container by slowly dropping the granular material into the measuring container through the chute. As the measurement container, a graduated cylinder having an inner diameter of 50 mm and a height of 50 mm is usually used. When the sample is large, the measurement container may be changed to a larger one accordingly.

窒化ケイ素粉末90重量部に焼結助剤としてY6重量部とAl2重量部を添加し、エタノールを加えて、ボールミルにて48時間湿式混合した後、乾燥した。280μmの篩で粒度調整した顆粒を、ゴム型仕込み、2ton/cmの圧力でラバープレス成形して、直径5mmのグリーン成形体を作製した。この成形体を窒化ケイ素製ルツボに充填し、電気炉にて、1気圧の窒素ガス雰囲気中、300℃/時間の昇温速度で加熱し、1750℃で3時間保持して、窒化ケイ素質焼結体を作製した。得られた焼結体の嵩密度はアルキメデス法で測定した。 6 parts by weight of Y 2 O 3 and 2 parts by weight of Al 2 O 3 were added to 90 parts by weight of silicon nitride powder as a sintering aid, ethanol was added, and the mixture was wet mixed in a ball mill for 48 hours and then dried. Granules whose particle size was adjusted with a 280 μm sieve were charged with a rubber mold and subjected to rubber press molding at a pressure of 2 ton / cm 2 to produce a green molded body having a diameter of 5 mm. This molded body is filled in a silicon nitride crucible, heated in an electric furnace at a rate of temperature increase of 300 ° C./hour in a nitrogen gas atmosphere of 1 atm, and maintained at 1750 ° C. for 3 hours. A ligature was prepared. The bulk density of the obtained sintered body was measured by the Archimedes method.

実施例1〜5及び比較例1
反応には攪拌装置およびコンデンサーを備えた内容積約2Lのジャケット付きSUS製耐圧反応器を使用した。反応器内を窒素ガスで置換した後、液体アンモニアを1L仕込んだ。次に、攪拌翼を400rpmで回転させながら、50mLのSiClを有機溶媒で希釈することなくポンプにより供給し、バッチ式での反応を行った。SiClの供給には液体アンモニア中に設置された内径0.8mmのSUS製ノズルを用いた。ポンプの吐出圧力上限を6.9MPa(ゲージ圧)、流速を2.5mL/分として50mL全量のSiClを供給した。SiCl供給中の反応混合物の温度は18〜20℃、反応器内の圧力は0.7〜0.8MPa(ゲージ圧)であり、供給配管の圧力は最大で5.7MPa(ゲージ圧)に達した。
Examples 1 to 5 and Comparative Example 1
For the reaction, a SUS pressure-resistant reactor with an internal volume of about 2 L equipped with a stirrer and a condenser was used. After replacing the inside of the reactor with nitrogen gas, 1 L of liquid ammonia was charged. Next, while rotating the stirring blade at 400 rpm, 50 mL of SiCl 4 was supplied by a pump without being diluted with an organic solvent, and a batch-type reaction was performed. For the supply of SiCl 4 , a SUS nozzle having an inner diameter of 0.8 mm installed in liquid ammonia was used. The upper limit of the pump discharge pressure was 6.9 MPa (gauge pressure), the flow rate was 2.5 mL / min, and 50 mL of the total amount of SiCl 4 was supplied. The temperature of the reaction mixture during the supply of SiCl 4 is 18 to 20 ° C., the pressure in the reactor is 0.7 to 0.8 MPa (gauge pressure), and the pressure of the supply pipe is 5.7 MPa (gauge pressure) at the maximum. Reached.

反応終了後、生成したスラリーを攪拌装置と焼結金属フィルターを備えた内容積約2Lのジャケット付きSUS製耐圧容器(ヌッチェ式)に移し、ろ過を行った。得られた湿潤のケーキを更に約1Lの液体アンモニアにてバッチ洗浄した後ろ過した。この洗浄/ろ過操作を合計7回繰り返した。   After completion of the reaction, the produced slurry was transferred to a SUS pressure-resistant vessel (Nutsche type) with a jacket having an internal volume of about 2 L equipped with a stirrer and a sintered metal filter, and filtered. The resulting wet cake was further batch washed with about 1 L of liquid ammonia and then filtered. This washing / filtration operation was repeated a total of 7 times.

