JPH04193763A - Non oxide sintered body having improved workability and system using the same - Google Patents

Non oxide sintered body having improved workability and system using the same

Info

Publication number
JPH04193763A
JPH04193763A JP2320734A JP32073490A JPH04193763A JP H04193763 A JPH04193763 A JP H04193763A JP 2320734 A JP2320734 A JP 2320734A JP 32073490 A JP32073490 A JP 32073490A JP H04193763 A JPH04193763 A JP H04193763A
Authority
JP
Japan
Prior art keywords
sintered body
ionic radius
oxide sintered
body according
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2320734A
Other languages
Japanese (ja)
Inventor
Takeshi Miyazaki
猛 宮崎
Akihiro Goto
明弘 後藤
Shinsuke Higuchi
晋介 樋口
Kunihiro Maeda
邦裕 前田
Sukeo Saito
斉藤 翼生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2320734A priority Critical patent/JPH04193763A/en
Publication of JPH04193763A publication Critical patent/JPH04193763A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To improve workability by sintering after mixing a prescribed molar ratio of a compound of metal element having specified ionic radius and a nonoxide ceramic. CONSTITUTION:Into the nonoxide ceramic incorporating >90vol.% of more than one kinds of silicon nitride, silicon carbide and zirconium boride consisting of elements each having <0.08nm ionic radius, for example, a fluoride, carbonate, nitrate, chloride, bromide, iodide or acetate of a metal element having >0.14nm ionic radius such as Ba, Rb or Cs and a compound decomposing below sintering temp. of sintered body to form metallic ions blended as 0.1-5mol% against the total sintered body. This blend is mixed, and after molding and sintering at a prescribed condition, a nonoxide sintered body having a structure in which the metallic ions exist at the boundary phase of the sintering body, a triple boundary point of the boundary phase and deposited material or the whole or a part of the boundary face. This sintered body is exemplified by the pressure cooker test in the condition, at 121 deg.C, 2 atm., 100% relative humidity lasting for 100hrs. and the weight difference per unit area of the sintered body by the test is <10<-3>g/cm<2>.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、耐熱、耐磨耗性を要求されるセラミック部材
において、特に複雑形状を有し短時間で高精度に加工さ
れることを要求される部材に適するセラミックの製法お
よびそのようなセラミックよりなる製品に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to ceramic members that require heat resistance and wear resistance, especially those that have a complex shape and are required to be processed with high precision in a short time. The present invention relates to a method for producing ceramics suitable for use as parts, and products made from such ceramics.

〔従来の技術〕[Conventional technology]

金属に比べて耐熱性、耐磨耗性に優れるセラミック材料
は、ガスタービン部材、自動車用エンジン部材等への応
用が期待されており、その種類も酸化物セラミックのA
l2O3、ZrO2、TiO□、炭化物セラミック5i
CSTic、 ZrC,窒化物セラミックの 5i8z
AlzOzNs−z  (0<=Z<−4,2)  、
 5iJ4、 TiN。
Ceramic materials, which have better heat resistance and wear resistance than metals, are expected to be applied to gas turbine parts, automobile engine parts, etc.
l2O3, ZrO2, TiO□, carbide ceramic 5i
CSTic, ZrC, nitride ceramic 5i8z
AlzOzNs-z (0<=Z<-4,2),
5iJ4, TiN.

ホウ化物セラミックのTiB2、ZrB2等多種の物が
見出されている。これらセラミックスはそれぞれ強度の
大きいもの、耐磨耗性の優れているもの、硬度の高いも
の等々、各々特徴を備えており、またそれらの特性を改
善すべく多(の発明がなされてきている。例えば、窒化
物セラミック5isN4に関して、その焼結性を改善す
る発明として、特公昭58−1073号公報等多数があ
る。また、これらセラミックの強度を改善する発明とし
て、同種もしくは多種のセラミック繊維をセラミック母
相中に配合する方法(特公昭56−14637号公報)
もしくはセラミックウィスカーを母相中に配合する方法
(特公昭59−54675号公報)等がある。
Various types of boride ceramics such as TiB2 and ZrB2 have been found. Each of these ceramics has its own characteristics, such as high strength, excellent abrasion resistance, and high hardness, and many inventions have been made to improve these characteristics. For example, with regard to nitride ceramic 5isN4, there are many inventions such as Japanese Patent Publication No. 58-1073 that improve the sinterability of 5isN4.Also, as an invention to improve the strength of these ceramics, ceramic fibers of the same type or different types are used as ceramic fibers. Method of blending into the matrix (Japanese Patent Publication No. 14637/1983)
Alternatively, there is a method of blending ceramic whiskers into the matrix (Japanese Patent Publication No. 54675/1983).

しかし、セラミックが、その優れた性質にもかかわらず
未だに自動車エンジン用部材、ガスタービン部材等とし
て大々的に実用化されていないのはその高強度、耐磨耗
性に相反する機械加工性の悪さによるコスト高が主たる
原因である。つまり、セラミック材料を通常の金属材料
と同様に加工しようとした場合、セラミック材料は脆い
材料のため、かけが多発し寸法精度が出せないため、−
回の加工単位(削りしろ)を少なくしなくてはならない
。そのため、金属等を加工する場合に比へ、加工時間が
大幅に増加し、その加熱エコストかかかるためである。
However, despite its excellent properties, ceramics have not yet been put into practical use as automotive engine parts, gas turbine parts, etc., due to their poor machinability, which contradicts their high strength and wear resistance. The main cause is high cost. In other words, if you try to process ceramic materials in the same way as ordinary metal materials, ceramic materials are brittle materials, so there will be many chips and dimensional accuracy cannot be achieved.
The machining unit (cutting allowance) per cycle must be reduced. For this reason, when processing metal or the like, the processing time is significantly increased and the heating cost is increased.

もちろん、このような欠点を克服するため、セラミック
の加工性を向上させようとする試みもなられてきている
。これらの試みは、例えば、金属、 1986年2月号
の第20頁から第24頁において解説されている。
Of course, in order to overcome these drawbacks, attempts have been made to improve the workability of ceramics. These attempts are discussed, for example, in the February 1986 issue of Metals, pages 20 to 24.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記の加工性改善に関する従来技術は、セラミックの機
械加工性を向上することを主眼に置いたため、加工性は
確かに向上しているが、セラミックの持つ耐熱、耐磨耗
性、高強度等の特徴が失われており、断熱材等に用いる
には適しているが、機械部品等には適用できないという
問題があった。
The above-mentioned conventional techniques for improving workability have focused on improving the machinability of ceramics, so workability has certainly improved, but ceramics have poor heat resistance, abrasion resistance, high strength, etc. It has lost its characteristics and is suitable for use in heat insulating materials, etc., but cannot be applied to mechanical parts.

