JPH09221308A - Nitrogen-containing silane compound - Google Patents

Nitrogen-containing silane compound

Info

Publication number
JPH09221308A
JPH09221308A JP8329324A JP32932496A JPH09221308A JP H09221308 A JPH09221308 A JP H09221308A JP 8329324 A JP8329324 A JP 8329324A JP 32932496 A JP32932496 A JP 32932496A JP H09221308 A JPH09221308 A JP H09221308A
Authority
JP
Japan
Prior art keywords
nitrogen
containing silane
silane compound
content
silicon nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8329324A
Other languages
Japanese (ja)
Other versions
JP3550919B2 (en
Inventor
Tetsuo Yamada
哲夫 山田
Koji Shibata
耕司 柴田
Takeshi Yamao
猛 山尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP32932496A priority Critical patent/JP3550919B2/en
Publication of JPH09221308A publication Critical patent/JPH09221308A/en
Application granted granted Critical
Publication of JP3550919B2 publication Critical patent/JP3550919B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To stably obtain silicon nitride ceramics high in strength, toughness, reliability and oxidation resistance with high reproducibility by using a specified nitrogen-containing silane compd. mainly comprising silicon diimide as a starting material. SOLUTION: The nitrogen-containing silane compd. having >=100nm average grain size, 1.4-1.9g/cm<3> true density, 0.045-0.090g/cm<3> bulk density, 600-1000m<2> /g specific surface area, 45.5-51.5wt.% nitrogen content, 44.5-51.5wt.% silicon content, <=3.5wt.% oxygen content, less than 0.25wt.% carbon content, <=180ppm halogen content and <=100ppm metallic impurity is used. This production method of ceramics is not restricted, but a solution of halogenated silane and an org. solvent is supplied to alloy to react to an org. solvent layer of a reaction system separated into two layers by a specific density difference between liquid ammonia and the org. solvent which does not dissolve into the ammonia and has larger specific density. Pressure is set to 0.54-13.6atm and reaction temp. is set to -45 to 36 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、新規な含窒素シラ
ン化合物に関するものであり、詳しくは、構造用セラミ
ックスとして使用される窒化ケイ素セラミックスの中
で、特に高強度高靱性の窒化ケイ素セラミックスを製造
するための出発原料として好適な含窒素シラン化合物に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel nitrogen-containing silane compound, and in particular, it produces silicon nitride ceramics having particularly high strength and high toughness among silicon nitride ceramics used as structural ceramics. The present invention relates to a nitrogen-containing silane compound suitable as a starting material for

【0002】[0002]

【従来の技術及びその問題点】窒化ケイ素セラミックス
は、高強度、高靭性、高耐蝕性という優れた特性を有
し、1000℃以下の温度で使用される構造材料や機械
部品として種々の分野への用途展開が進展している。こ
の窒化ケイ素の焼結においては、通常Y23、Al23
等の酸化物を5〜10重量%程度添加して焼結を行う
為、焼結条件により、得られる焼結体の機械的特性が変
化するという難点があった。このような焼結条件の変動
による機械的特性の変化を防止し、焼結条件によらず安
定して優れた機械的特性を発現し得る窒化ケイ素セラミ
ックスを製造する為に、Y23、MgO、Sc23等の
焼結助剤の探索やCr2N、NbB、TaSi2、ZrS
2等の硬質粒子の分散の検討と併行し、焼結体製造原
料である窒化ケイ素粉末の製造条件についても研究が行
われている。
2. Description of the Related Art Silicon nitride ceramics have excellent properties such as high strength, high toughness and high corrosion resistance, and are used in various fields as structural materials and mechanical parts used at temperatures of 1000 ° C. or lower. The application development of is progressing. In this silicon nitride sintering, Y 2 O 3 , Al 2 O 3 is usually used.
Since oxides such as 5 to 10% by weight are added for sintering, the mechanical properties of the obtained sintered body change depending on the sintering conditions. In order to prevent changes in mechanical properties due to such changes in sintering conditions and to produce silicon nitride ceramics capable of stably exhibiting excellent mechanical properties regardless of sintering conditions, Y 2 O 3 , Search for sintering aids such as MgO, Sc 2 O 3 and Cr 2 N, NbB, TaSi 2 , ZrS
In parallel with the study of dispersion of hard particles such as i 2, the production conditions of silicon nitride powder, which is a raw material for producing a sintered body, are also studied.

【0003】従来、窒化ケイ素粉末の製法として、ハロ
ゲン化ケイ素とアンモニアとを反応させるイミド分解法
が知られており、この方法で製造された窒化ケイ素粉末
は、易焼結性であり、かつ優れた焼結体性能を示すと言
われている。そこで、イミド分解法の出発原料である含
窒素シラン化合物の粉末特性と得られる窒化ケイ素粉末
の焼結性及び焼結体特性との関係について詳細に検討し
た結果、特定の粉末特性を有する含窒素シラン化合物を
用いた場合に、得られる窒化ケイ素粉末を通常の焼結条
件で焼結することで、優れた機械的特性を有する窒化ケ
イ素セラミックスを再現性良く安定的に製造することが
できることを見出した。
Conventionally, an imide decomposition method in which a silicon halide is reacted with ammonia has been known as a method for producing silicon nitride powder. The silicon nitride powder produced by this method is easily sinterable and excellent. It is said that it exhibits excellent sintered body performance. Therefore, as a result of detailed study of the relationship between the powder characteristics of the nitrogen-containing silane compound as the starting material for the imide decomposition method and the sinterability and sintered body characteristics of the obtained silicon nitride powder, it was found that nitrogen-containing silane compounds having specific powder characteristics It was found that, when a silane compound is used, by sintering the resulting silicon nitride powder under normal sintering conditions, silicon nitride ceramics having excellent mechanical properties can be stably manufactured with good reproducibility. It was

【0004】[0004]

【発明の目的】本発明の目的は、優れた機械的特性を有
する窒化ケイ素セラミックスを再現性良く安定して製造
できる窒化ケイ素粉末を製造するための出発原料となる
含窒素シラン化合物を提供することにある。
It is an object of the present invention to provide a nitrogen-containing silane compound as a starting material for producing a silicon nitride powder capable of producing silicon nitride ceramics having excellent mechanical properties with good reproducibility and stability. It is in.