こうして得られた湿潤ケーキを乾燥して、含窒素シラン化合物粉末を得た。乾燥操作においては、ろ過槽のジャケットに90℃の熱水を流通させて加熱し、適宜内圧を開放しながら槽内の圧力を0.6MPa(ゲージ圧)に保ち、槽内温度が60℃に到達したところを終点とした。   The wet cake thus obtained was dried to obtain a nitrogen-containing silane compound powder. In the drying operation, hot water of 90 ° C. is circulated through the jacket of the filtration tank and heated, the pressure in the tank is kept at 0.6 MPa (gauge pressure) while appropriately releasing the internal pressure, and the temperature in the tank is 60 ° C. The end point was reached.

次に、ろ過槽を大型のグローブボックスに搬入し、一晩かけて窒素ガスを流通させることにより内部の酸素や水分を充分に追い出した。その後グローブボックス内でろ過槽を開放し、生成した含窒素シラン化合物粉末を取り出した。26.0gのシリコンジイミドが得られ、その軽装密度は0.21g/cmであった。 Next, the filtration tank was carried into a large glove box, and nitrogen gas was circulated overnight, thereby sufficiently expelling internal oxygen and moisture. Thereafter, the filtration tank was opened in the glove box, and the produced nitrogen-containing silane compound powder was taken out. 26.0 g of silicon diimide was obtained, and its light weight density was 0.21 g / cm 3 .

軽装密度0.21g/cmのシリコンジイミドを1000℃で加熱分解して得られた比表面積650m/g、酸素含有量0.8wt%の非晶質窒化ケイ素粉末を、直径160mm、高さ240mmの円筒状ゴム型に充填し、1500kg/cmの圧力でラバープレスして、円筒状のブロックを作製した。得られた非晶質窒化ケイ素のブロックを破砕し、篩分けをして、表1に記載の種々の粒度の顆粒状物を得た。顆粒状物の嵩密度は0.86g/cm、軽装密度は0.60〜0.62g/cmであった。この顆粒状物1.5kgを内径280mm、高さ150mmのカーボン製ルツボに充填し、バッチ式電気炉にセットした。 An amorphous silicon nitride powder having a specific surface area of 650 m 2 / g and oxygen content of 0.8 wt% obtained by thermally decomposing silicon diimide having a light packing density of 0.21 g / cm 3 at 1000 ° C. has a diameter of 160 mm and a height of A cylindrical rubber mold of 240 mm was filled and rubber-pressed at a pressure of 1500 kg / cm 2 to produce a cylindrical block. The obtained amorphous silicon nitride block was crushed and sieved to obtain granules having various particle sizes shown in Table 1. The bulk density of the granulate is 0.86 g / cm 3, diatomaceous density was 0.60~0.62g / cm 3. 1.5 kg of this granular material was filled in a carbon crucible having an inner diameter of 280 mm and a height of 150 mm, and set in a batch type electric furnace.

次に、電気炉内を13Pa以下に真空脱気後、窒素ガスを導入し、窒素ガス流通下で加熱を開始した。室温から1000℃までは2時間で昇温し、同温度に1時間保持した後、1.3℃/分の昇温速度で1200℃まで加熱した。更に4.2℃/分の速度で1500℃まで昇温して、同温度に1時間保持した後、炉内放冷した。得られた結晶質窒化ケイ素粉末の化学組成、結晶化度、α相含有率、比表面積、プレス密度、粒子形状等の特性、及び前記粉末を原料とした焼結体の焼結密度を表1に示す。また、実施例2で得られた粉末の走査型電子顕微鏡写真を図1に示す。   Next, after the inside of the electric furnace was vacuum degassed to 13 Pa or less, nitrogen gas was introduced, and heating was started under a nitrogen gas flow. The temperature was raised from room temperature to 1000 ° C. in 2 hours, held at the same temperature for 1 hour, and then heated to 1200 ° C. at a temperature rising rate of 1.3 ° C./min. Further, the temperature was raised to 1500 ° C. at a rate of 4.2 ° C./min, kept at the same temperature for 1 hour, and then allowed to cool in the furnace. Table 1 shows the chemical composition, crystallinity, α phase content, specific surface area, press density, particle shape and other characteristics of the obtained crystalline silicon nitride powder, and the sintered density of the sintered body using the powder as a raw material. Shown in A scanning electron micrograph of the powder obtained in Example 2 is shown in FIG.