本発明の目的は、セラミックの持つ耐熱、耐磨耗性、高
強度を保持しながら更に高加工性を付与したエンジン部
材、ガスタービン部材、等の機械部品に好適なセラミッ
ク材料を提供することにある。
An object of the present invention is to provide a ceramic material suitable for mechanical parts such as engine parts and gas turbine parts, which has high workability while maintaining the heat resistance, abrasion resistance, and high strength of ceramics. be.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明者らは鋭意研究を重
ねた結果、イオン半径が0.14nm以上の金属元素が
全体に対してO,1mol%以上5mol%以下の割合
で、焼結体の粒界相、粒界析出物、粒界の三重点もしく
は粒界面に存在しているようなイオン半径0.08nm
以下の元素で構成され、かつ、121 ’C12気圧、
相対湿度100%の条件下で行うPCT(プレッシャー
・クッカー・テスト)を100時間実施後の焼結体の単
位面積あたりの重量変化が10−2g/cm2以下であ
ることを特徴とする非酸化物焼結体がすぐれた特性を有
することを知見し、さらに、この材料に対し研削、切断
、研磨等の機械加工を行い、所望形状に成形してセラミ
ック部材を作成し、それを用いてエンジン等のシステム
を構成することにより本発明を完成した。なお、本発明
において、「イオン半径」という場合はポーリングの測
定による値を基準としている。
In order to achieve the above object, the present inventors have conducted extensive research and found that a sintered body containing a metal element with an ionic radius of 0.14 nm or more in a proportion of O, 1 mol% or more and 5 mol% or less of the whole. Ionic radius of 0.08 nm, such as those present in grain boundary phases, grain boundary precipitates, triple points of grain boundaries, or grain boundaries.
Composed of the following elements, and 121'C12 atm,
A non-oxide material characterized by a weight change per unit area of a sintered body of 10-2 g/cm2 or less after 100 hours of PCT (pressure cooker test) conducted under conditions of 100% relative humidity. We discovered that sintered bodies have excellent properties, and we also performed mechanical processing such as grinding, cutting, and polishing on this material, molded it into a desired shape, and created ceramic parts, which were then used to manufacture engines, etc. The present invention was completed by configuring the system. In the present invention, the term "ion radius" is based on the value determined by Pauling's measurement.

イオン半径が0.14nm以上の金属元素か全体に対し
て0.1mol%より少ない場合は、加工性向上効果が
充分でない。また、5mo 1%より多い場合、耐熱性
、耐磨耗性、強度等が劣化することから0.1mol%
以上5mol%以下であることが望ましい。
If the metal element having an ionic radius of 0.14 nm or more is less than 0.1 mol % of the entire metal element, the effect of improving workability is not sufficient. In addition, if it exceeds 5mo1%, heat resistance, abrasion resistance, strength, etc. will deteriorate, so 0.1mol%
It is desirable that the content be 5 mol% or less.

また、母相となる非酸化物焼結体のイオン半径は、0.
 08nm以下であることが望ましい。この理由は、後
に詳しく説明するが、加工性を向上させるため添加する
イオン半径が0.14nm以上の金属元素とのイオン半
径比の関係て、0. 08nm以上のイオン半径を持つ
非酸化物焼結体では加工性の向上効果が充分てないから
である。
Further, the ionic radius of the non-oxide sintered body serving as the matrix is 0.
It is desirable that the thickness be 0.08 nm or less. The reason for this will be explained in detail later, but it is due to the ionic radius ratio of 0.14 nm or more to a metal element that is added to improve workability. This is because a non-oxide sintered body having an ionic radius of 0.8 nm or more does not have a sufficient effect of improving workability.

さらに、これら母層となる非酸化物焼結体は、エンジン
等のシステムを構成する構造材料として使われるため耐
環境性に優れていなければならない。すなわち、耐環境
性の加速試験であるPCT(プレッシャー・クッカー・
テスト)を121°c12気圧、相対湿度100%の条
件下で100時間行った場合でも、焼結体の成分が分解
、酸化等の変化を起こさず、単位面積あたりの重量変化
が10−3g/cff12以下でなくてはならない。A
IN 、 Ca3N3等は不安定であるため、この試験
を行った場合、重量変化が大きく構造用セラミックとし
ては適さない。
Furthermore, since the non-oxide sintered bodies that serve as the base layer are used as structural materials for systems such as engines, they must have excellent environmental resistance. In other words, PCT (Pressure Cooker) is an accelerated environmental resistance test.
Even when the test) was conducted for 100 hours at 121°C, 12 atm, and 100% relative humidity, the components of the sintered body did not undergo decomposition, oxidation, or other changes, and the weight change per unit area was 10-3 g/ cff must be less than or equal to 12. A
Since IN, Ca3N3, etc. are unstable, when this test is performed, the weight changes greatly, making them unsuitable as structural ceramics.

イオン半径が0.14nm以上の金属元素としては、B
a 、 Rb、 Csが適当である。これ以外は放射性
元素であるので、通常の使用には、問題かある。イオン
半径0.08nm以下の元素で構成される非酸化物焼結
体としては、どのようなものでも効果が有ることを確認
しているが、窒化物セラミックの516−zAl、0□
N8z (0<=Z<=4.2) 、Si3N4、Ti
N、炭化物セラミックの5iCSTiC,ZrC,ホウ
化物セラミックのTiB2、ZrB2には特に加工性改
善効果がある。
As a metal element with an ionic radius of 0.14 nm or more, B
a, Rb, and Cs are suitable. Since other elements are radioactive, there are problems with their normal use. It has been confirmed that any non-oxide sintered body composed of an element with an ionic radius of 0.08 nm or less is effective, but nitride ceramics such as 516-zAl, 0□
N8z (0<=Z<=4.2), Si3N4, Ti
N, carbide ceramics such as 5iCSTiC and ZrC, and boride ceramics such as TiB2 and ZrB2 are particularly effective in improving workability.

また、0. 08nm以上のイオンの半径を持つ非酸化
物焼結体の割合が90体積%以上であることは、Si 
3N4等の材料は焼結助剤の添加が必須であることによ
る。焼結体の密度が理論密度に対して90%以上でない
と精度の高い加工か難しい。
Also, 0. The fact that the proportion of non-oxide sintered bodies having an ionic radius of 0.08 nm or more is 90% by volume or more means that Si
This is because materials such as 3N4 require the addition of a sintering aid. Unless the density of the sintered body is 90% or more of the theoretical density, it is difficult to process with high precision.

加工性を向上させるため添加するイオン半径が0、14
nm以上金属元素を焼結体の粒界相、粒界析出物、粒界
の三重点もしくは粒界面に存在させる方法として、それ
らの元素を弗化物、炭酸塩、硝酸塩、塩化物、臭化物、
ヨウ化物等の無機化合物または酢酸化合物等の有機化合
物で、かつ、焼結体の焼結温度以下で分解し、金属イオ
ンとなるような化合物の形で混合添加する方法が有効で
ある。
The ionic radius added to improve workability is 0, 14
As a method for causing metal elements of nm or larger to exist in the grain boundary phase, grain boundary precipitates, triple points of grain boundaries, or grain interfaces of a sintered body, these elements can be mixed with fluorides, carbonates, nitrates, chlorides, bromides,
An effective method is to mix and add an inorganic compound such as an iodide or an organic compound such as an acetic acid compound in the form of a compound that decomposes below the sintering temperature of the sintered body to form metal ions.

焼結温度以下で分解しないような化合物、例えばBaS
O4等は添加しても、粒界相、粒界析出物、粒界の三重
点もしくは粒界面に存在せず粒状に存在してしまい、加
工性を向上効果か発現しない。
Compounds that do not decompose below the sintering temperature, such as BaS
Even if O4 and the like are added, they do not exist in grain boundary phases, grain boundary precipitates, triple points of grain boundaries, or grain interfaces, but instead exist in granular form, and do not exhibit any effect of improving workability.