【0005】[0005]

【課題を解決するための手段】本発明は、真密度が1.
4〜1.9g/cm3、軽装密度が0.045〜0.0
90g/cm3であり、かつ比表面積が600〜100
0m2/g、酸素含有量が3.5重量%以下、炭素含有
量が0.25重量%未満である主としてシリコンジイミ
ドからなる含窒素シラン化合物に関するものである。本
発明の含窒素シラン化合物は、主として化学式 Si
(NH)2 で表されるシリコンジイミドからなるものであ
る。含窒素シラン化合物の窒素含有量は、45.5〜5
1.5重量%、ケイ素含有量は、44.5〜51.5重
量%である。
The present invention has a true density of 1.
4 to 1.9 g / cm 3 , light load density of 0.045 to 0.0
90 g / cm 3 and a specific surface area of 600 to 100
The present invention relates to a nitrogen-containing silane compound mainly composed of silicon diimide having an oxygen content of 0 m 2 / g, an oxygen content of 3.5% by weight or less, and a carbon content of less than 0.25% by weight. The nitrogen-containing silane compound of the present invention is mainly represented by the chemical formula Si
It is composed of silicon diimide represented by (NH) 2 . The nitrogen content of the nitrogen-containing silane compound is 45.5 to 5
1.5 wt%, silicon content is 44.5-51.5 wt%.

【0006】シリコンジイミドは、ケイ素原子と窒素原
子が三次元のネットワーク構造を形成しているので、そ
のSi−N結合の規則性により真密度が変わってくる。
本発明の含窒素シラン化合物は、真密度が1.4〜1.
9g/cm3、好ましくは、1.5〜1.7g/cm3
ある。真密度が1.4g/cm3よりも小さくなると、
これを焼成した際に、結晶化が高温側にシフトし、針状
晶が生成しやすくなる。針状晶の割合が増えると、得ら
れる焼結体の強度特性が低下し、またバラツキも増大し
て、焼結体の信頼性が悪化する。さらに、焼結体の耐酸
化性も悪化し、酸化増量の上昇、酸化後強度の低下を引
き起こす。また、真密度が1.9g/cm3よりも大き
くなると、これを焼成した際に、結晶化が低温側にシフ
トし、角ばった安定した粒状粒子が生成する。しかしな
がら、過度に安定化された粒子は焼結活性が低く、焼結
体を作製する際に緻密化させることが難しくなるので好
ましくない。
Since silicon diimide has a three-dimensional network structure of silicon atoms and nitrogen atoms, the true density of silicon diimide changes depending on the regularity of the Si--N bonds.
The nitrogen-containing silane compound of the present invention has a true density of 1.4 to 1.
9 g / cm 3, preferably from 1.5~1.7g / cm 3. When the true density is less than 1.4 g / cm 3 ,
When this is fired, crystallization shifts to the high temperature side, and needle-like crystals are easily generated. When the proportion of needle-like crystals increases, the strength characteristics of the obtained sintered body deteriorate, and the variation also increases, and the reliability of the sintered body deteriorates. Furthermore, the oxidation resistance of the sintered body also deteriorates, causing an increase in the amount of oxidation and a decrease in the strength after oxidation. Further, when the true density is higher than 1.9 g / cm 3 , the crystallization shifts to the low temperature side when firing, and angular and stable granular particles are generated. However, particles that are excessively stabilized have low sintering activity, and it is difficult to densify them when producing a sintered body, which is not preferable.

【0007】また、軽装密度は0.045〜0.090
g/cm3、好ましくは、0.055〜0.085g/
cm3である。軽装密度が0.045g/cm3よりも小
さくなると、これを焼成して得られる窒化ケイ素粉末の
β分率が低下すると共に、粉末の凝集が強くなる。その
結果、湿式ボールミル等により焼結助剤と混合する際
に、助剤を均一に分散し難くなる。窒化ケイ素粉末のβ
分率には最適値があり、過度に低いβ分率は好ましくな
い。また、助剤との均一混合が難しくなる影響として、
焼結体の室温強度及び高温強度が低下してしまうという
問題がある。また、軽装密度が0.090g/cm3
りも大きくなると、これを焼成して得られる窒化ケイ素
粉末のβ分率が上昇すると共に、粉末の凝集が弱くなっ
て解砕しやすくなる。このため、湿式ボールミル等によ
り焼結助剤と混合する際に、助剤を均一に分散できる。
しかしながら、成形体のプレス密度が低下し、焼結体の
破壊靱性が低下するいう問題を生じるので好ましくな
い。
The light packaging density is 0.045 to 0.090.
g / cm 3 , preferably 0.055-0.085 g /
cm 3 . When the light packaging density is less than 0.045 g / cm 3 , the β fraction of the silicon nitride powder obtained by firing the powder decreases, and the powder agglomerates strongly. As a result, it becomes difficult to uniformly disperse the auxiliary agent when it is mixed with the sintering auxiliary agent by a wet ball mill or the like. Β of silicon nitride powder
There is an optimum value for the fraction, and an excessively low β fraction is not preferable. Also, as an effect of making it difficult to uniformly mix with the auxiliary agent,
There is a problem that the room temperature strength and the high temperature strength of the sintered body are reduced. Further, when the light packaging density is higher than 0.090 g / cm 3 , the β fraction of the silicon nitride powder obtained by firing this increases, and the agglomeration of the powder weakens, so that the powder easily breaks. Therefore, the auxiliary agent can be uniformly dispersed when it is mixed with the sintering auxiliary agent by a wet ball mill or the like.
However, this is not preferable because it causes a problem that the press density of the molded body decreases and the fracture toughness of the sintered body decreases.

【0008】比表面積は600〜1000m2/g、好
ましくは、700〜800m2/gである。比表面積が
600m2/gよりも小さくなると、これを焼成して得
られる粉末の凝集指標が大きくなり、最終的に得られる
焼結体の高温強度が低下する。また、1000m2/g
よりも大きくなると、窒化ケイ素粉末のα分率が低下し
て焼結性が悪くなるので好ましくない。また、酸素含有
量は3.5重量%以下、好ましくは、2.5重量%以下
である。酸素含有量が、3.5重量%よりも多くなる
と、得られる窒化ケイ素粉末の焼結性は良好であるもの
の、得られる焼結体の高温強度が低下する。また、得ら
れる窒化ケイ素粉末の内部酸素量が多くなるため、得ら
れる焼結体の酸化後強度が低下する。さらに、含窒素シ
ラン化合物を製造する際に、原料又は反応溶媒から炭素
含有物質(例えば、トルエン)が不純物として混入して
くるが、その含有量は炭素換算で0.25重量%未満、
好ましくは、0.10重量%未満である。炭素含有量が
0.25重量%以上になると、含窒素シラン化合物を焼
成して得られる窒化ケイ素粉末の炭素含有量が0.10
重量%よりも多くなり、その結果、焼結性が悪くなるの
で好ましくない。
[0008] The specific surface area is 600~1000m 2 / g, preferably from of 700-800m 2 / g. When the specific surface area is smaller than 600 m 2 / g, the aggregation index of the powder obtained by firing the same increases, and the high temperature strength of the finally obtained sintered body decreases. Also, 1000 m 2 / g
If it is larger than this, the α fraction of the silicon nitride powder is lowered and the sinterability is deteriorated, which is not preferable. The oxygen content is 3.5% by weight or less, preferably 2.5% by weight or less. When the oxygen content is more than 3.5% by weight, the sinterability of the obtained silicon nitride powder is good, but the high temperature strength of the obtained sintered body decreases. Further, since the amount of internal oxygen in the obtained silicon nitride powder is large, the strength of the obtained sintered body after oxidation is reduced. Furthermore, when a nitrogen-containing silane compound is produced, a carbon-containing substance (for example, toluene) is mixed as an impurity from a raw material or a reaction solvent, and its content is less than 0.25% by weight in terms of carbon.
It is preferably less than 0.10% by weight. When the carbon content is 0.25% by weight or more, the carbon content of the silicon nitride powder obtained by firing the nitrogen-containing silane compound is 0.10.
It is not preferable because the amount is more than the weight%, resulting in poor sinterability.