比較例2
実施例1で使用した非晶質窒化ケイ素粉末800gをそのまま実施例1と同一寸法のカーボン製ルツボに充填し、実施例1と同一条件化で焼成した。得られた結晶質窒化ケイ素粉末の諸特性及び焼結体特性を表1に示す。
Comparative Example 2
800 g of the amorphous silicon nitride powder used in Example 1 was filled in a carbon crucible having the same dimensions as in Example 1 and baked under the same conditions as in Example 1. Table 1 shows various characteristics and sintered body characteristics of the obtained crystalline silicon nitride powder.

実施例6〜8及び比較例3〜4
実施例1〜5及び比較例1で示した方法で得られた軽装密度0.21g/cmのシリコンジイミドを1000℃で加熱分解して得られた比表面積660m/g、酸素含有量0.9wt%の非晶質窒化ケイ素粉末を種々の寸法のボール成形用ゴム型に充填し、1500kg/cmの圧力でラバープレスして、表2に記載の直径の球状顆粒を得た。この球状顆粒の嵩密度は0.85g/cmであった。球状顆粒1.5kgを実施例1と同一寸法のカーボン製ルツボに充填し、バッチ式電気炉にセットした。次に、1000〜1200℃までの昇温速度を2℃/分とした以外は、実施例1と同一条件下で焼成を行った。得られた結晶質窒化ケイ素粉末の諸特性及び焼結体特性を表2に示す。また、実施例7で得られた粉末の走査型電子顕微鏡写真を図2に示す。
Examples 6-8 and Comparative Examples 3-4
Specific surface area of 660 m 2 / g obtained by thermally decomposing silicon diimide having a light loading density of 0.21 g / cm 3 obtained by the methods shown in Examples 1 to 5 and Comparative Example 1 at 1000 ° C., oxygen content of 0 .9 wt% amorphous silicon nitride powder was filled into rubber molds for ball molding of various sizes and rubber-pressed at a pressure of 1500 kg / cm 3 to obtain spherical granules having the diameters shown in Table 2. The bulk density of the spherical granules was 0.85 g / cm 3 . 1.5 kg of spherical granules were filled in a carbon crucible having the same dimensions as in Example 1, and set in a batch type electric furnace. Next, baking was performed under the same conditions as in Example 1 except that the rate of temperature increase from 1000 to 1200 ° C. was 2 ° C./min. Table 2 shows various characteristics and sintered body characteristics of the obtained crystalline silicon nitride powder. A scanning electron micrograph of the powder obtained in Example 7 is shown in FIG.

比較例5
実施例6で使用した非晶質窒化ケイ素粉末800gをそのまま実施例6と同一寸法のカーボン製ルツボに充填し、実施例6と同一条件下で焼成した。得られた結晶質窒化ケイ素粉末の諸特性及び焼結体特性を表2に示す。
Comparative Example 5
800 g of amorphous silicon nitride powder used in Example 6 was filled in a carbon crucible having the same dimensions as in Example 6 and fired under the same conditions as in Example 6. Table 2 shows various characteristics and sintered body characteristics of the obtained crystalline silicon nitride powder.

実施例9〜11及び比較例6
実施例1で使用した非晶質窒化ケイ素粉末を、直径15mmの金型に充填し、表3に記載の成形圧力で一軸プレスして、種々の嵩密度を有する円柱状の成形体を大量に作製した。得られた成形体は直径15mm、高さ12〜15mmの円柱形状であり、短軸径、長軸径で表すと短軸径12〜14mm、長軸径15mmの顆粒状物である。得られた円柱状顆粒1.5kgを実施例1と同一寸法のカーボン製ルツボに充填し、バッチ式電気炉にセットした。次に、実施例1と同様の操作で、室温から1000℃まで2時間で昇温し、同温度に1時間保持した後、1000℃から1100℃を1.3℃/分で、1100℃から1200℃を2℃/分の速度で昇温した。さらに4.2℃/分の昇温速度で1530℃まで加熱して、同温度に40分間保持した後、炉内放冷した。得られた結晶質窒化ケイ素粉末の諸特性及び焼結体特性を表3に示す。
Examples 9 to 11 and Comparative Example 6
Amorphous silicon nitride powder used in Example 1 was filled in a mold having a diameter of 15 mm and uniaxially pressed at the molding pressure shown in Table 3 to obtain a large number of cylindrical shaped bodies having various bulk densities. Produced. The obtained molded body has a cylindrical shape with a diameter of 15 mm and a height of 12 to 15 mm, and is a granular product with a short axis diameter of 12 to 14 mm and a long axis diameter of 15 mm when expressed in terms of a short axis diameter and a long axis diameter. The obtained cylindrical granules (1.5 kg) were filled in a carbon crucible having the same dimensions as in Example 1 and set in a batch type electric furnace. Next, in the same manner as in Example 1, the temperature was raised from room temperature to 1000 ° C. over 2 hours and held at the same temperature for 1 hour, and then from 1000 ° C. to 1100 ° C. at 1.3 ° C./min from 1100 ° C. The temperature was increased to 1200 ° C. at a rate of 2 ° C./min. Furthermore, it heated to 1530 degreeC with the temperature increase rate of 4.2 degree-C / min, and hold | maintained for 40 minutes, Then, it stood to cool in a furnace. Table 3 shows various characteristics and sintered body characteristics of the obtained crystalline silicon nitride powder.