以上のようにして作成された焼結体は耐熱性、耐磨耗性
に優れ、高強度、高精度でありかつ低コストであること
を要求される部材として好適である。
The sintered body produced as described above has excellent heat resistance and abrasion resistance, and is suitable as a member that is required to have high strength, high precision, and low cost.

例を挙げれば、ガスタービンブレード、自動車レシプロ
エンジン用シリンダーにおいては、従来技術でも、製品
化自体は可能であったが、製品に占める加工コストの割
合が非常に大きいため、全体のコストが大きく、商品化
に至ってはいなかった。本発明のセラミック材料を用い
ると、耐熱性、耐摩耗性等のガスタービンブレード、自
動車レシプロエンジン用シリンダーに要求される性能を
低下させることなく、製品に占める加工コストの割合を
小さくできるので、商品化が充分可能である。
For example, it was possible to commercialize gas turbine blades and cylinders for automobile reciprocating engines using conventional technology, but the processing costs accounted for a very large proportion of the product, so the overall cost was high. It had not yet been commercialized. By using the ceramic material of the present invention, the proportion of processing costs in the product can be reduced without reducing the performance required for gas turbine blades and cylinders for automobile reciprocating engines, such as heat resistance and wear resistance. It is fully possible to

自動車用、家電ポンプ用メカニカルシール、石油化学、
薬品工業用バルブ、繊維機械用糸道等の耐摩耗性を要求
される部材に本発明を適用した場合も、セラミック材料
の耐摩耗性、耐環境性を生かしながら、製品コストを下
げることが可能となるため、安価で高性能な部材を提供
することかできる。また、半導体製造治具用セッター、
ルツボ、炉芯管、切削工具用スローアラアイ チップ等
に適用した場合でも、同様の効果が得られる。これらの
例で示したように、研削、切削、研摩等の機械加工を行
って所望形状に成形することによって実用に供する部材
はすべて、本発明を適用することによって、製品の全コ
ストに占める加工コストの割合を小さくできる。そのた
め、従来商品化が、コスト高のために不可能てあった部
材のセラミック化が可能となる。従って、これらの部材
を採用した、エンジン、工作機械等のシステム自体も、
高性能、低価格のものを提供できるようになる。
Mechanical seals for automobiles, home appliance pumps, petrochemicals,
Even when the present invention is applied to parts that require wear resistance, such as valves for the pharmaceutical industry and thread guides for textile machinery, it is possible to reduce product costs while taking advantage of the wear resistance and environmental resistance of ceramic materials. Therefore, it is possible to provide inexpensive and high-performance members. In addition, setters for semiconductor manufacturing jigs,
The same effect can be obtained when applied to crucibles, furnace core tubes, cutting tool thrower tips, etc. As shown in these examples, by applying the present invention, all parts that are put into practical use by being formed into a desired shape through mechanical processing such as grinding, cutting, and polishing can be processed to reduce the amount of processing that accounts for the total cost of the product. The cost ratio can be reduced. Therefore, it becomes possible to produce ceramic parts that were previously impossible to commercialize due to high costs. Therefore, the systems themselves, such as engines and machine tools, that use these parts,
We will be able to provide products with high performance and low prices.

〔作 用〕 イオン半径が0.14nm以上の金属元素を焼結体の粒
界相、粒界析出物、粒界の三重点もしくは粒界面に存在
させた場合の加工性向上効果発現機構についてはまだ明
確ではない。現在骨かっていることは以下の事である。
[Function] Regarding the mechanism of the effect of improving workability when a metallic element with an ionic radius of 0.14 nm or more is present in the grain boundary phase, grain boundary precipitate, triple point of the grain boundary, or grain interface of the sintered body, It's not clear yet. What I am currently considering is the following.

■ 加工性向上のため、同一の非酸化物焼結体に多くの
種類の金属元素を添加して、その加工性変化を観察した
ところアルカリ金属、アルカリ土類金属元素が効果の有
ることが分かった。同じ族でも特に原子量の大きい元素
が加工性向−E効果が顕著であり、そのイオン半径を調
べてみると0.14nm以上の物か実用上、充分な効果
が有ることが分かった。
■ To improve workability, we added many types of metal elements to the same non-oxide sintered body and observed changes in workability, and found that alkali metal and alkaline earth metal elements were effective. Ta. Even within the same group, elements with particularly large atomic weights have a remarkable processability-E effect, and an examination of their ionic radius revealed that elements with an ionic radius of 0.14 nm or more have a sufficient effect for practical use.

■ 同一のアルカリ土類金属元素を多くの非酸化物焼結
体に添加して、その加工性変化観察したところ、構成元
素のイオン半径の小さいものほど加工性向上効果が顕著
であることが分かった。
■ When the same alkaline earth metal element was added to many non-oxide sintered bodies and the change in workability was observed, it was found that the smaller the ionic radius of the constituent element, the more pronounced the effect of improving workability. Ta.

■ 上記■、■で加工性向上効果が顕著であったものを
透過型電子顕微鏡で観察してみると、金属元素が粒界相
、粒界析出物、粒界の三重点もしくは粒界面に存在して
いることが分かった。
■ When observing with a transmission electron microscope the above items ■ and ■ that had a remarkable effect of improving workability, it was found that metallic elements were present in the grain boundary phase, grain boundary precipitates, triple points of grain boundaries, or grain boundaries. I found out that it was.

また加工性向上効果がほとんどみられなかった物は上記
のような現象はみられなかった。
In addition, the above-mentioned phenomenon was not observed in the products in which almost no effect of improving workability was observed.

■ 上記■、■で加工性向上効果か顕著であったものを
破断させた場合の破断面を観察すると粒界破壊の割合が
多いのに対し加工性向上効果がほとんどみられなかった
物は粒内破壊の割合が多い。
■ Observation of the fracture surface of the fractured specimens that had a remarkable effect of improving workability in ■ and The rate of internal destruction is high.

■ 上記の■、■で加工性向上効果が顕著であった金属
元素でも、添加の方法が異なると、加工性向上効果が異
なる。それらの元素を弗化物、炭酸塩、硝酸塩、塩化物
、臭化物、ヨウ化物等の無機化合物または酢酸化合物等
の有機化合物で、かつ、焼結体の焼結温度以下で分解し
、金属イオンとなるような化合物の形で混合添加した場
合は加工性向上効果があるが、硫酸塩、酸化物等の安定
な化合物の形で混合添加した場合は効果が少ない。効果
が少なかった物を硫酸等でエツチングしてみると、添加
した金属元素か粒状に散在していることが分かった。
(2) Even for the metal elements that had a remarkable effect of improving workability in (1) and (2) above, the effect of improving workability differs depending on the method of addition. These elements are decomposed into metal ions using inorganic compounds such as fluorides, carbonates, nitrates, chlorides, bromides, and iodides, or organic compounds such as acetic acid compounds, and at a temperature below the sintering temperature of the sintered body. When mixed and added in the form of such compounds, there is an effect of improving processability, but when mixed and added in the form of stable compounds such as sulfates and oxides, the effect is small. When we etched the materials that were less effective with sulfuric acid etc., we found that the added metal elements were scattered in granular form.

以上のことから、加工性改善機構について以下のように
推測することができる。
From the above, the mechanism for improving workability can be inferred as follows.

