JP5426319B2 - Diamond cutting tool and manufacturing method thereof - Google Patents

Diamond cutting tool and manufacturing method thereof Download PDF

Info

Publication number
JP5426319B2
JP5426319B2 JP2009245407A JP2009245407A JP5426319B2 JP 5426319 B2 JP5426319 B2 JP 5426319B2 JP 2009245407 A JP2009245407 A JP 2009245407A JP 2009245407 A JP2009245407 A JP 2009245407A JP 5426319 B2 JP5426319 B2 JP 5426319B2
Authority
JP
Japan
Prior art keywords
diamond
tool
polycrystalline diamond
cutting
grinding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009245407A
Other languages
Japanese (ja)
Other versions
JP2011088264A (en
Inventor
佳津子 山本
均 角谷
卓弥 仙波
Original Assignee
住友電気工業株式会社
学校法人福岡工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社, 学校法人福岡工業大学 filed Critical 住友電気工業株式会社
Priority to JP2009245407A priority Critical patent/JP5426319B2/en
Publication of JP2011088264A publication Critical patent/JP2011088264A/en
Application granted granted Critical
Publication of JP5426319B2 publication Critical patent/JP5426319B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、切削加工に利用されるダイヤモンド工具に関するものであり、主にアルミニウム合金、銅合金、無電解ニッケルメッキ、複合強化樹脂やガラス、カーボン、MMC、超硬などの硬質脆性材料や難削材料を精密加工するための精密切削工具及びその製造方法に関する。   The present invention relates to a diamond tool used for cutting, mainly aluminum alloy, copper alloy, electroless nickel plating, composite reinforced resin, glass, carbon, MMC, carbide and other hard brittle materials and difficult to cut. The present invention relates to a precision cutting tool for precisely machining a material and a method for manufacturing the same.
市販されている切削工具用の多結晶ダイヤモンド工具は、焼結助剤あるいは結合材として10vol%前後のCo、Niなどの鉄系金属やSiCなどのセラミックスを含むために高精度な刃先や作用面が得られず精密加工用工具には適用されない。
これを解決する為に近年バインダや焼結助剤を含まないバインダレス多結晶ダイヤモンドが開発され、本用途への適用が検討されている(特許文献1)。
特許文献1では、従来の多結晶ダイヤでは得られない高い刃先精度を持つ工具を作成し、アルミ合金やカーボンの切削に於いて精密切削に適用することができ、単結晶ダイヤバイトよりも高い耐摩耗性が確認された。
しかしながら、耐欠損性については当初期待された十分な効果が得られず、超硬合金やセラミックスなどの硬質脆性材料の加工は困難であった(非特許文献1)。
Commercially available polycrystalline diamond tools for cutting tools contain high-precision cutting edges and working surfaces because they contain iron-based metals such as Co and Ni and ceramics such as SiC as sintering aids or binders. Is not applicable to precision machining tools.
In order to solve this problem, binderless polycrystalline diamond containing no binder or sintering aid has been developed in recent years, and its application to this application has been studied (Patent Document 1).
In Patent Document 1, a tool having high cutting edge accuracy that cannot be obtained by a conventional polycrystalline diamond can be created, and can be applied to precision cutting in the cutting of an aluminum alloy or carbon. Abrasion was confirmed.
However, sufficient effects expected at the beginning were not obtained with respect to fracture resistance, and it was difficult to process hard brittle materials such as cemented carbide and ceramics (Non-Patent Document 1).
特願2009−523498号(未公開)Japanese Patent Application No. 2009-523498 (unpublished)
本発明は、多結晶ダイヤモンド本来の耐欠損性を十分発揮し、硬質脆性材料や難削材料の精密加工に適用可能な工具及びその作製方法を提供することを目的とする。   An object of the present invention is to provide a tool that can sufficiently exhibit the fracture resistance inherent in polycrystalline diamond and can be applied to precision machining of hard brittle materials and difficult-to-cut materials, and a method for producing the same.
本発明者らは、ダイヤモンド単相の多結晶ダイヤモンドであっても刃先のチッピング精度を50nm以下に抑制することで、硬質材料であっても切削中に工具刃先に微小欠損を生じることなく精密切削加工を行なうことができることを見出して本発明を完成した。
すなわち、本発明は以下に記載する通りのダイヤモンド切削工具及びその製造方法に係るものである。
By suppressing the chipping accuracy of the cutting edge to 50 nm or less even for single-phase diamond diamond, the present inventors have made precision cutting without causing micro-defects in the cutting edge of the tool even if it is a hard material. The present invention has been completed by finding that it can be processed.
That is, the present invention relates to a diamond cutting tool and a manufacturing method thereof as described below.
(1)ダイヤモンド単相の多結晶ダイヤモンドを切れ刃とする切削工具を製造する方法であって、ダイヤモンド単相の多結晶ダイヤモンドの切れ刃の外形をレーザ加工により形状作製した後、前記切れ刃を形成するすくい面及び逃げ面の仕上げ加工を金属バインダを含むダイヤモンド焼結体を研削盤として用いる研削加工により行なう工程を含み、前記ダイヤモンド焼結体からなる研削盤は、前記仕上加工を行う加工機上で回転軸との垂直度と平坦度を出す成形加工をダイヤモンド電鋳工具を電極として用いる放電加工により行った後、更に当該ダイヤモンド電鋳工具を用いて、ダイヤモンドスラリを研削液として用いる湿式研削と乾式研削とを併せて行い面粗さを調節した研削盤であることを特徴とする多結晶ダイヤモンド切削工具の加工方法。
(2)前記のダイヤモンド焼結体からなる研削盤の回転軸に対する垂直度が1/1000°以下かつ平坦度が20nm/mm以下であることを特徴とする(1)に記載の多結晶ダイヤモンド切削工具の製造方法。
(3)前記研削盤として使用するダイヤモンド燒結体の面粗さ(Rz:最大高さ粗さ)が30nm以下であることを特徴とする(1)又は(2)に記載の多結晶ダイヤモンド切削工具の製造方法。
(4)前記ダイヤモンド単相の多結晶ダイヤモンドは、グラファイトを超高圧高温下で焼結助剤や触媒の添加無しに直接的にダイヤモンドに変換された多結晶ダイヤモンド焼結体であることを特徴とする(1)〜(3)のいずれかに記載の多結晶ダイヤモンド切削工具の製造方法。
(5)(1)〜(3)のいずれかに記載の方法によって製造したことを特徴とする多結晶ダイヤモンド切削工具。
(6)刃先のチッピングが50nm以下であることを特徴とする(5)に記載の多結晶ダイヤモンド切削工具。
(7)前記切れ刃を形成する逃げ面及びすくい面の被削材及び切り子が接触する領域の面粗さ(Rz:最大高さ粗さ)が10nm未満であることを特徴とする(5)又は(6)に記載の多結晶ダイヤモンド切削工具。
(1) A method of manufacturing a cutting tool having a diamond single-phase polycrystalline diamond as a cutting edge, the outer shape of the diamond single-phase polycrystalline diamond cutting edge being formed by laser processing, A grinding machine including a step of performing finish processing of the rake face and flank to be formed by grinding using a diamond sintered body including a metal binder as a grinding machine, the grinding machine comprising the diamond sintered body is a processing machine that performs the finishing process After performing the forming process to obtain the perpendicularity and flatness with respect to the rotating shaft by electric discharge machining using a diamond electroformed tool as an electrode, wet grinding using the diamond slurry as a grinding liquid is further performed using the diamond electroformed tool. Of polycrystalline diamond cutting tools characterized by the fact that the surface roughness is adjusted by combining dry grinding and dry grinding Law.
(2) The polycrystalline diamond cutting according to (1), wherein the grinding machine made of the diamond sintered body has a perpendicularity to a rotation axis of 1/1000 ° or less and a flatness of 20 nm / mm or less. Tool manufacturing method.
(3) The polycrystalline diamond cutting tool according to (1) or (2), wherein the diamond sintered body used as the grinding machine has a surface roughness (Rz: maximum height roughness) of 30 nm or less. Manufacturing method.
(4) The diamond single-phase polycrystalline diamond is a polycrystalline diamond sintered body obtained by converting graphite directly to diamond without adding a sintering aid or a catalyst under an ultra-high pressure and high temperature. A method for producing a polycrystalline diamond cutting tool according to any one of (1) to (3).
(5) A polycrystalline diamond cutting tool manufactured by the method according to any one of (1) to (3).
(6) The polycrystalline diamond cutting tool according to (5), wherein chipping of the blade edge is 50 nm or less.
(7) The surface roughness (Rz: maximum height roughness) of the area where the work material and the face of the flank and rake face that form the cutting edge come into contact with each other is less than 10 nm (5) Or the polycrystalline diamond cutting tool as described in (6).
本発明の多結晶ダイヤモンド切削工具の製造方法によれば、ダイヤモンド単相の多結晶体からなる刃先稜線のチッピングを50nm以下とすることができ、また面粗さ(Rz:最大高さ粗さ)を10nm以下と非常に小さくすることができる。
また、本発明の多結晶ダイヤモンド切削工具は刃先稜線のチッピング及び面粗さ(Rz:最大高さ粗さ)が非常に小さいため切削抵抗が低く、耐欠損性が高いため、従来の切削工具では加工できなかった硬質材料の切削が可能となる。
According to the method for manufacturing a polycrystalline diamond cutting tool of the present invention, chipping of a cutting edge ridge line made of a polycrystalline single-phase diamond can be made 50 nm or less, and surface roughness (Rz: maximum height roughness). Can be as small as 10 nm or less.
In addition, since the polycrystalline diamond cutting tool of the present invention has very low chipping and surface roughness (Rz: maximum height roughness) of the edge of the cutting edge, the cutting resistance is low and the fracture resistance is high. The hard material that could not be processed can be cut.
本発明の多結晶ダイヤモンド切削工具の刃先形状の一例を示す図である。It is a figure which shows an example of the blade-tip shape of the polycrystalline diamond cutting tool of this invention. レーザ光を用いて多結晶ダイヤモンド切削工具の刃先の輪郭加工を行う装置を示す図である。It is a figure which shows the apparatus which performs the outline process of the blade edge | tip of a polycrystalline diamond cutting tool using a laser beam. レーザ光によるミーリング加工によって工具の第2にげ面及びすくい面を成形する方法を示す図である。It is a figure which shows the method of shape | molding the 2nd rake face and rake face of a tool by the milling process by a laser beam. レーザ光によって工具半径を調節しかつ第1にげ面を成形する方法を示す図で或る。It is a figure which shows the method of adjusting a tool radius with a laser beam, and shape | molding a 1st bald surface. 研削盤を用いて多結晶ダイヤモンド切削工具の刃先の仕上加工を行う装置を示す図である。It is a figure which shows the apparatus which performs the finishing process of the blade edge | tip of a polycrystalline diamond cutting tool using a grinder. 焼結ダイヤモンド製研削盤を成形する方法を示す図である。It is a figure which shows the method of shape | molding a sintered diamond grinder.
単結晶ダイヤモンド製の工具刃先の仕上げ研磨は、ダイヤモンド砥粒をオリーブオイルや機械油などでスラリ状にして塗布した鋳鉄製の研磨盤を高速回転させて、ダイヤモンドを押し付けて加工するスカイフ研磨と呼ばれる方法であり、研磨特性は結晶方位に大きく依存する。   Finishing polishing of a single-crystal diamond tool edge is called Skyf polishing, which is performed by rotating a cast iron polishing machine in which diamond abrasive grains are applied in a slurry form with olive oil or machine oil, and pressing the diamond for processing. This is a method, and the polishing characteristics depend greatly on the crystal orientation.
一般に、工具を加工する場合は、比較的研磨速度が速い結晶面を加工することで刃先が得られるような工具形状を設計して加工することが行われている。
ダイヤモンドは硬質脆性材料であるため、工具とした場合に刃先稜線にチッピングが存在すると、微小チッピングであっても切削時にチッピング部に応力が集中して微小欠損が生じ、欠損や巨視的な摩耗の進行起点となってしまう。ダイヤモンド単相の多結晶体ではチッピングを起点とした欠損が伝播してしまい、従来の研磨技術では材質本来の高い耐欠損性を生かすことができなかった。
In general, when a tool is processed, a tool shape is designed and processed so that a cutting edge can be obtained by processing a crystal surface having a relatively high polishing rate.
Since diamond is a hard and brittle material, if there is chipping at the edge of the cutting edge when it is used as a tool, stress will concentrate on the chipping part during cutting even if it is micro chipping, resulting in micro defects and macroscopic wear. It becomes a starting point. In a single-phase polycrystalline diamond, defects originating from chipping propagated, and conventional polishing techniques could not take advantage of the high defect resistance inherent in the material.
また、多結晶ダイヤモンドは、耐摩耗性が高く研磨速度が遅い結晶面方位も多く現れる為、研削抵抗が安定せず微小チッピングが発生してしまい、50nm以下の刃先稜線精度を達成することができなかった。特に曲面を有する刃先の研削には、回転砥石面に工具を押し付けながら所望の形状になるように工具を回転させるため、一定荷重での研削が困難で、刃先稜線精度は0.2μm以下程度に留まっていた。   In addition, since polycrystalline diamond has many crystal face orientations with high wear resistance and slow polishing speed, the grinding resistance is not stable and micro-chipping occurs, and the edge edge line accuracy of 50 nm or less can be achieved. There wasn't. Especially for grinding a cutting edge having a curved surface, the tool is rotated to a desired shape while pressing the tool against the surface of the rotating grindstone. Therefore, grinding with a constant load is difficult, and the edge line accuracy is about 0.2 μm or less. I stayed.
上記スカイフ研磨以外に、多結晶ダイヤモンドの研削加工には比較的粒度の高い砥粒を用いた砥石による加工が一般的に行なわれている。しかしながら、硬質材料をボンドに用いた砥石でも工具刃先など高精度の形状加工の場合には加工時間が長くなり、このために砥粒の脱落や加工中の砥石面の変形が起こりやすくなる。これらは研削抵抗の増加を招いてしまう為に、刃先稜線に微小チッピングを生じてしまう。   In addition to the skiff polishing, a polycrystalline diamond is generally ground by a grindstone using a relatively high grain size. However, even with a grindstone using a hard material as a bond, the machining time becomes long in the case of high-precision shape machining such as a tool blade edge, and this makes it easy for the abrasive grains to fall off or to deform the grinding wheel surface during machining. Since these cause an increase in grinding resistance, minute chipping occurs in the edge line of the cutting edge.
また刃先加工に際しては、刃先加工時に刃先に導入される欠陥などの機械的ダメージを抑制することが重要である。仕上げの研磨加工に至る前段階となる形状成形加工において、粗粒の砥石で加工するなどして、欠陥などの加工機械的ダメージを残すと、工具刃先に大きな欠損を生じやすくなる。   In cutting edge processing, it is important to suppress mechanical damage such as defects introduced into the cutting edge during cutting edge processing. In the shape forming process, which is a stage before the final polishing process, if a machining mechanical damage such as a defect is left by processing with a coarse grindstone or the like, a large chipping is likely to occur in the tool blade edge.
本発明の製造方法におけるように、工具切れ刃の外形をレーザ加工により形状作製した後、前記切れ刃を形成するすくい面及び、逃げ面の仕上げ加工を金属バインダでダイヤモンド砥粒を焼結させて得られるダイヤモンド焼結体を研削盤として用い、研削加工を行なうことで、刃先のチッピング精度を向上させることが可能となった。   As in the manufacturing method of the present invention, after the outer shape of the tool cutting edge is formed by laser processing, the finish of the rake face and flank forming the cutting edge is sintered with a metal binder to sinter diamond abrasive grains. By using the obtained diamond sintered body as a grinding machine and grinding, it became possible to improve the chipping accuracy of the cutting edge.
上記研削盤に用いられるダイヤモンド焼結体はダイヤモンド含有量が90%以上と通常の砥石に比べて非常に高く、研削盤とした場合に盤面の変形量が少ない。ダイヤ砥粒同士が結合し一体化している為、砥粒の脱粒も殆ど生じない。このため高精度の研削盤として適している。   The diamond sintered body used in the above grinding machine has a diamond content of 90% or more, which is very high compared to a normal grindstone, and the amount of deformation of the board surface is small when a grinding machine is used. Since the diamond abrasive grains are bonded and integrated, the abrasive grains are hardly shed. Therefore, it is suitable as a high precision grinding machine.
本発明の研削加工において、チッピング抑制に重要となるのは、研削盤の研削回転軸との垂直度、平坦度及び、面粗さ(Rz:最大高さ粗さ)であり、切削工具の仕上げ研削を行う加工機上で回転軸との垂直度と平坦度を出す成形加工をダイヤモンド電鋳工具を電極として用いる放電加工により行うことで軸との垂直度を高め、更にダイヤモンド電鋳工具を用いてダイヤモンドスラリを研削液とした湿式研削と乾式研削を併せて行い、所定の面粗さの研削盤として使用することで、研削抵抗一定で工具刃先の仕上げ研削に適用することができ、チッピングの極めて少ない工具の作製が可能である。   In the grinding process of the present invention, what is important for suppressing chipping is the perpendicularity, flatness and surface roughness (Rz: maximum height roughness) to the grinding rotation axis of the grinding machine, and the finishing of the cutting tool. On the processing machine that performs grinding, the verticality and the flatness with the rotating shaft are formed by electric discharge machining using a diamond electroformed tool as an electrode to increase the perpendicularity to the shaft, and the diamond electroformed tool is used. In combination with wet grinding and dry grinding using diamond slurry as a grinding liquid, and using it as a grinding machine with a specified surface roughness, it can be applied to finish grinding of tool edges with constant grinding resistance. Very few tools can be produced.
前記研削盤として使用するダイヤモンド焼結体の回転軸に対する垂直度が1/1000°以下、平坦度が20nm/mm以下かつ、面粗さ(Rz:最大高さ粗さ)が30nm以下であることが好ましい。このような精度に焼結ダイヤモンド製研削盤を仕上げることで研削盤の面ブレを抑制し、刃先稜線精度50nm以下、逃げ面及びすくい面の面粗さが10nm以下の高精度工具を作製することが可能となる。   The perpendicularity to the rotation axis of the diamond sintered body used as the grinding machine is 1/1000 ° or less, the flatness is 20 nm / mm or less, and the surface roughness (Rz: maximum height roughness) is 30 nm or less. Is preferred. Finishing a sintered diamond grinder with such accuracy suppresses surface blurring of the grinder and produces a high-precision tool with a cutting edge ridge line accuracy of 50 nm or less and a flank and rake surface roughness of 10 nm or less. Is possible.
逃げ面及びすくい面の面粗さ(Rz:最大高さ粗さ)が大きいと被削材が刃先に溶着し、寿命が低下することは一般的に知られている。
硬質材料を切削する際には工具逃げ面及びすくい面の面粗さは切削抵抗に緊密に関係する。面粗さが10nmよりも大きいと切削抵抗が増し、硬質材料の切削面の性状が劣り、精密仕上げとならない。
It is generally known that when the surface roughness (Rz: maximum height roughness) of the flank and rake face is large, the work material is welded to the cutting edge and the life is shortened.
When cutting a hard material, the surface roughness of the tool flank and rake face is closely related to the cutting resistance. If the surface roughness is larger than 10 nm, the cutting resistance increases, the properties of the hard material cutting surface are inferior, and the precision finish is not achieved.
さらに工具刃先として使用される多結晶ダイヤモンドは、グラファイトを超高圧高温下で焼結助剤や触媒の添加無しに直接的にダイヤモンドに変換された多結晶ダイヤモンド焼結体であることが好ましい。前記の多結晶ダイヤモンドは結晶異方性がなく、劈開による欠損が生じない上、多結晶体であるために耐摩耗性が高く、硬質材料の切削に適している。このほか、ダイヤモンド単相の多結晶ダイヤモンドとしてはCVD法により合成されたダイヤモンドなどがあり、このような多結晶ダイヤモンドも本発明の工具に適用できる。   Furthermore, it is preferable that the polycrystalline diamond used as the tool cutting edge is a polycrystalline diamond sintered body obtained by converting graphite into diamond directly under an ultrahigh pressure and high temperature without adding a sintering aid or a catalyst. The polycrystalline diamond has no crystal anisotropy, is free from defects due to cleavage, and is polycrystalline, so it has high wear resistance and is suitable for cutting hard materials. In addition, diamond single-phase polycrystalline diamond includes diamond synthesized by a CVD method, and such polycrystalline diamond can also be applied to the tool of the present invention.
切削工具は金属製、超硬合金製又は、セラミックス製の台金及びシャンクに接合された多結晶ダイヤモンドからなり、多結晶ダイヤモンドは粉末X線回折による組成同定では、ダイヤモンド以外の相は確認されないものを使用する。
予め、台金及びシャンクに接合した状態とした多結晶ダイヤモンドを作製する工具の粗形状にレーザ加工により形状を整え、超精密立型マシニングセンタの主軸にセットし、φ20mm程度に切断して金属シャンクに接合した研削盤として使用する金属バインダで焼結させたダイヤモンド多結晶体を超精密立型マシニングセンタ内に旋回軸、X軸、Y軸、θ軸を組み合わせた4軸ステージを設けてセットし、2000〜3000rpmで高速回転させて工具逃げ面及びすくい面に押し当てて研磨する。
The cutting tool is made of polycrystalline diamond bonded to a metal base, cemented carbide or ceramic base metal and shank. Polycrystalline diamond has no composition other than diamond by composition identification by powder X-ray diffraction. Is used.
Prepare the polycrystalline diamond that has been joined to the base metal and the shank in advance by laser processing to adjust the rough shape of the tool, set it on the spindle of the ultra-precision vertical machining center, cut it to about φ20mm, and cut it into a metal shank A diamond polycrystal sintered with a metal binder used as a bonded grinding machine is set in a super-precision vertical machining center with a 4-axis stage that combines the swivel, X, Y, and θ axes. Rotate at a high speed of ˜3000 rpm and press against the tool flank and rake face for polishing.
この研削盤として使用する多結晶ダイヤモンドは、超精密立型マシニングセンタの主軸にダイヤモンド電鋳工具をセットして、研削盤として使用する多結晶ダイヤモンド板と電鋳工具の双方を自転させながら擦り合わせて放電加工を行ない、超精密立型マシニングセンタの主軸に対して平坦度と垂直度を出す加工を行なった後に、ダイヤモンド電鋳工具を用いて、0〜1/2μmの粒度のダイヤモンドパウダーを切削油に分散させたスラリを塗布して高速回転させて湿式研・乾式研削を併せて行い、所定の面粗さに整えたものを用いる。   The polycrystalline diamond used as this grinding machine is set with a diamond electroformed tool on the spindle of the ultra-precision vertical machining center and rubbed while rotating both the polycrystalline diamond plate used as the grinding machine and the electroformed tool. After performing electrical discharge machining and processing to obtain flatness and perpendicularity to the spindle of the ultra-precision vertical machining center, diamond powder with a particle size of 0 to 1/2 μm is used as cutting oil using a diamond electroforming tool. A dispersed slurry is applied, rotated at a high speed, and subjected to wet grinding and dry grinding, and adjusted to a predetermined surface roughness.
工具刃先として用いる多結晶ダイヤモンドにグラファイトを超高圧高温下で焼結助剤や触媒の添加無しに直接的にダイヤモンドに変換された多結晶ダイヤモンド焼結体を用いると、より効果的であるが、CVD法により合成されたダイヤモンド単相の多結晶体なども適用できる。   It is more effective to use a polycrystalline diamond sintered body in which graphite is converted into diamond directly without adding a sintering aid or catalyst under high pressure and high temperature to polycrystalline diamond used as a tool edge. A diamond single-phase polycrystal synthesized by a CVD method can also be applied.
[実施例1]
<工具形状>
マイクロボールエンドミルの形状とした。
<工具材質>
高純度グラファイトを15GPa−2300℃にて直接変換焼結させた多結晶ダイヤモンドを用いた。この多結晶ダイヤモンドはCu−Kα線による粉末X線回折法によりダイヤモンド単相であることを確認した。
<工具の刃先形状>
図1に示す通りの形状とした。
[Example 1]
<Tool shape>
The shape was a microball end mill.
<Tool material>
Polycrystalline diamond obtained by directly converting and sintering high-purity graphite at 15 GPa-2300 ° C. was used. This polycrystalline diamond was confirmed to be a single phase of diamond by powder X-ray diffraction using Cu—Kα rays.
<Tool edge shape>
The shape was as shown in FIG.
<工具作製方法>
(粗形状加工−レーザ粗形状加工)
粗形状加工をレーザ加工によって行った。
レーザとしては、波長が1061nm、周波数が80KHz、出力が6Wのパルスファイバーレーザを使用した。
図2に示した装置を用いて、Y軸と工具軸とを一致させた後、自転運動している工具に対してレーザ光をX−Y平面内で円弧と直線の軌跡に沿って走査させ、多結晶ダイヤモンドに対する刃先の輪郭加工を行った。Y軸方向に切り込みを与えた後、レーザ光を同じ軌跡に沿って往復運動させるといった方式で輪郭加工を繰り返して行い、工具の先端を半径が40μmの半球状に成形した。
<Tool preparation method>
(Rough shape processing-Laser rough shape processing)
Coarse shape processing was performed by laser processing.
As the laser, a pulse fiber laser having a wavelength of 1061 nm, a frequency of 80 KHz, and an output of 6 W was used.
After making the Y axis and the tool axis coincide with each other using the apparatus shown in FIG. 2, the laser beam is scanned along the locus of the arc and the straight line in the XY plane with respect to the rotating tool. The edge of the polycrystalline diamond was machined. After cutting in the Y-axis direction, contour processing was repeatedly performed by reciprocating the laser beam along the same locus, and the tip of the tool was formed into a hemisphere with a radius of 40 μm.
半球成形の後、図3に示したようにレーザ光をX−Y平面内で直線の軌跡に沿って走査させ、ミーリング加工を行うことによってすくい面や第2逃げ面を成形した。第2逃げ面の成形時には、Y軸の回りに工具を25度公転させた上で工具を自転させ、3方向から第2逃げ面を成形した。すくい面の成形時には、5μm前後の仕上げ代を残して成形した。   After forming the hemisphere, the rake face and the second flank face were formed by scanning the laser beam along a linear locus in the XY plane as shown in FIG. 3 and performing milling. At the time of forming the second flank, the tool revolved around the Y axis by 25 degrees, and then the tool was rotated to form the second flank from three directions. When molding the rake face, it was molded leaving a finishing allowance of around 5 μm.
次に、図4に示すように工具を自転運動させないでレーザビームを走査させて輪郭加工を行うことにより、工具半径を45μmに成形すると同時に第1逃げ面を成形した。また、切れ刃と反対側の円弧をX−Y平面で45度傾斜した平面でカットすることにより、工具の回転中心を除去した。   Next, as shown in FIG. 4, the tool radius was formed to 45 μm by simultaneously scanning the laser beam without rotating the tool, thereby forming the first flank. Further, the center of rotation of the tool was removed by cutting an arc on the side opposite to the cutting edge with a plane inclined by 45 degrees on the XY plane.
Y−Z平面内で5度傾斜させたツルーアをY軸の回りに公転運動させ、円弧状の切れ刃に対する刃直角逃げ角が5度の第1逃げ面を成形した。
輪郭加工時にはファイバーレーザを10倍の対物レンズで集光させて2〜5mm/minの速度で走査させ、ミリング加工時には×20倍の対物レンズを集光させて20mm/minの速度で走査させた。
A truer inclined at 5 degrees in the YZ plane was revolved around the Y axis to form a first flank with a blade perpendicular clearance angle of 5 degrees with respect to the arcuate cutting edge.
At the time of contour processing, the fiber laser was condensed with a 10 × objective lens and scanned at a speed of 2 to 5 mm / min. At the time of milling processing, the × 20 × objective lens was condensed and scanned at a speed of 20 mm / min. .
(研削盤の成形加工)
工具刃先を研削加工するための研削盤には、直径が15mmで焼結前のダイヤンモンドの一次粒子径が1μmの焼結ダイヤモンドを使用した。
焼結ダイヤモンド製研削盤を成形する方法を図6に示す。
ツルーアの面ぶれを除去するため、メッシュサイズが#600のダイヤモンド電鋳工具を陰極に、ツルーアを陽極にそれぞれ接続して、放電エネルギー5μJ、1000pF、100Vとして機上放電を行った。
そこで、ツルーアの砥石作用面を平坦化するため、陰極に使用したメッシュサイズが#600のダイヤモンド電着工具を用いてツルーアに対する湿式研削及び、乾式研削を行なった。湿式研削時には、サイズが0−1/2μmと0−1/5μmのダイヤモンドスラリを研削液として使用する。湿式研削を行った後、乾式研削を行った。
このようにして成形した研削盤のマシニングセンタ主軸に対する平坦度、垂直度、及び面粗さ(Rz)を測定した結果を以下に示す。
平坦度 : 20nm/mm
垂直度 : 1/1000°
面粗さ : 20nm
(Grinding machine forming)
As a grinding machine for grinding the tool edge, sintered diamond having a diameter of 15 mm and a primary particle diameter of 1 μm of diamond before sintering was used.
A method for forming a sintered diamond grinder is shown in FIG.
In order to remove the surface blur of the truer, a diamond electroformed tool having a mesh size of # 600 was connected to the cathode, and the truer was connected to the anode, and discharge was performed on-machine at discharge energy of 5 μJ, 1000 pF, 100V.
Therefore, in order to flatten the working surface of the truer's grindstone, wet grinding and dry grinding of the truer were performed using a diamond electrodeposition tool having a mesh size of # 600 used for the cathode. At the time of wet grinding, a diamond slurry having a size of 0-1 / 2 μm and 0-1 / 5 μm is used as a grinding fluid. After wet grinding, dry grinding was performed.
The results of measuring the flatness, perpendicularity, and surface roughness (Rz) of the grinding machine thus formed with respect to the machining center spindle are shown below.
Flatness: 20 nm / mm
Verticality: 1/1000 °
Surface roughness: 20nm
(仕上げ研削)
工具は真鍮製の芯ぶれ防止治具を介してブラシレスモータ、ブラシレスモータはくさび角が5度のスペーサとX−Yテーブルを介して回転テーブルに取付けた。
Y−Z平面内で5度傾斜したツルーアをY軸の回りに公転運動させることにより、円弧状の切れ刃に対する刃直角逃げ角が5度の第1逃げ面を仕上げ成形した。すくい面や第2逃げ面の成形時には、図5に示した装置からくさび状のスペーサを取外し、工具を装着しているマシニングセンタ主軸の自転角と研削盤の公転角を制御することにより、これらの面を研削加工した。
すくい面や第2逃げ面の成形時には、図5に示した装置からくさび状のスペーサを除去し、工具を装着しているマシニングセンタ主軸の自転角θzと研削盤の公転角θxを制御することにより、これらの面を研削加工した。
(Finishing grinding)
The tool was attached to the rotary table via a spacer having a wedge angle of 5 degrees and an XY table via a brass coreless jig and a brushless motor.
A truer having a blade perpendicular clearance angle of 5 degrees with respect to the arcuate cutting edge was finish-molded by revolving the truer inclined by 5 degrees in the YZ plane around the Y axis. When forming the rake face or the second flank face, remove the wedge-shaped spacer from the device shown in FIG. 5 and control the rotation angle of the machining center spindle on which the tool is mounted and the revolution angle of the grinding machine. The surface was ground.
When forming the rake face or the second flank face, the wedge-shaped spacer is removed from the apparatus shown in FIG. 5, and the rotation angle θz of the machining center spindle on which the tool is mounted and the revolution angle θx of the grinding machine are controlled. These surfaces were ground.
<評価>
(工具精度評価)
このようにして得られた多結晶ダイヤモンド製の工具(マイクロボールエンドミル)の形状精度を高倍率のSEM観察し、エッジの欠損サイズを確認した。また、すくい面の面粗さをSPM(走査型プローブ顕微鏡)にて測定した。
(切削性能評価)
作製した工具の性能を硬さが13.5GPaHvの超硬合金に対する断続切削により評価した。被削材の超硬合金は立て型マシニングセンタのテーブルに対して45度傾斜させて保持し、半径方向切込み量切を0.5μm、送り速度を0.5μm/rev、ならびに横送り量を1μm、実切削距離を1mに設定した。
切削後の工具刃先を高倍率SEM観察し、刃先欠損状況を確認、加工後の被削材表面状態は、SPMにより評価した。
評価結果を表1に示す。
<Evaluation>
(Tool accuracy evaluation)
The shape accuracy of the polycrystalline diamond tool (microball end mill) thus obtained was observed with a high-magnification SEM, and the edge defect size was confirmed. Further, the surface roughness of the rake face was measured by SPM (scanning probe microscope).
(Cutting performance evaluation)
The performance of the produced tool was evaluated by intermittent cutting on a cemented carbide having a hardness of 13.5 GPaHv. The cemented carbide material to be cut is held at an angle of 45 degrees with respect to the table of the vertical machining center, the cutting amount in the radial direction is 0.5 μm, the feed rate is 0.5 μm / rev, and the lateral feed amount is 1 μm. The actual cutting distance was set to 1 m.
The cutting edge of the tool after cutting was observed with a high-magnification SEM, the cutting edge defect state was confirmed, and the surface condition of the work material after processing was evaluated by SPM.
The evaluation results are shown in Table 1.
本発明の多結晶ダイヤモンド切削工具は、ダイヤモンド単相の多結晶体からなる刃先稜線の微小チッピングが50nm以下と極めて小さく、面粗さ(Rz:最大高さ粗さ)も10nm以下と非常に精密な面を有する為に切削抵抗が低く、耐欠損性が高いため、アルミニウム合金、銅合金、無電解ニッケルメッキ、複合強化樹脂やガラス、カーボン、MMC、超硬などの硬質脆性材料や難削材料を精密加工するための精密切削工具として好適に使用することができる。   The polycrystalline diamond cutting tool of the present invention has extremely small chipping of the edge of the cutting edge made of a single-phase polycrystalline diamond of 50 nm or less and a very precise surface roughness (Rz: maximum height roughness) of 10 nm or less. Because it has a smooth surface, it has low cutting resistance and high fracture resistance, so it is a hard brittle material such as aluminum alloy, copper alloy, electroless nickel plating, composite reinforced resin, glass, carbon, MMC, and carbide, and difficult-to-cut materials. Can be suitably used as a precision cutting tool for precision machining.

Claims (7)

  1. ダイヤモンド単相の多結晶ダイヤモンドを切れ刃とする切削工具を製造する方法であって、
    ダイヤモンド単相の多結晶ダイヤモンドの切れ刃の外形をレーザ加工により形状作製した後、前記切れ刃を形成するすくい面及び逃げ面の仕上げ加工を金属バインダを含むダイヤモンド焼結体を研削盤として用いる研削加工により行なう工程を含み、
    前記ダイヤモンド焼結体からなる研削盤は、前記仕上加工を行う加工機上で回転軸との垂直度と平坦度を出す成形加工をダイヤモンド電鋳工具を電極として用いる放電加工により行った後、更に当該ダイヤモンド電鋳工具を用いて、ダイヤモンドスラリを研削液として用いる湿式研削と乾式研削とを併せて行い面粗さを調節した研削盤である
    ことを特徴とする多結晶ダイヤモンド切削工具の加工方法。
    A method of manufacturing a cutting tool having a diamond single-phase polycrystalline diamond as a cutting edge,
    Grinding using a diamond sintered body containing a metal binder as a grinder for finishing the rake face and flank face forming the cutting edge after laser cutting the outer shape of the cutting edge of polycrystalline diamond of single-phase diamond Including processes to be performed by processing,
    The grinding machine made of the diamond sintered body is further subjected to a forming process for obtaining a perpendicularity and a flatness with respect to the rotation axis on the processing machine for performing the finishing process by an electric discharge process using a diamond electroformed tool as an electrode. A processing method for a polycrystalline diamond cutting tool, characterized by using a diamond electroforming tool, which is a grinding machine in which wet grinding using a diamond slurry as a grinding liquid and dry grinding are combined to adjust surface roughness.
  2. 前記のダイヤモンド焼結体からなる研削盤の回転軸に対する垂直度が1/1000°以下かつ平坦度が20nm/mm以下であることを特徴とする請求項1に記載の多結晶ダイヤモンド切削工具の製造方法。   The polycrystalline diamond cutting tool according to claim 1, wherein the grinding machine comprising the diamond sintered body has a perpendicularity to a rotation axis of 1/1000 ° or less and a flatness of 20 nm / mm or less. Method.
  3. 前記研削盤として使用するダイヤモンド燒結体の面粗さ(Rz:最大高さ粗さ)が30nm以下であることを特徴とする請求項1又は2に記載の多結晶ダイヤモンド切削工具の製造方法。 The method for producing a polycrystalline diamond cutting tool according to claim 1 or 2, wherein a surface roughness (Rz: maximum height roughness) of the diamond sintered body used as the grinding machine is 30 nm or less.
  4. 前記ダイヤモンド単相の多結晶ダイヤモンドは、グラファイトを超高圧高温下で焼結助剤や触媒の添加無しに直接的にダイヤモンドに変換された多結晶ダイヤモンド焼結体であることを特徴とする請求項1〜3のいずれかに記載の多結晶ダイヤモンド切削工具の製造方法。 The diamond single-phase polycrystalline diamond is a polycrystalline diamond sintered body obtained by directly converting graphite into diamond without adding a sintering aid or a catalyst under ultrahigh pressure and high temperature. The manufacturing method of the polycrystalline diamond cutting tool in any one of 1-3.
  5. 請求項1〜4のいずれかに記載の方法によって製造したことを特徴とする多結晶ダイヤモンド切削工具。 A polycrystalline diamond cutting tool manufactured by the method according to claim 1.
  6. 刃先のチッピングが50nm以下であることを特徴とする請求項5に記載の多結晶ダイヤモンド切削工具。 The polycrystalline diamond cutting tool according to claim 5, wherein the chipping of the blade edge is 50 nm or less.
  7. 前記切れ刃を形成する逃げ面及びすくい面の被削材及び切り子が接触する領域の面粗さ(Rz:最大高さ粗さ)が10nm未満であることを特徴とする請求項5又は6に記載の多結晶ダイヤモンド切削工具。 7. The surface roughness (Rz: maximum height roughness) of a region where the work material and the face of the flank and rake face that form the cutting edge are in contact with each other is less than 10 nm. The polycrystalline diamond cutting tool described.
JP2009245407A 2009-10-26 2009-10-26 Diamond cutting tool and manufacturing method thereof Active JP5426319B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009245407A JP5426319B2 (en) 2009-10-26 2009-10-26 Diamond cutting tool and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009245407A JP5426319B2 (en) 2009-10-26 2009-10-26 Diamond cutting tool and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011088264A JP2011088264A (en) 2011-05-06
JP5426319B2 true JP5426319B2 (en) 2014-02-26

Family

ID=44106995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009245407A Active JP5426319B2 (en) 2009-10-26 2009-10-26 Diamond cutting tool and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5426319B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5969106B1 (en) * 2015-12-28 2016-08-10 日進工具株式会社 End mill and manufacturing method thereof
CN109848764A (en) * 2019-03-11 2019-06-07 上海华友金裕微电子有限公司 A kind of grinding processing method of fragile material

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103181206B (en) 2010-11-16 2016-05-18 日本电信电话株式会社 Wireless communication system and wireless communications method
JP5753268B2 (en) * 2011-08-31 2015-07-22 高知Fel株式会社 Diamond polishing equipment
JP5878086B2 (en) 2012-06-21 2016-03-08 住友電工ハードメタル株式会社 Cutting tool manufacturing method
JP5567622B2 (en) * 2012-06-28 2014-08-06 オグラ宝石精機工業株式会社 stylus
JP6359419B2 (en) * 2014-10-22 2018-07-18 株式会社ソディック drill
JP6191839B2 (en) * 2014-12-10 2017-09-06 日進工具株式会社 Diamond sintered ball end mill and manufacturing method thereof
JP6627618B2 (en) * 2016-04-01 2020-01-08 三菱マテリアル株式会社 Ball end mill
CN107470989B (en) * 2017-09-07 2019-08-02 哈尔滨工业大学 A kind of mechanical grinding method of high-precision diamond Vickers indenter

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0755410B2 (en) * 1992-05-13 1995-06-14 石井精密工業株式会社 Ball end mill manufacturing method
JPH0679504A (en) * 1992-08-31 1994-03-22 Sumitomo Electric Ind Ltd Polycrystal diamond cutting tool and its manufacture
JPH08216021A (en) * 1995-02-10 1996-08-27 Fanuc Ltd Truing method for and manufacture of grinding wheel
JP3717046B2 (en) * 2000-01-21 2005-11-16 有限会社アプライドダイヤモンド Diamond polishing wheel, diamond polishing method, and diamond polishing composite wheel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5969106B1 (en) * 2015-12-28 2016-08-10 日進工具株式会社 End mill and manufacturing method thereof
CN109848764A (en) * 2019-03-11 2019-06-07 上海华友金裕微电子有限公司 A kind of grinding processing method of fragile material

Also Published As

Publication number Publication date
JP2011088264A (en) 2011-05-06

Similar Documents

Publication Publication Date Title
JP5905055B2 (en) Abrasive article
Xie et al. Micro-grinding of micro-groove array on tool rake surface for dry cutting of titanium alloy
Nath et al. Machinability study of tungsten carbide using PCD tools under ultrasonic elliptical vibration cutting
EP0945220B1 (en) Abrasive tool
Malkin et al. Grinding technology: theory and application of machining with abrasives
US9701043B2 (en) Dicing blade
CN101646527B (en) Graded drilling cutters
Ding et al. Fabrication and performance of porous metal-bonded CBN grinding wheels using alumina bubble particles as pore-forming agents
US7101263B2 (en) Flank superabrasive machining
JP2015024494A (en) Abrasive tool and method for finishing complex shapes in workpieces
TW424030B (en) Dual purpose tool for cutting and grinding
CN1130274C (en) Abrasive tools
CN104736277B (en) Cubic boron nitride cutting tool
JP3323827B2 (en) Manufacturing method of precision parts
KR100558798B1 (en) Point superabrasive machining of nickel alloys
JP6593322B2 (en) Cutting insert and manufacturing method thereof
CN103395002B (en) A kind of electric discharge machining in gas dressing of bulky diamond emery wheel repaiies neat method
JP4556383B2 (en) Processing method of transfer optical surface
CN101905449B (en) Preparation method of porous metal binding agent braze welding diamond grinding wheel
US8662959B2 (en) Cutting method and cutting device for hard material
US20120066982A1 (en) Bonded abrasive articles, method of forming such articles, and grinding performance of such articles
JP5197383B2 (en) Cutting tools
JP5927685B2 (en) Cutting tools
Zhan et al. Precision milling of tungsten carbide with micro PCD milling tool
JP5060626B2 (en) Replaceable blade end mill

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121025

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131031

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131128

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5426319

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250