比較例7
実施例9で使用した非晶質窒化ケイ素粉末800gを、そのまま実施例9と同一寸法のカーボン製ルツボに充填し、実施例9と同一条件下で焼成した。得られた結晶質窒化ケイ素粉末の諸特性及び焼結体特性を表3に示す。
Comparative Example 7
800 g of amorphous silicon nitride powder used in Example 9 was filled in a carbon crucible having the same dimensions as in Example 9 and fired under the same conditions as in Example 9. Table 3 shows various characteristics and sintered body characteristics of the obtained crystalline silicon nitride powder.

実施例12〜14及び比較例8
実施例1〜5及び比較例1で示した方法で得られた軽装密度0.21g/cmのシリコンジイミドを1000℃で加熱分解して得られた比表面積670m/g、酸素含有量0.9wt%の非晶質窒化ケイ素粉末を、実施例1と同一寸法の円筒状ゴム型に充填し、1500kg/cmの圧力でラバープレスして、円柱状のブロックを作製した。実施例1と同様に、このブロックを破砕し、篩分けして、短軸径4.0〜10.0mm、長軸径5.0〜12.0mmの顆粒状物を得た。顆粒状物の嵩密度は0.87g/cmであった。この顆粒状物1.5kgを実施例1と同一寸法のカーボン製ルツボに充填し、バッチ式電気炉にセットした。次に、実施例1と同様の操作で、室温から1000℃まで2時間で昇温し、同温度に1時間保持した後、表4に記載の昇温速度で1200℃まで加熱した。さらに4.2℃/分の速度で同表に記載の最終的な焼成温度まで昇温し、同温度に1時間保持した後、炉内放冷した。得られた結晶質窒化ケイ素粉末の諸特性及び焼結体特性を表4に示す。
Examples 12 to 14 and Comparative Example 8
Specific surface area of 670 m 2 / g obtained by thermally decomposing silicon diimide having a light loading density of 0.21 g / cm 3 obtained by the methods shown in Examples 1 to 5 and Comparative Example 1 at 1000 ° C., oxygen content of 0 A cylindrical rubber mold having the same dimensions as in Example 1 was filled with .9 wt% amorphous silicon nitride powder, and rubber-pressed at a pressure of 1500 kg / cm 2 to prepare a cylindrical block. In the same manner as in Example 1, this block was crushed and sieved to obtain granules having a minor axis diameter of 4.0 to 10.0 mm and a major axis diameter of 5.0 to 12.0 mm. The bulk density of the granular material was 0.87 g / cm 2 . 1.5 kg of this granular material was filled in a carbon crucible having the same dimensions as in Example 1, and set in a batch type electric furnace. Next, in the same manner as in Example 1, the temperature was raised from room temperature to 1000 ° C. over 2 hours, held at the same temperature for 1 hour, and then heated to 1200 ° C. at the rate of temperature rise shown in Table 4. Furthermore, it heated up to the final calcination temperature described in the same table | surface at the rate of 4.2 degree-C / min, and hold | maintained at the same temperature for 1 hour, Then, it stood to cool in a furnace. Table 4 shows various characteristics and sintered body characteristics of the obtained crystalline silicon nitride powder.

本発明は、高温構造材料として有用な窒化ケイ素質焼結体の製造用原料として好適な粒状結晶のみからなる高純度な結晶質窒化ケイ素粉末の製造方法に関するものである。   The present invention relates to a method for producing a high-purity crystalline silicon nitride powder comprising only granular crystals suitable as a raw material for producing a silicon nitride sintered body useful as a high-temperature structural material.