すなわち、弗化物、炭酸塩、硝酸塩、塩化物、臭化物、
ヨウ化物等の無機化合物または酢酸化合物等の有機化合
物の形で混合添加したイオン半径が0.14nm以上の
金属元素は、焼結中に分解して、金属元素を遊離する。
i.e. fluorides, carbonates, nitrates, chlorides, bromides,
A metal element having an ionic radius of 0.14 nm or more mixed and added in the form of an inorganic compound such as an iodide or an organic compound such as an acetate compound is decomposed during sintering to liberate the metal element.

これらの金属元素は母相の非酸化物焼結体にとっては不
純物である。不純物は、粒界相、粒界析出物、粒界の三
重点もしくは粒界面に存在したほうがエネルギー的に安
定である。そのため、一般には不純物は、粒界相、粒界
析出物、粒界の三重点もしくは粒界面に存在しやすい。
These metal elements are impurities for the non-oxide sintered body of the matrix. Impurities are more energetically stable if they exist in grain boundary phases, grain boundary precipitates, triple points of grain boundaries, or grain interfaces. Therefore, impurities generally tend to exist in grain boundary phases, grain boundary precipitates, triple points of grain boundaries, or grain boundaries.

しかし、この存在しやすさには、母相の非酸化物焼結体
のイオン半径と添加した金属元素のイオン半径の大きさ
の比が関係すると考えられる。
However, this ease of existence is thought to be related to the ratio of the ionic radius of the non-oxide sintered body of the matrix to the ionic radius of the added metal element.

すなわち、後者の大きさが前者のそれに比べて小さい場
合、粒界相、粒界析出物、粒界の三重点もしくは粒界面
に存在するよりは、母相の非酸化物焼結体の構成元素と
置換型の固溶をしたほうが、エネルギー的に安定となり
やすいため、後者の大きさが前者のそれに比べて大きい
場合に粒界相、粒界析出物、粒界の三重点もしくは粒界
面に存在すると考えられる。
In other words, when the size of the latter is smaller than that of the former, the constituent elements of the non-oxide sintered body of the matrix are more likely to exist in grain boundary phases, grain boundary precipitates, triple points of grain boundaries, or grain boundaries. Since a substitutional solid solution is more likely to be energetically stable, if the latter is larger than the former, grain boundary phases, grain boundary precipitates, triple points of grain boundaries, or grain boundaries exist. It is thought that then.

我々の実験によると、イオン半径の大きさの比が1.5
倍以上あるとき、特に粒界相、粒界析出物、粒界の三重
点もしくは粒界面が形成されやすいらしいということが
分かった。粒界相等を形成すると、加工性が良くなるの
は、このようにしてできた粒界相等が母相の結晶粒内の
強度に比べて弱いからである。このような焼結体を研削
、切削加工した場合、この粒界相が選択的に破壊される
。つまり粒界破壊が多くなる。
According to our experiments, the ionic radius size ratio is 1.5.
It has been found that when the amount is more than twice as large, grain boundary phases, grain boundary precipitates, grain boundary triple points, or grain interfaces are particularly likely to be formed. Forming grain boundary phases improves workability because the grain boundary phases formed in this way are weaker than the strength within the crystal grains of the parent phase. When such a sintered body is ground or cut, this grain boundary phase is selectively destroyed. In other words, grain boundary destruction increases.

一般に粒内破壊をする場合は、切削加工時、材料に一度
クラックか生じるとりしツクは結晶粒内を通り直線的に
進むためクラック進展距離は長くなり、その結果材料の
かけの部分が大きくなる。
Generally, in the case of intragranular fracture, the crack that occurs once in the material during cutting progresses linearly through the crystal grains, so the crack propagation distance becomes longer, and as a result, the cracked part of the material becomes larger. .

つま、り研削、切削した面には材料の大きなかけ、すな
わち大きなチッピングが多くなるため、寸法精度の高い
加工はできないことが多い。また、強度の大きい粒内を
破壊しながら研削、切削加工を施すため、加工に要する
エネルギー、つまり加工抵抗が大きくなり加工に使用す
る砥石の磨耗が多くなってしまう。
In many cases, machining with high dimensional accuracy is not possible because there are many large pieces of material, that is, large chips, on the surface of the machined surface. Furthermore, since grinding and cutting are performed while destroying the inside of the grain, which has high strength, the energy required for processing, that is, the processing resistance, increases, resulting in increased wear of the grindstone used for processing.

一方粒界破壊する場合は、研削、切削加工を行った場合
クラックは結晶粒界を通り、折れ曲かりながら進む。ク
ラックは、その進行方向を変えるたびにクラック進展エ
ネルギーを失うため、クラックの進む距離は、粒内破壊
を起こしクラックが直線的に進む場合に比べて短くなる
。つまり、チッピングが小さくなるため寸法精度の高い
加工が可能になる。また、粒内に比べ強度の小さい粒界
が選択的に破壊されるため、研削に要するエネルギーが
小さくなり、研削、切削に使用する砥石の磨耗が少なく
て済み加工コストか下かることとなる。
On the other hand, in the case of grain boundary fracture, when grinding or cutting is performed, the crack passes through the grain boundaries and progresses while bending. Since a crack loses crack propagation energy each time it changes its direction of propagation, the distance the crack propagates is shorter than if the crack propagates linearly due to intragranular fracture. In other words, since chipping is reduced, processing with high dimensional accuracy becomes possible. In addition, since the grain boundaries, which have a lower strength than the inside of the grains, are selectively destroyed, the energy required for grinding is reduced, and the grindstone used for grinding and cutting requires less wear, resulting in lower processing costs.

〔実施例〕〔Example〕

以下、実施例により本発明の詳細な説明する。 Hereinafter, the present invention will be explained in detail with reference to Examples.

実施例】 Ba元素の弗化物BaF 2粉末、炭酸塩BaC0+粉
末を炭化物セラミックSiC(2wt%のAINを添加
)、窒化物セラミックスSi 5.5A1o、 500
.6N7.5.5i3N4(5Wt96のMgOをを添
加)の各粉末にそれぞれ0. Imo1%、2mo1%
、5mol%、10mo1%添加したものと、比較とし
て添加しないものを秤量し、ボールミルを用いて24時
間混合し、造粒、圧粉体成形を行い、この成形体をI 
X 10’Torrの真空中で1時間、300kg /
 crjの加圧下でホットプレス焼結した。これらの焼
結体の密度を水置換法で測定した。また、加工性を定量
的に比較するため、こうして得た焼結体を幅4mm、高
さ3mm、長さ35mmの試験片に加工した後、粒度#
300、刃厚0.2睡のダイヤモンドブレードを用いて
、長手方向に直角に10回切断し、その時の研削抵抗と
最大のかけの寸法を測定した。
Examples: Ba element fluoride BaF 2 powder, carbonate BaC0+ powder, carbide ceramic SiC (added 2 wt% AIN), nitride ceramic Si 5.5A1o, 500
.. Each powder of 6N7.5.5i3N4 (added with 5Wt96 MgO) was added with 0. Imo1%, 2mo1%
, 5 mol %, 10 mol % added and those without addition were weighed, mixed for 24 hours using a ball mill, granulated and compacted, and this compact was I
1 hour in a vacuum of X 10'Torr, 300kg/
Hot press sintering was carried out under the pressure of CRJ. The density of these sintered bodies was measured by the water displacement method. In addition, in order to quantitatively compare the workability, the sintered body thus obtained was processed into a test piece with a width of 4 mm, a height of 3 mm, and a length of 35 mm.
Using a diamond blade with a diameter of 300 mm and a blade thickness of 0.2 mm, cutting was performed 10 times at right angles to the longitudinal direction, and the grinding resistance and the maximum chip size were measured.