【0009】さらに、本発明の含窒素シラン化合物は、
平均粒径、金属不純物含有量、ハロゲン含有量が以下の
範囲にあることが、所期の目的を達成する上で望まし
い。平均粒径は100nm以下であることが望ましい。
平均粒径が100nmよりも大きくなると、これを焼成
した際に、針状晶が生成しやすくなる。針状晶の割合が
増えると、得られる焼結体の強度特性が低下し、またバ
ラツキも増大して、焼結体の信頼性が悪化する。さら
に、焼結体の耐酸化性も悪化し、酸化増量の上昇、酸化
後強度の低下を引き起こす。また、金属不純物は、その
まま焼成粉末中に残存してしまうが、金属不純物は、焼
結体の破壊発生源となるため、高信頼性の焼結体を作製
するには、金属不純物を低減しなければならない。本発
明においては、金属不純物含有量は100ppm以下で
あることが望ましい。金属不純物含有量が100ppm
よりも多くなると、得られる焼結体の強度が低下する。
さらに、得られる焼結体の粒界の組成変化、粒界での不
純物偏析が起こり、焼結体の耐酸化性が悪化し、酸化増
量の上昇、酸化後強度の低下が起こる。ハロゲン含有量
は180ppm以下であることが望ましい。含窒素シラ
ン化合物に含まれるハロゲンの約半分は、焼成粉末中に
残留する。窒化ケイ素粉末中に含まれるハロゲンは、焼
結体の粒界相に集まり、粒界相の軟化温度を下げる作用
がある。このため、ハロゲン含有量が180ppmより
も多くなると、最終的に得られる焼結体の高温強度が低
下し、また、耐酸化性も悪化する。
Further, the nitrogen-containing silane compound of the present invention is
It is desirable that the average particle size, the content of metal impurities, and the content of halogen be in the following ranges in order to achieve the intended purpose. The average particle size is preferably 100 nm or less.
If the average particle size is larger than 100 nm, needle crystals are likely to be formed when firing this. When the proportion of needle-like crystals increases, the strength characteristics of the obtained sintered body deteriorate, and the variation also increases, and the reliability of the sintered body deteriorates. Furthermore, the oxidation resistance of the sintered body also deteriorates, causing an increase in the amount of oxidation and a decrease in the strength after oxidation. Further, although the metal impurities remain in the fired powder as they are, the metal impurities serve as a source of destruction and destruction of the sintered body. Therefore, in order to produce a highly reliable sintered body, the metal impurities should be reduced. There must be. In the present invention, the metal impurity content is preferably 100 ppm or less. Metal impurity content is 100ppm
If the amount is larger than the above range, the strength of the obtained sintered body decreases.
Further, the composition of the grain boundary of the obtained sintered body is changed, and the segregation of impurities at the grain boundary occurs, so that the oxidation resistance of the sintered body is deteriorated, and the increase in the amount of oxidation and the decrease in the strength after oxidation occur. The halogen content is preferably 180 ppm or less. About half of the halogen contained in the nitrogen-containing silane compound remains in the calcined powder. The halogen contained in the silicon nitride powder collects in the grain boundary phase of the sintered body and has the effect of lowering the softening temperature of the grain boundary phase. Therefore, when the halogen content is more than 180 ppm, the high temperature strength of the finally obtained sintered body is lowered and the oxidation resistance is also deteriorated.

【0010】本発明の含窒素シラン化合物を製造する方
法は、上記特性を有する含窒素シラン化合物が得られれ
ば、特に制限はないが、例えば、以下に示すように、ハ
ロゲン化シランと液体アンモニアとを反応させることに
より製造することができる。即ち、液体アンモニアと、
液体アンモニアと溶けあわずかつ比重が液体アンモニア
より大きい有機溶媒とが比重差により二層に分離してい
る反応系の下部有機溶媒層中に、ハロゲン化シランと前
記有機溶媒との混合溶液を供給することによって、ハロ
ゲン化シランと液体アンモニアとを反応させる。そし
て、前記反応で生成した含窒素シラン化合物を液体アン
モニアで洗浄し、副生したハロゲン化アンモニウムを除
去する。
The method for producing the nitrogen-containing silane compound of the present invention is not particularly limited as long as the nitrogen-containing silane compound having the above-mentioned properties can be obtained. For example, as shown below, halogenated silane and liquid ammonia are used. Can be produced by reacting That is, liquid ammonia,
Liquid ammonia and an organic solvent that is slightly soluble and has a specific gravity larger than that of liquid ammonia are separated into two layers due to the difference in specific gravity.A mixed solution of a halogenated silane and the organic solvent is supplied to the lower organic solvent layer of the reaction system. By doing so, the halogenated silane reacts with the liquid ammonia. Then, the nitrogen-containing silane compound produced in the above reaction is washed with liquid ammonia to remove by-produced ammonium halide.