Claims (5)

ハロゲン化シラン化合物を液体アンモニアと混合して反応させ、ハロゲン化シラン化合物を無溶媒かあるいはハロゲン化シラン化合物濃度が50vol%以上の不活性有機溶媒の溶液として液体アンモニア中に設置した供給口から吐出させて供給して、非晶質窒化ケイ素粉末及び/又は含窒素シラン化合物を製造すること、
得られた非晶質窒化ケイ素粉末及び/又は含窒素シラン化合物を圧縮成形して、嵩密度0.8g/cm超〜1.0g/cm以下、短軸径1mm以上、長軸径20mm以下の顆粒状物とすること、
その非晶質窒化ケイ素粉末及び/又は含窒素シラン化合物を窒素含有不活性ガス雰囲気下又は窒素含有還元性ガス雰囲気下に焼成して結晶質窒化ケイ素粉末を製造するに際し、昇温過程において、1000〜1200℃の温度範囲全域における昇温速度を10℃/分以下とすることを特徴とする結晶質窒化ケイ素粉末の製造方法。
The halogenated silane compound is mixed with liquid ammonia and allowed to react, and the halogenated silane compound is discharged from a supply port installed in liquid ammonia as a solvent-free or inert organic solvent solution having a halogenated silane compound concentration of 50 vol% or more. Supplying amorphous silicon nitride powder and / or a nitrogen-containing silane compound,
The obtained amorphous silicon nitride powder and / or nitrogen-containing silane compound is compression-molded to have a bulk density of 0.8 g / cm 3 to 1.0 g / cm 3 or less, a minor axis diameter of 1 mm or more, and a major axis diameter of 20 mm. Make the following granules:
When the crystalline silicon nitride powder is produced by firing the amorphous silicon nitride powder and / or the nitrogen-containing silane compound in a nitrogen-containing inert gas atmosphere or a nitrogen-containing reducing gas atmosphere , A method for producing crystalline silicon nitride powder, characterized in that the temperature rising rate in the entire temperature range of ˜1200 ° C. is 10 ° C./min or less.
焼成時における顆粒状物の軽装密度が0.52g/cm超〜0.80g/cm以下であることを特徴とする請求項1に記載の結晶質窒化ケイ素粉末の製造方法。 Method for producing a crystalline silicon nitride powder of claim 1, wherein the diatomaceous density of the granulate during the firing is not more than 0.52 g / cm 3 super ~0.80g / cm 3. 圧縮成形される非晶質窒化ケイ素粉末及び/又は含窒素シラン化合物の軽装密度が0.10〜0.30g/cmであることを特徴とする請求項1又は2に記載の結晶質窒化ケイ素粉末の製造方法。 The crystalline silicon nitride according to claim 1 or 2, wherein the light weight density of the amorphous silicon nitride powder and / or the nitrogen-containing silane compound to be compression-molded is 0.10 to 0.30 g / cm 3. Powder manufacturing method. 前記の非晶質窒化ケイ素粉末及び/又は含窒素シラン化合物の製造において、ハロゲン化シラン化合物を無溶媒かあるいはハロゲン化シラン化合物濃度が50vol%以上の不活性有機溶媒の溶液として供給する際の吐出線速度を5cm/sec以上とすることを特徴とする、請求項1〜3のいずれか1項に記載の結晶質窒化ケイ素粉末の製造方法。 In the production of the amorphous silicon nitride powder and / or the nitrogen-containing silane compound, the discharge is performed when the halogenated silane compound is supplied as a solventless or a solution of an inert organic solvent having a halogenated silane compound concentration of 50 vol% or more. The method for producing crystalline silicon nitride powder according to any one of claims 1 to 3, wherein the linear velocity is 5 cm / sec or more. 前記の非晶質窒化ケイ素粉末及び/又は含窒素シラン化合物の製造において、反応温度が−10〜40℃の範囲内、反応圧力が0.3〜1.6MPa(絶対圧)の範囲内であることを特徴とする、請求項1〜4のいずれか1項に記載の結晶質窒化ケイ素粉末の製造方法。 In the production of the amorphous silicon nitride powder and / or the nitrogen-containing silane compound, the reaction temperature is in the range of −10 to 40 ° C., and the reaction pressure is in the range of 0.3 to 1.6 MPa (absolute pressure). The method for producing crystalline silicon nitride powder according to any one of claims 1 to 4 , wherein the method is characterized in that:
JP2010083605A 2010-03-31 2010-03-31 Method for producing crystalline silicon nitride powder Expired - Fee Related JP5407999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010083605A JP5407999B2 (en) 2010-03-31 2010-03-31 Method for producing crystalline silicon nitride powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010083605A JP5407999B2 (en) 2010-03-31 2010-03-31 Method for producing crystalline silicon nitride powder