それらの測定結果をまとめて第1表に示す。なお、密度
は理論密度に対する相対値として表示している。
The measurement results are summarized in Table 1. Note that the density is expressed as a relative value to the theoretical density.

Ba化合物、BaF2、BaC(L+無添加のもの(試
験Na1、10.19)は、いずれもBa化合物を添加
したものに比べ研削抵抗、最大かけ寸法ともに大きいこ
とか分かる。BaP 2、BaCO3をそれぞれ0.1
mol%以上添加したものは、研削抵抗、最大かけ寸法
ともに小さくなっていくが、10mo1%添加すると再
び太き(なっていることが分かる。また、密度も10m
o1%添加したもの(試験N(L5.9.14.23.
27)は極端に悪くなっていることが分かる。このこと
から、加工性を向上させ、かつ充分焼結密度の高い健全
な焼結体を得るには、Ba化合物の添加量は0゜1mo
l%〜5mo 1%が望ましいことが分かる。
It can be seen that the grinding resistance and maximum cutting dimension of the Ba compound, BaF2, BaC (L + non-added ones (test Na1, 10.19) are larger than those with Ba compound added.BaP 2, BaCO3 respectively 0.1
When mol% or more is added, both the grinding resistance and the maximum cut size become smaller, but when 10mol% or more is added, the thickness becomes thick again.Also, the density is also 10m
o1% added (Test N (L5.9.14.23.
It can be seen that 27) has become extremely bad. From this, in order to improve workability and obtain a healthy sintered body with sufficiently high sintered density, the amount of Ba compound added is 0°1 mo.
It can be seen that 1% to 5mo1% is desirable.

(本頁以下余白) 第1表 実施例2 窒化物セラミックスSi3N4(焼結助剤として5wt
%のMgOを添加)にBaO1Ba(NOa)2、Ba
Br2、BaC12、Ba12、Ba(OH)2と比較
としてBaと同族の元素で一周期小さい(従ってイオン
半径も小さい) Srの化合物5rP2をそれぞれ0,
1. 2. 5.10mo1%添加したものと、比較と
して無添加のものを秤量し、ボールミルを用いて24時
間混合し、造粒、圧粉体成形を行い、この成形体を16
00°Cで1時間、窒素中で焼結した。これらの焼結体
の密度を水置換法で測定した。また加工性を定量的に比
較するため、こうして得た焼結体を幅4mm、高さ3m
m、長さ35mmの試験片に加工した後、粒度#300
、刃厚0.2mmのダイヤモンドブレードを用いて長手
方向に直角に10回切断し、その時の研削抵抗と最大の
かけの寸法を測定した。それらの測定結果をまとめて第
2表に示す。密度は理論密度に対する相対値で示してい
る。この表で添加物無しのもの(試験Nα28)とBa
元素以外の化合物を添加したもの(試験Nα53〜5G
)はBa元素の化合物を添加したもの(試験Nα29〜
52)に比べて研削抵抗、最大かけ寸法ともに大きいこ
とが分かる。Ba化合物を添加したものでも添加量10
mo1%になると(試験N(L32.36.40゜44
、48.52)密度は下がり研削抵抗、最大かけ寸法と
もに再び大きくなる傾向が見られる。このことからBa
元素の添加量は0.1mol%〜5m01%が望ましい
と考えられる。
(Margins below this page) Table 1 Example 2 Nitride ceramics Si3N4 (5wt as sintering aid)
% of MgO) to BaO1Ba(NOa)2, Ba
Compared to Br2, BaC12, Ba12, and Ba(OH)2, the Sr compound 5rP2, which is an element in the same group as Ba and has one cycle smaller (therefore, the ionic radius is also smaller), is 0 and 0, respectively.
1. 2. Weighed the one with 5.10 mo1% added and the one without additive for comparison, mixed for 24 hours using a ball mill, granulated and compacted, and this compact was
Sintered at 00°C for 1 hour under nitrogen. The density of these sintered bodies was measured by the water displacement method. In addition, in order to quantitatively compare the workability, the sintered body thus obtained was cut into 4mm width and 3m height.
After processing into a test piece with a length of 35 mm, the particle size was #300.
The specimen was cut 10 times at right angles to the longitudinal direction using a diamond blade with a blade thickness of 0.2 mm, and the grinding resistance and the maximum chip size were measured. The measurement results are summarized in Table 2. The density is shown as a relative value to the theoretical density. In this table, the one without additives (test Nα28) and Ba
Added compounds other than elements (test Nα53-5G
) is one to which a compound of Ba element is added (test Nα29~
It can be seen that both the grinding resistance and the maximum grinding size are larger than those of 52). Even if Ba compound is added, the amount of addition is 10
When mo1% is reached (Test N (L32.36.40°44
, 48.52) There is a tendency for the density to decrease and for both the grinding resistance and the maximum cut size to increase again. From this, Ba
It is considered desirable that the amount of the element added is 0.1 mol% to 5m01%.

(本頁以下余白) 第2表 実施例3 窒化物セラミックス5isN4(焼結助剤として5wt
%のMgOを添加)粉末に破壊靭性値を向上させ、靭性
のある材料にするためSiC,TiC,ZrC,B4C
粉末をそれぞれaowt%添加したものに更にBaCO
2粉末を0.1. 2. 5. lOmo1%添加した
もの、比較のためにBaC0s無添加のものを秤量し、
ボールミルを用いて24時間混合し、造粒、圧粉体成形
を行い、この成形体を1800°Cで1時間、2a細の
窒素中、aookg/alの加圧下でホットプレスし焼
結体を作製した。このようにして得た焼結体を実施例1
と同様に密度、研削抵抗、最大かけ寸法の測定を行った
。その結果を第3表にまとめて示す。
(Margin below this page) Table 2 Example 3 Nitride ceramics 5isN4 (5wt as sintering aid)
% MgO) SiC, TiC, ZrC, B4C to improve the fracture toughness value of the powder and make it a tough material.
Furthermore, BaCO was added to each powder by aowt%.
2 powder to 0.1. 2. 5. Weighed the one with 1% lOmo added and the one without BaC0s added for comparison,
Mixing was carried out for 24 hours using a ball mill, followed by granulation and compacting, and the compact was hot pressed at 1800°C for 1 hour under a pressure of aookg/al in 2A fine nitrogen to form a sintered compact. Created. The sintered body thus obtained was used in Example 1.
In the same manner as above, the density, grinding resistance, and maximum cutting dimension were measured. The results are summarized in Table 3.

(本頁以下余白) 第3表 SiC,TiC,ZrC,B4Cを添加したものは、破
壊靭性値が向上するため、添加しないもの(実施例1の
試験Nα19)に比べて研削抵抗はほとんど変わらない
ものの、最大かけ寸法は小さくなっている。
(Margins below this page) Table 3: The fracture toughness of the materials added with SiC, TiC, ZrC, and B4C is improved, so the grinding resistance is almost unchanged compared to the materials without the addition of SiC, TiC, ZrC, and B4C (Test Nα19 in Example 1). However, the maximum hanging size is smaller.

これらの系にさらに0.1mol%以上のBaC(L+
を添加することによって、研削抵抗は小さくなり、最大
かけ寸法は更に小さくなる。これらの系ても、Bact
3添加量か10mo1%となると密度が急激に下がり、
研削抵抗、最大かけ寸法も大きくなる傾向を示している
In addition to these systems, 0.1 mol% or more of BaC (L+
By adding , the grinding resistance becomes smaller and the maximum cutting size becomes smaller. Even in these systems, Bact
When the amount of 3 added is 10mo1%, the density decreases rapidly,
Grinding resistance and maximum cutting size also tend to increase.

実施例4 第4表に示すようなセラミック粉末に 2mo1%のB
aC0aを添加したものとしないものを秤量し、ボール
ミルを用いて24時間混合し、造粒、圧粉体成形を行い
、この成形体を1 atmの窒素中、300kg/−の
加圧下でホットプレスし焼結体を作製した。
Example 4 2 mo1% B was added to ceramic powder as shown in Table 4.
Those with and without aC0a added were weighed, mixed for 24 hours using a ball mill, granulated and compacted, and the compacts were hot pressed under a pressure of 300 kg/- in 1 atm of nitrogen. A sintered body was produced.

このようにして得た焼結体を実施例1と同様に密度、研
削抵抗、最大かけ寸法の測定を行った。また、耐環境性
を調べるため121℃、2気圧、相対湿度100%の条
件下で行うPCT (プレッシャー・クッカー・テスト
)を100時間実施後の焼結体の単位面積あたりの重量
変化も調べた。これらの結果から、BaC03を添加し
たものは、添加しないものに比べ焼結密度は若干下かる
ものの研削抵抗、かけ寸法ともに小さくなっており加工
性が向上していることが分かる。
The sintered body thus obtained was subjected to measurements of density, grinding resistance, and maximum cut size in the same manner as in Example 1. In addition, to examine the environmental resistance, we also examined the weight change per unit area of the sintered body after 100 hours of PCT (pressure cooker test) conducted at 121°C, 2 atmospheres, and 100% relative humidity. . From these results, it can be seen that the samples to which BaC03 is added have a slightly lower sintered density than those without BaC03, but both the grinding resistance and the crack size are smaller, and the workability is improved.

しかし、AINはPCT、100時間実施後の焼結体の
単位面積あたりの重量変化か10−”g/cm2前後と
大きく構造用セラミックとしては適さないことが分かる
。他の材料は重量変化か10−’g/cm2以下であり
、重量変化はほとんどないと考えられる。
However, it can be seen that AIN is not suitable as a structural ceramic because the weight change per unit area of the sintered body after 100 hours of PCT is around 10-''g/cm2. -'g/cm2 or less, and it is considered that there is almost no change in weight.

(本頁以下余白) 第4表 実施例5 Si6、 5AlO,500,5N75粉末に2mo1
%のBaCO5粉末を添加したものと、比較としてBa
CO5粉末無添加のものを秤量しボールミルを用いて2
4時間混合し、造粒、圧粉体成形を行い、この成形体を
I atmの窒素中で焼成して焼結体を得た。これら焼
結体を第1図に示すようなガスタービン用の動翼に加工
したが、BaCO5を添加したSi6、 5A10.5
00.5N?、 sは、加工性が良いため、無添加のも
のに比べ、約Aの加工時間で加工が終了した。また、加
工に使用した砥石の磨耗もBaCO5無添加品を加工し
たものに比べ少なかった。
(Margin below this page) Table 4 Example 5 2 mo1 in Si6, 5AlO, 500, 5N75 powder
% of BaCO5 powder and as a comparison,
Weigh the CO5 powder without additives and use a ball mill to measure 2.
The mixture was mixed for 4 hours, granulated, and compacted, and the compact was fired in nitrogen in IATM to obtain a sintered body. These sintered bodies were processed into rotor blades for gas turbines as shown in Fig. 1. Si6, 5A10.5 with BaCO5 added
00.5N? , s has good workability, so the processing was completed in about A time compared to the additive-free material. In addition, the wear of the grindstone used for processing was less than that of products processed without BaCO5 additives.

実施例6 窒化物セラミックスS!3N4粉末に焼結助剤として5
wt%のMgOを添加し、さらに、Si3N4粉末に対
して 2mo1%の酢酸バリウム粉末を添加したものと
、比較として添加しないものを秤量し、純水中で、湿式
ボールミル24時間混合後、造粒、圧粉体成形を行い、
この成形体を1 atmの窒素中で焼成して焼結体を得
た。これらの焼結体を第2図に示すような石油化学工業
用のバルブに加工した。
Example 6 Nitride ceramics S! 5 as a sintering aid to 3N4 powder
A sample to which wt% of MgO was added and 2 mo1% of barium acetate powder to the Si3N4 powder was weighed, and a sample to which no barium acetate powder was added for comparison were weighed, mixed in pure water for 24 hours using a wet ball mill, and then granulated. , perform green compact molding,
This molded body was fired in nitrogen at 1 atm to obtain a sintered body. These sintered bodies were processed into valves for the petrochemical industry as shown in FIG.

このときの、加工に要した時間は、 2mo1%の酢酸
バリウム粉末を添加したものが、添加しないものに比べ
約172であった。また、バルブの開閉を10万回繰り
返した後のパルプの摩耗量を比較したが、2mo1%の
酢酸バリウム粉末を添加したもの、添加しないものの両
者で摩耗量の差は、はとんどなかった。
At this time, the time required for processing was approximately 172 hours with the addition of 2 mo1% barium acetate powder compared to the time required without addition. We also compared the amount of wear on the pulp after opening and closing the valve 100,000 times, and found that there was almost no difference in the amount of wear between the pulp with and without 2mol1% barium acetate powder added. .

〔発明の効果〕〔Effect of the invention〕

本発明は、以上説明したように構成されているので、短
時間で寸法精度の良いセラミック部品の作製が可能にな
り、従来コスト高もしくは寸法精度が悪いためにセラミ
ック部品を採用し得なかったような複雑形状部品にセラ
ミックを適用できるようになる。これによって安価に機
能の高いセラミック部品が製作することができる。従っ
て、これらのセラミック部品を採用することによって、
安価で高゛性能、高耐久性を持つ、エンジン、工作機械
等のシステムを、供給することができるようになる。
Since the present invention is configured as described above, it is possible to manufacture ceramic parts with good dimensional accuracy in a short time, and it is possible to manufacture ceramic parts with good dimensional accuracy in a short time. Ceramics can now be applied to parts with complex shapes. As a result, highly functional ceramic parts can be manufactured at low cost. Therefore, by adopting these ceramic parts,
It will be possible to supply systems such as engines and machine tools that are inexpensive, have high performance, and are highly durable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例5において、BaCO5を添加
したSi5.5Alo、 sho、 5Nv5焼結体に
より作製したガスタービン用動翼を示す。 第2図は本発明の実施例6において、酢酸ノくリウム粉
末を添加した作製したSi2N4焼結体より作製した石
油化学工業用のパルプを示す。
FIG. 1 shows a rotor blade for a gas turbine manufactured from a Si5.5Alo, sho, 5Nv5 sintered body to which BaCO5 is added in Example 5 of the present invention. FIG. 2 shows a pulp for the petrochemical industry produced from the Si2N4 sintered body to which notrium acetate powder was added in Example 6 of the present invention.

Claims (25)

【特許請求の範囲】[Claims] 1.イオン半径が0.14nm以上の金属元素が全体に
対して0.1mol%以上5mol%以下の割合で、焼
結体の粒界相、粒界析出物、粒界の三重点もしくは粒界
面に全部あるいはその一部が、存在しているようなイオ
ン半径0.08nm以下の元素で構成され、かつ、12
1℃、2気圧、相対湿度100%の条件下で行うPCT
(プレッシャー・クッカー・テスト)を100時間実施
後の焼結体の単位面積あたりの重量変化が10^−^3
g/cm^2以下であることを特徴とする非酸化物焼結
体。
1. Metal elements with an ionic radius of 0.14 nm or more are present in the grain boundary phase, grain boundary precipitates, triple points of grain boundaries, or grain boundaries of the sintered body at a ratio of 0.1 mol% to 5 mol% of the whole. Or a part of it is composed of existing elements with an ionic radius of 0.08 nm or less, and 12
PCT performed under conditions of 1°C, 2 atm, and 100% relative humidity.
The weight change per unit area of the sintered body after 100 hours of (pressure cooker test) was 10^-^3
A non-oxide sintered body characterized in that it is less than g/cm^2.
2.請求項1に記載の非酸化物焼結体において、イオン
半径が0.14nm以上の金属元素がBa、Rb、Cs
であることを特徴とする焼結体。
2. In the non-oxide sintered body according to claim 1, the metal element having an ionic radius of 0.14 nm or more is Ba, Rb, or Cs.
A sintered body characterized by:
3.請求項1に記載の非酸化物焼結体において、イオン
半径が0.08nm以下の元素で構成される非酸化物焼
結体がSiCを全体の90体積%以上含有したものであ
ること特徴とする焼結体。
3. The non-oxide sintered body according to claim 1, wherein the non-oxide sintered body composed of an element having an ionic radius of 0.08 nm or less contains SiC in an amount of 90% or more by volume. sintered body.
4.請求項1に記載の非酸化物焼結体において、イオン
拝啓が0.08nm以下の元素で構成される非酸化物焼
結体がSi_3N_4を全体の90体積%以上含有した
ものであることを特徴とする焼結体。
4. The non-oxide sintered body according to claim 1, wherein the non-oxide sintered body composed of an element with an ion diameter of 0.08 nm or less contains Si_3N_4 in an amount of 90% by volume or more. sintered body.
5.請求項1に記載の非酸化物焼結体において、イオン
半径が0.08nm以下の元素で構成される非酸化物焼
結体が一般式Si_6_−_zAl_zO_zN_8_
z(0<=Z<=4.2)で表される組成を全体の90
体積%以上含有したものであることを特徴とする焼結体
5. In the non-oxide sintered body according to claim 1, the non-oxide sintered body composed of an element having an ionic radius of 0.08 nm or less has the general formula Si_6_-_zAl_zO_zN_8_
The composition represented by z (0<=Z<=4.2) is
A sintered body characterized by containing at least % by volume.
6.請求項1に記載の非酸化物焼結体において、イオン
半径0.08nm以下の元素で構成される非酸化物焼結
体がTicを全体の90体積%以上含有したものである
ことを特徴とする焼結体。
6. The non-oxide sintered body according to claim 1, wherein the non-oxide sintered body composed of an element with an ionic radius of 0.08 nm or less contains Tic in an amount of 90% or more by volume. sintered body.
7.請求項1に記載の非酸化物焼結体において、イオン
半径が0.08nm以下の元素で構成される非酸化物焼
結体がB_4Cを全体の90体積%以上含有したもので
あることを特徴とする焼結体。
7. The non-oxide sintered body according to claim 1, wherein the non-oxide sintered body composed of an element with an ionic radius of 0.08 nm or less contains B_4C at 90% by volume or more of the total. sintered body.
8.請求項1に記載の非酸化物焼結体において、イオン
半径が0.08nm以下の元素で構成される非酸化物焼
結体がTaCを全体の90体積%以上含有したものであ
ることを特徴とする焼結体。
8. The non-oxide sintered body according to claim 1, wherein the non-oxide sintered body composed of an element with an ionic radius of 0.08 nm or less contains TaC at 90% by volume or more of the total. sintered body.
9.請求項1に記載の非酸化物焼結体において、イオン
半径が0.08nm以下の元素で構成される非酸化物焼
結体がTiB_2を全体の90体積%以上含有したもの
であることを特徴とする焼結体。
9. The non-oxide sintered body according to claim 1, wherein the non-oxide sintered body composed of an element with an ionic radius of 0.08 nm or less contains TiB_2 at 90% by volume or more of the whole. sintered body.
10.請求項1に記載の非酸化物焼結体において、イオ
ン半径が0.08nm以下の元素で構成される非酸化物
焼結体がWCを全体の90体積%以上含有したものであ
ることを特徴とする焼結体。
10. The non-oxide sintered body according to claim 1, wherein the non-oxide sintered body composed of an element with an ionic radius of 0.08 nm or less contains WC at 90% by volume or more of the total. sintered body.
11.請求項1に記載の非酸化物焼結体において、イオ
ン半径が0.08nm以下の元素で構成される非酸化物
焼結体がZrC、VC、HfC、NbCの1種または2
種以上を全体の90体積%以上含有したものであること
を特徴とする焼結体。
11. In the non-oxide sintered body according to claim 1, the non-oxide sintered body composed of an element having an ionic radius of 0.08 nm or less is one or two of ZrC, VC, HfC, and NbC.
A sintered body characterized in that it contains at least 90% by volume of at least one species.
12.請求項1に記載の非酸化物焼結体において、イオ
ン半径が0.08nm以下の元素で構成される非酸化物
焼結体がVN、NbN、TaN、HfN、ZrNの1種
または2種以上を全体の90体積%以上含有したもので
あることを特徴とする焼結体。
12. In the non-oxide sintered body according to claim 1, the non-oxide sintered body composed of an element having an ionic radius of 0.08 nm or less is one or more of VN, NbN, TaN, HfN, and ZrN. A sintered body characterized by containing 90% or more by volume of the whole.
13.請求項1に記載の非酸化物焼結体において、イオ
ン半径が0.08nm以下の元素で構成される非酸化物
焼結体がCaB_6、TaB_2、ZrB_2の1種ま
たは2種以上を全体の90体積%以上含有したものであ
ることを特徴とする焼結体。
13. In the non-oxide sintered body according to claim 1, the non-oxide sintered body composed of an element having an ionic radius of 0.08 nm or less contains one or more of CaB_6, TaB_2, and ZrB_2 in a total of 90% of the total. A sintered body characterized by containing at least % by volume.
14.請求項1から12に記載の焼結体の2種以上を含
むことを特徴とする焼結体。
14. A sintered body comprising two or more of the sintered bodies according to claims 1 to 12.
15.請求項1から12に記載の焼結体の密度が理論密
度に対して90%以上であることを特徴とする焼結体。
15. The sintered body according to claim 1, wherein the density of the sintered body is 90% or more of the theoretical density.
16.イオン半径が0.14nm以上の金属元素が全体
に対して0.1mol%以上5mol%以下の割合で、
焼結体の粒界相、粒界析出物、粒界の三重点もしくは粒
界面に存在させる方法として、それらの元素を弗化物、
炭酸塩、硝酸塩、塩化物、臭化物、ヨウ化物等の無機化
合物または酢酸化合物等の有機化合物で、かつ、焼結体
の焼結温度以下で分解し、金属イオンとなるような化合
物の形で混合添加することを特徴とする焼結体の製造方
法。
16. A metal element with an ionic radius of 0.14 nm or more is in a proportion of 0.1 mol% or more and 5 mol% or less of the whole,
As a method of making these elements exist in the grain boundary phase, grain boundary precipitates, triple points of grain boundaries, or grain interfaces of the sintered body, these elements can be added to fluoride,
Inorganic compounds such as carbonates, nitrates, chlorides, bromides, and iodides, or organic compounds such as acetic acid compounds, mixed in the form of compounds that decompose below the sintering temperature of the sintered body and become metal ions. A method for producing a sintered body, characterized by adding the following:
17.請求項1から12に記載の焼結体を研削、切削、
研磨等の機械加工を行って所望形状に成形したことを特
徴とするガスタービンブレード。
17. Grinding, cutting the sintered body according to claims 1 to 12,
A gas turbine blade characterized by being formed into a desired shape by machining such as polishing.
18.請求項1から12に記載の焼結体を研削、切削、
研磨等の機械加工を行って所望形状に成形したことを特
徴とする自動車レシプロエンジン用シリンダー。
18. Grinding, cutting the sintered body according to claims 1 to 12,
A cylinder for an automobile reciprocating engine characterized by being formed into a desired shape by machining such as polishing.
19.請求項1から12に記載の焼結体を研削、切削、
研磨等の機械加工を行って所望形状に成形したことを特
徴とするメカニカルシール。
19. Grinding, cutting the sintered body according to claims 1 to 12,
A mechanical seal characterized by being formed into a desired shape through mechanical processing such as polishing.
20.請求項1から12に記載の焼結体を研削、切削、
研磨等の機械加工を行って所望形状に成形したことを特
徴とする石油化学、薬品工業用バルブ。
20. Grinding, cutting the sintered body according to claims 1 to 12,
A valve for the petrochemical and pharmaceutical industries that is formed into a desired shape through mechanical processing such as polishing.
21.請求項1から12に記載の焼結体を研削、切削、
研磨等の機械加工を行って所望形状に成形したことを特
徴とする、繊維機械用糸道。
21. Grinding, cutting the sintered body according to claims 1 to 12,
A thread guide for textile machinery characterized by being formed into a desired shape by mechanical processing such as polishing.
22.請求項1から12に記載の焼結体を研削、切削、
研磨等の機械加工を行って所望形状に成形したことを特
徴とする、セッター、ルツボ、炉芯管等の半導体製造用
治具。
22. Grinding, cutting the sintered body according to claims 1 to 12,
Semiconductor manufacturing jigs, such as setters, crucibles, and furnace core tubes, characterized by being formed into desired shapes by mechanical processing such as polishing.
23.請求項1から12に記載の焼結体を研削、切削、
研磨等の機械加工を行って所望形状に成形したことを特
徴とする、切削工具用スローアウェイチップ。
23. Grinding, cutting the sintered body according to claims 1 to 12,
A throw-away tip for a cutting tool that is formed into a desired shape by machining such as polishing.
24.請求項1から12に記載の焼結体を研削、切削、
研磨等の機械加工を行って所望形状に成形したことを特
徴とする、セラミック部材。
24. Grinding, cutting the sintered body according to claims 1 to 12,
A ceramic member characterized by being formed into a desired shape by machining such as polishing.
25.請求項17から23に記載のセラミック部材を用
いて構成したエンジン、工作機械等のシステム。
25. A system such as an engine, a machine tool, etc. constructed using the ceramic member according to claim 17 to 23.
JP2320734A 1990-11-27 1990-11-27 Non oxide sintered body having improved workability and system using the same Pending JPH04193763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2320734A JPH04193763A (en) 1990-11-27 1990-11-27 Non oxide sintered body having improved workability and system using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2320734A JPH04193763A (en) 1990-11-27 1990-11-27 Non oxide sintered body having improved workability and system using the same

Publications (1)

Publication Number Publication Date
JPH04193763A true JPH04193763A (en) 1992-07-13

Family

ID=18124712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2320734A Pending JPH04193763A (en) 1990-11-27 1990-11-27 Non oxide sintered body having improved workability and system using the same

Country Status (1)

Country Link
JP (1) JPH04193763A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010001929A (en) * 2008-06-18 2010-01-07 Nippon Steel Materials Co Ltd Fluid static pressure guide bearing component, tool supporting component, and manufacturing method therefor
WO2021049618A1 (en) * 2019-09-12 2021-03-18 国立大学法人北海道大学 Sintered body, method for producing same, and dielectric composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010001929A (en) * 2008-06-18 2010-01-07 Nippon Steel Materials Co Ltd Fluid static pressure guide bearing component, tool supporting component, and manufacturing method therefor
WO2021049618A1 (en) * 2019-09-12 2021-03-18 国立大学法人北海道大学 Sintered body, method for producing same, and dielectric composition
JPWO2021049618A1 (en) * 2019-09-12 2021-03-18

Similar Documents

Publication Publication Date Title
CA1291878C (en) Ceramic cutting tool inserts
US4786448A (en) Plastic processing method of pressure or pressureless sintered ceramic body
US4764490A (en) Process for preparation of sintered silicon nitride
CN109906212B (en) Sintered body and cutting tool comprising same
EP0262654B2 (en) Silicon nitride sintered material for cutting tools and process for making the same
JP2523452B2 (en) High strength cubic boron nitride sintered body
JPH04193763A (en) Non oxide sintered body having improved workability and system using the same
JP7452589B2 (en) Sintered body
JP2576867B2 (en) High toughness cubic boron nitride based sintered body
JPS63185869A (en) Whisker-reinforced composite sintered body
JPS6041020B2 (en) Alumina ceramic with high strength and hardness
JPS6246959A (en) Heat-stability-resistant high toughness ceramic sintered body and manufacture
JP2596094B2 (en) Surface-coated ceramic cutting tool with excellent wear resistance
Pyzik et al. Self-reinforced silicon nitride—a new microengineered ceramic
JPS6050745B2 (en) Method for producing aluminum oxide-based ceramic with high toughness and hardness
JPH0723263B2 (en) Cutting tool made of aluminum oxide based ceramics
JPS6050747B2 (en) Aluminum oxide based ceramic with high toughness and hardness
JPH0158150B2 (en)
Kula et al. Development of β‐SiAlON/12H composite and their cutting performance on Inconel 718 turning
JPS6227032B2 (en)
JPS6222949B2 (en)
JP3082432B2 (en) Manufacturing method of aluminum oxide based ceramic cutting tool with excellent toughness
JPH06263533A (en) High-toughness ceramic sintered compact excellent in thermal stability and its production
JPH0339989B2 (en)
JPH03275565A (en) Silicon nitride-based sintered material having high toughness and strength