【0011】上記反応において、圧力を0.54〜1
3.6気圧、反応温度を−45〜36℃の範囲に設定す
ることにより、真密度が1.4〜1.9g/cm3の範
囲の含窒素シラン化合物を合成することができる。ま
た、圧力を1.5〜7.2気圧、反応温度を−25〜1
5℃の範囲とすることにより、真密度を1.5〜1.7
g/cm3の範囲に制御することができる。また、生成
した含窒素シラン化合物をジャケット式撹拌槽等を用い
て乾燥する際の乾燥時間と攪拌回転数を変えることによ
り、含窒素シラン化合物の軽装密度を0.045〜0.
090g/cm3の範囲に制御することができる。乾燥
条件と軽装密度との関係は、用いる乾燥機により変わっ
てくるので、予め両者の関係式を調べて適宜条件を設定
すればよい。
In the above reaction, the pressure is 0.54 to 1
A nitrogen-containing silane compound having a true density in the range of 1.4 to 1.9 g / cm 3 can be synthesized by setting 3.6 atm and the reaction temperature in the range of −45 to 36 ° C. Also, the pressure is 1.5 to 7.2 atm, and the reaction temperature is -25 to 1
By setting the temperature in the range of 5 ° C., the true density is 1.5 to 1.7.
It can be controlled within the range of g / cm 3 . Further, the light loading density of the nitrogen-containing silane compound is changed from 0.045 to 0.4.0 by changing the drying time and the stirring rotation speed when the generated nitrogen-containing silane compound is dried using a jacket type stirring tank or the like.
It can be controlled within the range of 090 g / cm 3 . Since the relationship between the drying condition and the light packaging density varies depending on the dryer used, the relational expression between the two may be examined in advance to set the condition appropriately.

【0012】さらに、反応の際のハロゲン化シランと液
体アンモニアとの比率(体積基準)を0.030〜0.
047、好ましくは、0.035〜0.041の範囲で
変化させることにより、比表面積600〜1000m2
/g、好ましくは、700〜800m2/gの含窒素シ
ラン化合物を合成することができる。なお、前記反応の
初期段階では、液体アンモニアは大過剰に存在するが、
反応の進行によりアンモニアが消費されるため、液体ア
ンモニアも連続的に反応槽へ供給することになる。そし
て、定常状態において反応槽内へ供給するハロゲン化シ
ランと液体アンモニアとの体積比率を変化させる。ま
た、上記反応で得られた含窒素シラン化合物を洗浄する
際に使用する液体アンモニア中の水分量をできるだけ少
なくすることで、含窒素シラン化合物の酸素含有量を
3.5重量%以下、好ましくは、2.5重量%以下とす
ることができる。具体的には、液体アンモニア中の水分
量H(ppm)と洗浄液量/含窒素シラン化合物量W
(l/kg)との積(H×W)が、31500以下、好
ましくは、22500以下とする。同様に、含窒素シラ
ン化合物を洗浄する際に使用する液体アンモニア中の有
機化合物の含有量を1500ppm以下、好ましくは、
600ppm以下とすることにより、含窒素シラン化合
物の炭素含有量を0.25重量%未満、好ましくは、
0.10重量%未満とすることができる。
Furthermore, the ratio (volume basis) of halogenated silane and liquid ammonia in the reaction is 0.030 to 0.
047, preferably by changing in the range of 0.035 to 0.041, the specific surface area 600 to 1000 m 2
/ G, preferably 700 to 800 m 2 / g of a nitrogen-containing silane compound can be synthesized. In the initial stage of the reaction, liquid ammonia exists in a large excess,
Since ammonia is consumed as the reaction progresses, liquid ammonia is also continuously supplied to the reaction tank. Then, in a steady state, the volume ratio of the halogenated silane and the liquid ammonia supplied into the reaction tank is changed. In addition, the oxygen content of the nitrogen-containing silane compound is 3.5% by weight or less, preferably by reducing the water content in the liquid ammonia used when washing the nitrogen-containing silane compound obtained in the above reaction as much as possible. , 2.5 wt% or less. Specifically, the amount of water H (ppm) in liquid ammonia and the amount of cleaning liquid / the amount of nitrogen-containing silane compound W
The product (H × W) with (l / kg) is 31500 or less, preferably 22500 or less. Similarly, the content of the organic compound in the liquid ammonia used when cleaning the nitrogen-containing silane compound is 1500 ppm or less, preferably,
By setting it to 600 ppm or less, the carbon content of the nitrogen-containing silane compound is less than 0.25% by weight, and preferably,
It can be less than 0.10% by weight.

【0013】含窒素シラン化合物の平均粒径は、反応槽
の温度と反応槽へ供給するハロゲン化シランと希釈用の
有機溶媒との混合比率(体積比率)との両方を制御する
ことで変化させることができる。含窒素シラン化合物の
平均粒径を100nm以下にするには、混合比率を0.
08以上とすればよい。金属不純物は、反応槽、洗浄
槽、乾燥機等の内部に設置された撹拌翼の摺動摩耗、接
触摩耗により混入するものであり、機器の調整、制御精
度の改善により低減することができる。具体的には、撹
拌翼と各種の金属部品(ろ過板、容器壁など)との間隔
を5mm以上、好ましくは、10mm以上空け、なおか
つ、回転翼先端部における最大周速を5m/s以下に制
御することにより、金属不純物量を100ppm以下に
することができる。ハロゲン含有量は、反応で得られた
含窒素シラン化合物とハロゲン化アンモニウムとの混合
物からハロゲン化アンモニウムを洗浄、除去する際に使
用する液体アンモニアの量によって変化する。通常、液
体アンモニアを含窒素シラン化合物1kg当たり40l
以上使用することにより、ハロゲン含有量を180pp
m以下にすることができる。ハロゲン含有量は、多量の
液体アンモニアの使用により、いくらでも低減できる
が、過度の洗浄はコストアップにつながるので経済的で
ない。
The average particle diameter of the nitrogen-containing silane compound is changed by controlling both the temperature of the reaction tank and the mixing ratio (volume ratio) of the halogenated silane supplied to the reaction tank and the organic solvent for dilution. be able to. In order to make the average particle diameter of the nitrogen-containing silane compound 100 nm or less, the mixing ratio should be 0.
It may be set to 08 or more. The metal impurities are mixed by the sliding wear and the contact wear of the stirring blades installed inside the reaction tank, the cleaning tank, the dryer, etc., and can be reduced by adjusting the equipment and improving the control accuracy. Specifically, the gap between the stirring blade and various metal parts (filter plate, container wall, etc.) should be 5 mm or more, preferably 10 mm or more, and the maximum peripheral speed at the tip of the rotary blade should be 5 m / s or less. By controlling, the amount of metal impurities can be reduced to 100 ppm or less. The halogen content varies depending on the amount of liquid ammonia used when washing and removing ammonium halide from the mixture of the nitrogen-containing silane compound obtained by the reaction and ammonium halide. Normally, liquid ammonia contains 40 l per 1 kg of nitrogen-containing silane compound.
By using above, the halogen content is 180pp
m or less. The halogen content can be reduced as much as possible by using a large amount of liquid ammonia, but excessive cleaning leads to cost increase and is not economical.

【0014】前記反応で使用するハロゲン化シランとし
ては、SiF4、H2SiF6、HSiF3、H3SiF 5、H3SiF、H5SiF3
の弗化シラン、SiCl4、HSiCl3、H2SiCl2、H3SiCl等のク
ロルシラン、SiBr4、HSiBr3、H2SiBr2、H3SiBr、等のブ
ロモシラン、及びSiI4、HSiI 3、H2SiI2、H3SiI等のヨウ
化シランを使用することができる。また、RSiX3、R2SiX
2、R3SiX(RはCH3、C2H5、C3H7等のアルキル基、Xは
ハロゲン)等のハロゲン化アルキルシランも使用するこ
とができる。
As the halogenated silane used in the above reaction
For SiFFour, HTwoSiF6, HSiFThree, HThreeSiF Five, HThreeSiF, HFiveSiFThreeetc
Fluorinated silane, SiClFour, HSiClThree, HTwoSiClTwo, HThreeSuch as SiCl
Lorsilane, SiBrFour, HSiBrThree, HTwoSiBrTwo, HThreeSiBr, etc.
Lomosilane and SiIFour, HSiI Three, HTwoSiITwo, HThreeYouth such as SiI
Silane silanes can be used. Also, RSiXThree, RTwoSiX
Two, RThreeSiX (R is CHThree, CTwoHFive, CThreeH7An alkyl group such as
Halogen) and other halogenated alkylsilanes may also be used.
Can be.

【0015】また、有機溶媒としては、液体アンモニア
やハロゲン化シランに対して不活性であるとともに、反
応温度で液体アンモニアと溶けあわず、かつ比重が液体
アンモニアより大きいものが用いられる。例えば、n−
ヘプタン、n−ヘキサン、n−ペンタン、C−ヘキサン
等の炭化水素数5〜7の脂肪族炭化水素、ベンゼン、ト
ルエン、キシレン等の芳香族炭化水素などの単独または
混合物が挙げられる。
As the organic solvent, those which are inert to liquid ammonia and halogenated silane, which do not dissolve in liquid ammonia at the reaction temperature and have a specific gravity larger than that of liquid ammonia are used. For example, n-
Specific examples thereof include aliphatic hydrocarbons having 5 to 7 hydrocarbons such as heptane, n-hexane, n-pentane and C-hexane, aromatic hydrocarbons such as benzene, toluene and xylene, and mixtures thereof.

【0016】本発明の含窒素シラン化合物を出発原料と
して用いることにより、優れた機械的特性を有する窒化
ケイ素セラミックスを再現性良く安定して製造できる窒
化ケイ素粉末を製造することができる。まず、含窒素シ
ラン化合物を酸素含有量5%以下の窒素あるいはアンモ
ニア含有不活性ガス雰囲気下に600〜1200℃の範
囲の温度で仮焼して非晶質窒化ケイ素粉末を製造する。
このとき、含窒素シラン化合物は、室温から徐々に分解
していき、250〜600℃で特に激しく分解してアン
モニアを発生する。窒素あるいはアンモニア含有不活性
ガスとしては、窒素またはアンモニア、あるいはさらに
アルゴン、ヘリウム等との混合ガスが挙げられる。
By using the nitrogen-containing silane compound of the present invention as a starting material, it is possible to produce a silicon nitride powder capable of stably producing a silicon nitride ceramic having excellent mechanical properties with good reproducibility. First, a nitrogen-containing silane compound is calcined at a temperature in the range of 600 to 1200 ° C. in an atmosphere of an inert gas containing nitrogen or ammonia having an oxygen content of 5% or less to produce an amorphous silicon nitride powder.
At this time, the nitrogen-containing silane compound gradually decomposes from room temperature and particularly violently decomposes at 250 to 600 ° C. to generate ammonia. Examples of the inert gas containing nitrogen or ammonia include nitrogen or ammonia, or a mixed gas with argon, helium, or the like.

【0017】次に、得られた非晶質窒化ケイ素粉末を窒
素あるいはアンモニア含有不活性ガス雰囲気下に焼成し
て結晶質窒化ケイ素粉末を製造する。焼成温度は140
0〜1600℃の範囲である。焼成温度が1400℃よ
り低いと、窒化ケイ素の結晶化が十分に進行しない。ま
た、焼成温度が1600℃を越えると、粗大結晶から成
る結晶質窒化ケイ素粉末が生成し易いので好ましくな
い。また、急激な昇温は粒子形状を均一にする上で好ま
しくなく、1150〜1400℃の範囲を1.5時間以
上かけてゆっくり昇温することが望ましい。
Next, the obtained amorphous silicon nitride powder is fired in an inert gas atmosphere containing nitrogen or ammonia to produce a crystalline silicon nitride powder. The firing temperature is 140
It is in the range of 0 to 1600 ° C. If the firing temperature is lower than 1400 ° C, crystallization of silicon nitride does not proceed sufficiently. Further, if the firing temperature exceeds 1600 ° C., crystalline silicon nitride powder composed of coarse crystals is likely to be generated, which is not preferable. Further, a rapid temperature increase is not preferable in order to make the particle shape uniform, and it is desirable to increase the temperature slowly in the range of 1150 to 1400 ° C. over 1.5 hours.

【0018】含窒素シラン化合物及び非晶質窒化ケイ素
粉末の加熱に使用される加熱炉としては、高周波誘導加
熱方式または抵抗加熱方式によるバッチ式電気炉、プッ
シャー炉、ロータリーキルン炉、シャフトキルン炉、流
動化焼成炉等が用いられる。特に連続焼成炉は非晶質窒
化ケイ素の結晶化反応に伴う発熱の効率的な放散に対し
て、有効な手段である。
As the heating furnace used for heating the nitrogen-containing silane compound and the amorphous silicon nitride powder, a batch type electric furnace by a high frequency induction heating method or a resistance heating method, a pusher furnace, a rotary kiln furnace, a shaft kiln furnace, a flow furnace A chemical firing furnace or the like is used. Particularly, the continuous firing furnace is an effective means for efficiently dissipating the heat generated by the crystallization reaction of amorphous silicon nitride.

【0019】得られた窒化ケイ素粉末は、従来の窒化ケ
イ素粉末の場合と同様な方法、例えば、酸化アルミニウ
ム、酸化イットリウム、酸化マグネシウム等の焼結助剤
と混合し、混合物を所定の形状に成形した後、焼結する
ことにより、窒化ケイ素セラミックス(焼結体)を製造
することができる。上記成形圧力は、0.5〜5ton/c
m2程度とすれば良く、また上記焼結条件は、焼結温度1
500〜2000℃、雰囲気圧力0.5〜100気圧、
焼結時間1〜10時間程度とすれば良い。
The obtained silicon nitride powder is mixed in the same manner as in the case of the conventional silicon nitride powder, for example, by mixing it with a sintering aid such as aluminum oxide, yttrium oxide or magnesium oxide, and molding the mixture into a predetermined shape. Then, the silicon nitride ceramics (sintered body) can be manufactured by sintering. The molding pressure is 0.5 to 5 ton / c
It may be about m 2 and the above sintering conditions are the sintering temperature 1
500 to 2000 ° C, atmospheric pressure 0.5 to 100 atm,
The sintering time may be about 1 to 10 hours.

【0020】この窒化ケイ素粉末を用いて製造された窒
化ケイ素セラミックス(焼結体)は、従来のものと比較
して、高強度、高靱性、高ワイブル係数であるばかりで
なく、耐酸化性にも優れていることから、1400℃以
下の温度で使用されるターボローター、バルブ、ディー
ゼルエンジン副燃焼室等の熱機関用構造材料や機械部品
として用いられる窒化ケイ素セラミックスの製造用原料
として特に好適なものである。
The silicon nitride ceramics (sintered body) produced by using this silicon nitride powder has not only high strength, high toughness and high Weibull coefficient but also high oxidation resistance as compared with conventional ones. Since it is also excellent, it is particularly suitable as a raw material for manufacturing silicon nitride ceramics used as structural materials for heat engines such as turbo rotors, valves, and diesel engine auxiliary combustion chambers used at temperatures of 1400 ° C. or lower and machine parts. It is a thing.

【0021】[0021]

【実施例】以下に本発明の実施例を比較例と共に挙げ、
本発明を更に詳しく説明する。 実施例1〜14及び比較例1〜8 〔含窒素シラン化合物の製造〕〔表1〕に示す温度及び
圧力下に、直径30cm、高さ45cmの縦型反応槽内
の空気を窒素ガスで置換した後、液体アンモニア及びト
ルエンを仕込んだ。反応槽内では、上層の液体アンモニ
アと下層のトルエンとに分離した。〔表1〕に示す割合
で調製した四塩化ケイ素とトルエンよりなる溶液を、導
管を通じて、ゆっくり撹拌されている下層に供給した。
トルエン溶液の供給と共に、上下層の界面近傍に白色の
反応生成物が析出した。反応終了後、反応液を濾過槽へ
移送し、生成物を濾別して、液体アンモニアで洗浄し、
主としてシリコンジイミドからなる含窒素シラン化合物
を得た。
EXAMPLES Examples of the present invention will be given below together with comparative examples.
The present invention will be described in more detail. Examples 1 to 14 and Comparative Examples 1 to 8 [Production of Nitrogen-Containing Silane Compound] Under the temperature and pressure shown in [Table 1], the air in the vertical reactor having a diameter of 30 cm and a height of 45 cm was replaced with nitrogen gas. After that, liquid ammonia and toluene were charged. In the reaction tank, it was separated into liquid ammonia in the upper layer and toluene in the lower layer. A solution of silicon tetrachloride and toluene prepared in the proportions shown in [Table 1] was supplied to the lower layer which was slowly stirred through a conduit.
With the supply of the toluene solution, a white reaction product was deposited near the interface between the upper and lower layers. After the reaction was completed, the reaction solution was transferred to a filtration tank, the product was filtered off, and washed with liquid ammonia,
A nitrogen-containing silane compound mainly composed of silicon diimide was obtained.

【0022】上記反応において、真密度は反応温度を変
化させて制御した。また、軽装密度は、生成した含窒素
シラン化合物をジャケット式撹拌槽(45度傾斜2枚羽
根パドル付)を用いて加熱蒸気で乾燥する際の乾燥時間
と攪拌回転数を変えて制御した。乾燥時間は、溶媒が飛
びきったら温度が上がり始めるので、粉体層の温度が上
がり始める時点を乾燥の終点とした。比表面積は、反応
の際の四塩化ケイ素と液体アンモニアとの比率(体積基
準)を変化させることにより、制御した。なお、前記反
応の初期段階では、液体アンモニアは大過剰に存在する
が、反応の進行によりアンモニアが消費されるため、液
体アンモニアも連続的に反応槽へ供給することになる。
そして、定常状態において反応槽内へ供給する四塩化ケ
イ素と液体アンモニアとの体積比率を〔表1〕に示す範
囲で変化させることにより、種々の比表面積の含窒素シ
ラン化合物を合成した。
In the above reaction, the true density was controlled by changing the reaction temperature. Further, the light load density was controlled by changing the drying time and the stirring rotation speed when the generated nitrogen-containing silane compound was dried with heating steam using a jacket type stirring tank (with a 45-degree inclined two-blade paddle). As for the drying time, since the temperature starts to rise when the solvent is completely blown out, the time when the temperature of the powder layer starts to rise is set as the end point of the drying. The specific surface area was controlled by changing the ratio (volume basis) of silicon tetrachloride and liquid ammonia during the reaction. In the initial stage of the reaction, liquid ammonia is present in a large excess, but since ammonia is consumed as the reaction proceeds, liquid ammonia is also continuously supplied to the reaction tank.
Then, nitrogen-containing silane compounds having various specific surface areas were synthesized by changing the volume ratio of silicon tetrachloride and liquid ammonia supplied into the reaction tank in the steady state within the range shown in [Table 1].

【0023】酸素含有量は、生成した含窒素シラン化合
物を洗浄する際に使用する液体アンモニア中の水分量を
〔表1〕に示す範囲で変化させて制御した。同様に、炭
素含有量は、含窒素シラン化合物を洗浄する際に使用す
る液体アンモニア中のトルエン含有量を〔表1〕に示す
範囲で変化させて制御した。また、平均粒径は、反応槽
の温度と反応槽へ供給する四塩化ケイ素とトルエンとの
体積比率を〔表1〕に示す範囲で変化させて制御した。
塩素含有量は、含窒素シラン化合物を洗浄する際に使用
する液体アンモニアの使用液量を〔表1〕に示す範囲で
変化させて制御した。金属不純物は、撹拌翼の調整状態
により変化した。
The oxygen content was controlled by changing the amount of water in the liquid ammonia used when washing the produced nitrogen-containing silane compound within the range shown in [Table 1]. Similarly, the carbon content was controlled by changing the toluene content in the liquid ammonia used when cleaning the nitrogen-containing silane compound within the range shown in [Table 1]. The average particle size was controlled by changing the temperature of the reaction tank and the volume ratio of silicon tetrachloride and toluene supplied to the reaction tank within the range shown in [Table 1].
The chlorine content was controlled by changing the amount of liquid ammonia used when cleaning the nitrogen-containing silane compound within the range shown in [Table 1]. The metallic impurities changed depending on the adjustment state of the stirring blade.

【0024】[0024]

【表1】 [Table 1]

【0025】得られた含窒素シラン化合物の粉末特性を
〔表2〕に示す。含窒素シラン化合物の真密度は、媒液
として脱水処理したキシレンを使用し、ピクノメーター
を用いて、キシレン中に浸漬して測定した。測定に際し
て、脱泡を十分に行った。(JIS H1902に準じ
て実施) 軽装密度は、充填容器として市販の100mlのメスシリ
ンダーを使用し、JIS K5101に準じて測定し
た。平均粒径は、含窒素シラン化合物の透過型電子顕微
鏡観察を行い、顕微鏡写真上で粒径分布を計測して、一
次粒子の平均粒径を求めた。比表面積は、島津−マイク
ロメリティックス製フローソーブ2300形を使用し、
BET一点法にり測定した。酸素含有量は、LECO社
製TC−136型酸素・窒素同時分析装置を使用して不
活性ガス融解−赤外線吸収法により測定した。炭素含有
量は、LECO社製WR−12型炭素分析装置を使用し
て、燃焼−熱伝導度法により測定した。
The powder characteristics of the obtained nitrogen-containing silane compound are shown in Table 2. The true density of the nitrogen-containing silane compound was measured by using dehydrated xylene as a liquid medium and immersing it in xylene using a pycnometer. During the measurement, defoaming was sufficiently performed. (Implementation according to JIS H1902) The light packaging density was measured according to JIS K5101 using a commercially available 100 ml graduated cylinder as a filling container. The average particle size was determined by observing the nitrogen-containing silane compound with a transmission electron microscope and measuring the particle size distribution on a micrograph to determine the average particle size of the primary particles. As for the specific surface area, Shimazu-Micromeritics Flowsorb 2300 type is used.
The BET single point method was used for measurement. The oxygen content was measured by an inert gas melting-infrared absorption method using a TC-136 oxygen / nitrogen simultaneous analyzer manufactured by LECO. The carbon content was measured by the combustion-thermal conductivity method using a LECO WR-12 type carbon analyzer.

【0026】[0026]

【表2】 [Table 2]

【0027】〔窒化ケイ素粉末の製造〕生成した含窒素
シラン化合物を、酸素を0.5%含有する窒素雰囲気下
に1000℃で加熱分解して、非晶質窒化ケイ素粉末を
得た。次いで、得られた非晶質窒化ケイ素粉末を振動ミ
ルにて摩砕処理した後、電気炉にて、窒素雰囲気下、1
00℃/hの昇温速度で1550℃まで昇温し、同温度
で1時間保持して、灰白色の窒化ケイ素粉末を得た。得
られた窒化ケイ素粉末の走査型電子顕微鏡による観察で
は、0.05〜0.5μmの等軸的な粒状粒子のみが認
められた。
[Production of Silicon Nitride Powder] The produced nitrogen-containing silane compound was thermally decomposed at 1000 ° C. in a nitrogen atmosphere containing 0.5% of oxygen to obtain an amorphous silicon nitride powder. Then, the obtained amorphous silicon nitride powder is subjected to a grinding treatment with a vibration mill, and then with an electric furnace in a nitrogen atmosphere for 1 minute.
The temperature was raised to 1550 ° C. at a heating rate of 00 ° C./h and kept at the same temperature for 1 hour to obtain an off-white silicon nitride powder. Observation of the obtained silicon nitride powder with a scanning electron microscope showed only equiaxed granular particles of 0.05 to 0.5 μm.

【0028】使用試験例 実施例1〜14及び比較例1〜8で得られた窒化ケイ素
粉末を用いて、下記の製造方法により焼結体をそれぞれ
製造した。 〔焼結体の製造〕窒化ケイ素粉末にYb236重量%、
Al231.5重量%及びHfO2 0.5重量%を加
え、ボールミルにて湿式混合した後、2ton/cm2
の圧力でラバープレス成形して成形体を作製した。この
成形体を、窒化ケイ素製ルツボに充填し、電気炉にて1
気圧の窒素雰囲気中、昇温速度200℃/hで昇温し、
1770℃で4時間保持して窒化ケイ素質焼結体を得
た。得られた焼結体の到達密度、曲げ強度及び破壊靱性
を〔表3〕に示す。尚、焼結体の嵩密度はアルキメデス
法で、曲げ強度の測定はJIS R 1601規定の四
点曲げ試験で、破壊靱性値はJIS R 1607規定
のSEPB法で測定した。また、得られた焼結体より、
所定形状のテストピースを切り出し、表面を平滑に研
削、研磨した。このテストピースを箱型電気炉に入れ、
空気流通下1300℃で100時間加熱処理した後の重
量増加を測定した。試料の重量増加を、その外表面積で
割った値を酸化増量(g/m2 )とした。また、同一条
件で酸化処理した抗析試験片の室温における四点曲げ強
度を測定して、酸化後強度を判定した。
Test Example of Use Using the silicon nitride powders obtained in Examples 1 to 14 and Comparative Examples 1 to 8, sintered bodies were manufactured by the following manufacturing methods. [Production of Sintered Body] 6 wt% Yb 2 O 3 in silicon nitride powder,
After adding 1.5 wt% of Al 2 O 3 and 0.5 wt% of HfO 2 and wet-mixing with a ball mill, 2 ton / cm 2
A rubber press molding was performed under the pressure of 1 to produce a molded body. This molded body was filled in a silicon nitride crucible and placed in an electric furnace for 1
In a nitrogen atmosphere at atmospheric pressure, the temperature is raised at a heating rate of 200 ° C./h,
It hold | maintained at 1770 degreeC for 4 hours, and the silicon nitride sintered compact was obtained. The ultimate density, bending strength and fracture toughness of the obtained sintered body are shown in [Table 3]. The bulk density of the sintered body was measured by the Archimedes method, the bending strength was measured by a four-point bending test according to JIS R 1601, and the fracture toughness value was measured by a SEPB method according to JIS R 1607. In addition, from the obtained sintered body,
A test piece having a predetermined shape was cut out, and the surface was ground and polished to be smooth. Put this test piece in a box-type electric furnace,
The weight increase after heat treatment at 1300 ° C. for 100 hours under air flow was measured. The value obtained by dividing the weight increase of the sample by its outer surface area was taken as the oxidation weight gain (g / m 2 ). Further, the four-point bending strength at room temperature of the anti-deposition test piece subjected to the oxidation treatment under the same conditions was measured to determine the strength after oxidation.

【0029】[0029]

【表3】 [Table 3]

【0030】[0030]

【発明の効果】本発明の含窒素シラン化合物を出発原料
として用いることにより、高強度、高靱性、高信頼性、
高耐酸化性の窒化ケイ素セラミックスを再現性良く安定
して製造できる窒化ケイ素粉末を製造することができ
る。
By using the nitrogen-containing silane compound of the present invention as a starting material, high strength, high toughness, high reliability,
It is possible to manufacture a silicon nitride powder capable of stably manufacturing a silicon nitride ceramic having high oxidation resistance with good reproducibility.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 真密度が1.4〜1.9g/cm3、軽
装密度が0.045〜0.090g/cm3であり、か
つ比表面積が600〜1000m2/g、酸素含有量が
3.5重量%以下、炭素含有量が0.25重量%未満で
ある主としてシリコンジイミドよりなる含窒素シラン化
合物。
1. A true density of 1.4 to 1.9 g / cm 3 , a light loading density of 0.045 to 0.090 g / cm 3 , a specific surface area of 600 to 1000 m 2 / g, and an oxygen content of A nitrogen-containing silane compound mainly composed of silicon diimide having a carbon content of 3.5% by weight or less and a carbon content of less than 0.25% by weight.
【請求項2】 真密度が1.5〜1.7g/cm3であ
り、軽装密度が0.055〜0.085g/cm3であ
る請求項1記載の含窒素シラン化合物。
2. The nitrogen-containing silane compound according to claim 1, which has a true density of 1.5 to 1.7 g / cm 3 and a light loading density of 0.055 to 0.085 g / cm 3 .
【請求項3】 比表面積が700〜800m2/g、酸
素含有量が2.5重量%以下、炭素含有量が0.10重
量%未満である請求項1記載の含窒素シラン化合物。
3. The nitrogen-containing silane compound according to claim 1, which has a specific surface area of 700 to 800 m 2 / g, an oxygen content of 2.5% by weight or less, and a carbon content of less than 0.10% by weight.
【請求項4】 平均粒径が100nm以下、金属不純物
含有量が100ppm以下、ハロゲン含有量が180p
pm以下である請求項1記載の含窒素シラン化合物。
4. The average particle size is 100 nm or less, the metal impurity content is 100 ppm or less, and the halogen content is 180 p.
The nitrogen-containing silane compound according to claim 1, which has a pm or less.
JP32932496A 1995-12-12 1996-12-10 Nitrogen-containing silane compounds Expired - Lifetime JP3550919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32932496A JP3550919B2 (en) 1995-12-12 1996-12-10 Nitrogen-containing silane compounds

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-323178 1995-12-12
JP32317895 1995-12-12
JP32932496A JP3550919B2 (en) 1995-12-12 1996-12-10 Nitrogen-containing silane compounds

Publications (2)

Publication Number Publication Date
JPH09221308A true JPH09221308A (en) 1997-08-26
JP3550919B2 JP3550919B2 (en) 2004-08-04

Family

ID=26571088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32932496A Expired - Lifetime JP3550919B2 (en) 1995-12-12 1996-12-10 Nitrogen-containing silane compounds

Country Status (1)

Country Link
JP (1) JP3550919B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010114141A1 (en) * 2009-03-30 2010-10-07 宇部興産株式会社 Nitrogen-containing silane compound powder and method for producing same
JP2010235341A (en) * 2009-03-30 2010-10-21 Ube Ind Ltd Nitrogen-containing silane compound powder and method for producing the same
JP2010235339A (en) * 2009-03-30 2010-10-21 Ube Ind Ltd Nitrogen-containing silane compound powder and method for producing the same
WO2011126035A1 (en) * 2010-03-31 2011-10-13 宇部興産株式会社 Method for producing sialon-based acid nitride phosphor, and sialon-based acid nitride phosphor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010114141A1 (en) * 2009-03-30 2010-10-07 宇部興産株式会社 Nitrogen-containing silane compound powder and method for producing same
JP2010235341A (en) * 2009-03-30 2010-10-21 Ube Ind Ltd Nitrogen-containing silane compound powder and method for producing the same
JP2010235339A (en) * 2009-03-30 2010-10-21 Ube Ind Ltd Nitrogen-containing silane compound powder and method for producing the same
WO2011126035A1 (en) * 2010-03-31 2011-10-13 宇部興産株式会社 Method for producing sialon-based acid nitride phosphor, and sialon-based acid nitride phosphor
JP5170344B2 (en) * 2010-03-31 2013-03-27 宇部興産株式会社 Method for producing sialon-based oxynitride phosphor and sialon-based oxynitride phosphor
US8974698B2 (en) 2010-03-31 2015-03-10 Ube Industries, Ltd. Production method of sialon-based oxynitride phosphor, and sialon-based oxynitride phosphor

Also Published As

Publication number Publication date
JP3550919B2 (en) 2004-08-04

Similar Documents

Publication Publication Date Title
US4571331A (en) Ultrafine powder of silicon carbide, a method for the preparation thereof and a sintered body therefrom
JP5862765B2 (en) Method for producing silicon nitride powder, silicon nitride powder, and method for producing silicon nitride sintered body
JPS6048474B2 (en) Silicon nitride sintered body and its manufacturing method
JPH027908B2 (en)
JP3475614B2 (en) Silicon diimide
EP0143122A2 (en) An ultrafine powder of silcon carbide, a method for the preparation thereof and a sintered body therefrom
JPH09221308A (en) Nitrogen-containing silane compound
Boden et al. Nanosized Si C N-powders by polysilazane pyrolysis and Si3N4SiC-composite materials thereof
JP2907366B2 (en) Method for producing crystalline silicon nitride powder
US5585084A (en) Silicon nitride powder
JP3669406B2 (en) Silicon nitride powder
JP3536494B2 (en) Nitrogen-containing silane compounds
JP3997596B2 (en) Silicon nitride powder
EP0371770B1 (en) Process for producing silicon carbide platelets and the platelets so-produced
Ramesh et al. Preparation and characterization of single‐phase β‐sialon
JPH10316469A (en) Powdery magnesium silicide nitride and its production
WO2023176889A1 (en) Silicon nitride powder and method for producing silicon nitride sintered body
JPH02199065A (en) Sintered silicon carbide having high thermal conductivity and production thereof
JPS638265A (en) Manufacture of composite sintered body
WO2023176893A1 (en) Silicon nitride powder and method for producing silicon nitride sintered body
JPH08119609A (en) Crystalline silicon nitride powder
JP5033948B2 (en) Method for producing aluminum nitride powder and method for producing aluminum nitride sintered body
JP2855602B2 (en) Method for producing silicon nitride powder
JP2000272965A (en) Silicon-containing glassy carbon material
JP3350907B2 (en) Method for producing crystalline silicon nitride powder

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040412

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term