Publications (2)

Publication Number Publication Date
JP2011213546A JP2011213546A (en) 2011-10-27
JP5407999B2 true JP5407999B2 (en) 2014-02-05

Family

ID=44943688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010083605A Expired - Fee Related JP5407999B2 (en) 2010-03-31 2010-03-31 Method for producing crystalline silicon nitride powder

Country Status (1)

Country Link
JP (1) JP5407999B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109384206A (en) * 2017-08-09 2019-02-26 新疆晶硕新材料有限公司 The production system and production method of the process units and production method of silicon imide, silicon nitride

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101479876B1 (en) * 2013-12-23 2015-01-06 오씨아이 주식회사 Method of manufacturing silicon nitride powder

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855316A (en) * 1981-09-24 1983-04-01 Toyo Soda Mfg Co Ltd Manufacture of silicon nitride powder
DE3924361A1 (en) * 1989-07-22 1991-01-24 Huels Chemische Werke Ag METHOD FOR PRODUCING SILICON DIIMIDE WITH A LOW CARBON CONTENT
JP2578022B2 (en) * 1990-12-04 1997-02-05 宇部興産株式会社 Method for producing crystalline silicon nitride powder
JP2696733B2 (en) * 1991-11-26 1998-01-14 宇部興産株式会社 Method for producing crystalline silicon nitride powder
DE4227072A1 (en) * 1992-08-17 1994-02-24 Bayer Ag Process for the production of a silicon nitride powder
JPH0812306A (en) * 1994-07-01 1996-01-16 Ube Ind Ltd Silicon nitride powder
JP3475614B2 (en) * 1995-12-05 2003-12-08 宇部興産株式会社 Silicon diimide
JP3669406B2 (en) * 1997-12-16 2005-07-06 宇部興産株式会社 Silicon nitride powder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109384206A (en) * 2017-08-09 2019-02-26 新疆晶硕新材料有限公司 The production system and production method of the process units and production method of silicon imide, silicon nitride
CN109384206B (en) * 2017-08-09 2020-07-17 新疆晶硕新材料有限公司 Production device and production method of silicon imine, production system and production method of silicon nitride

Also Published As

Publication number Publication date
JP2011213546A (en) 2011-10-27

Similar Documents

Publication Publication Date Title
JP5862765B2 (en) Method for producing silicon nitride powder, silicon nitride powder, and method for producing silicon nitride sintered body
WO2011011606A2 (en) Methods of forming sintered boron carbide
JP5407999B2 (en) Method for producing crystalline silicon nitride powder
JP2021116202A (en) Hexagonal boron nitride powder, and sintered body raw material composition
JP6516594B2 (en) Hexagonal boron nitride particles and method for producing the same
JP3475614B2 (en) Silicon diimide
JP2578022B2 (en) Method for producing crystalline silicon nitride powder
JP6184732B2 (en) Silicon carbide granules and method for producing the same
JPS6111886B2 (en)
JP2696733B2 (en) Method for producing crystalline silicon nitride powder
JP2747462B2 (en) Method for producing crystalline silicon nitride powder
JP2021116203A (en) Hexagonal boron nitride powder, and method for producing hexagonal boron nitride powder
JP2002018267A (en) Graphite material for synthesizing semiconductor diamond and semiconductor diamond manufactured using the same
KR100976554B1 (en) Grain growth control method through Mg compound addition when synthesis of hexagonal born nitride
JPH082907A (en) Powdery silicon nitride
JP3550919B2 (en) Nitrogen-containing silane compounds
JP3900696B2 (en) Crucible for firing silicon nitride powder
JPH0455142B2 (en)
JPS6144770A (en) Manufacture of silicon nitride sintered body
JPS6227004B2 (en)
JP3900695B2 (en) Crucible for firing silicon nitride powder
JP2855602B2 (en) Method for producing silicon nitride powder
JP3536494B2 (en) Nitrogen-containing silane compounds
JPS61168567A (en) Manufacture of silicon carbide sintered body
JP2021116204A (en) Sintered body of hexagonal boron nitride

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131021

R150 Certificate of patent or registration of utility model

Ref document number: 5407999

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees