JPS6222949B2 - - Google Patents

Info

Publication number
JPS6222949B2
JPS6222949B2 JP57155716A JP15571682A JPS6222949B2 JP S6222949 B2 JPS6222949 B2 JP S6222949B2 JP 57155716 A JP57155716 A JP 57155716A JP 15571682 A JP15571682 A JP 15571682A JP S6222949 B2 JPS6222949 B2 JP S6222949B2
Authority
JP
Japan
Prior art keywords
zirconium
zro
toughness
tetragonal
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57155716A
Other languages
Japanese (ja)
Other versions
JPS5945969A (en
Inventor
Teruyoshi Tanase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP57155716A priority Critical patent/JPS5945969A/en
Publication of JPS5945969A publication Critical patent/JPS5945969A/en
Publication of JPS6222949B2 publication Critical patent/JPS6222949B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、高硬度と高靭性を合せもつた酸化
ジルコニウム系セラミツクに関するものである。 一般に、セラミツクは、高硬度をもつものの靭
性が低いために、その用途が限定されているが、
最近、従来主流を占めていた酸化アルミニウム
(以下Al2O3で示す)系セラミツクに代つて、高
靭性を有する酸化ジルコニウム(以下ZrO2で示
す)系セラミツクが注目されつつある。 この高靭性ZrO2系セラミツクは、主成分が
ZrO2からなり、かつ少量のAl2O3を含有した組成
をもつが、このセラミツクが高靭性をもつのは、
主成分たるZrO2が、正方晶および立方晶、ある
いは単斜晶、正方晶、および立方晶からなり、こ
のように結晶構造の異る2種または3種のZrO2
が共存することにあると云われている。しかし、
反面この高靭性ZrO2系セラミツクは硬さが低
く、耐摩耗性の点で問題があるものである。 そこで、本発明者等は、上述のような観点か
ら、上記の従来高靭性ZrO2系セラミツクに着目
し、これのもつ高靭性をそこなうことなく、これ
に高硬度を付与すべく研究を行なつた結果、これ
に炭化ジルコニウム(以下ZrCで示す)または炭
窒化ジルコニウム(以下ZrCNで示す)を、分散
相形成成分としてよりはむしろ、焼結時にZrO2
の一部、すなわち表面部を還元変換した状態で含
有させると、この結果のZrO2系セラミツクは高
硬度と高靭性をもつたものになるという知見を得
たのである。 したがつて、この発明は、上記知見にもとづい
てなされたものであつて、原料粉末として、常温
で単斜晶、約1000℃以上で正方晶の結晶構造を有
する非安定化ZrO2粉末、前記非安定化ZrO2粉末
に、Ca、Mg、およびYなどの酸化物のうちの1
種以上を含有させて常温における安定結晶構造を
立方晶とした安定化立方晶ZrO2粉末、および
Al2O3粉末、さらに必要に応じて炭素粉末を用意
し、これら原料粉末を所定配合組成に配合し、通
常の条件で混合し、圧粉体に成形し、ついでこの
圧粉体を、真空中、窒素雰囲気中、炭素を含む還
元性ガス雰囲気中、または炭素を含む還元性ガス
と窒素ガスとの混合ガス雰囲気中で、通常の条件
で焼結すると共に、前記非安定化および安定化立
方晶ZrO2の表面部をZrCまたはZrCNに還元変換
することによつて製造された、容量%で、ZrCま
たはZrCN:1〜20%、Al2O3:0.5〜5%、正方
晶、または正方晶と単斜晶(ただしこの場合の単
斜晶/正方晶の容量比は6/4以下)のZrO2
5〜30%、立方晶ZrO2および不可避不純物:残
り、からなる組成を有し、かつ正方晶と立方晶
ZrO2、または単斜晶と正方晶と立方晶ZrO2の表
面部がZrCまたはZrCNで構成され、Al2O3が均一
に分散した組織を有する高硬度と高靭性を具備し
たZrO2系セラミツクに特徴を有するものであ
る。 つぎに、この発明のZrO2系セラミツクにおい
て、成分組成範囲を上記の通りに限定した理由を
説明する。 (a) ZrCまたはZrCN これらの成分には、セラミツクの硬さを著し
く向上させ、もつて耐摩耗性を向上させる作用
があるほか、ZrO2の表面部に存在して、特に
正方晶ZrO2を準安定化し、もつて靭性を一段
と向上させる作用があるが、その含有量が1%
未満では前記作用に所望の効果が得られず、一
方20%を越えて含有させることは必要以上に長
時間の焼結を必要とすることになつて経済的で
ないことから、その含有量を1〜20%と定め
た。 (b) Al2O3 この成分にはZrO2の粒成長を抑制して、セ
ラミツクの靭性低下を阻止する作用があるが、
その含有量が0.5%未満では所望の粒成長抑制
効果が得られず、一方5%を越えて含有させる
と、焼結性が劣化し、靭性低下の原因となるこ
とから、その含有量を0.5〜5%と定めた。 (c) 正方晶ZrO2 準安定化状態の切方晶ZrO2の存在によつて
セラミツクはすぐれた靭性をもつようになる
が、その含有量が5%未満では所望の高靭性を
確保することができず、一方30%を越えて含有
させると、セラミツクの硬さ低下が著しくなる
ことから、その含有量を5〜30%と定めた。な
お、この場合、前記正方晶ZrO2の一部が単斜
晶ZrO2で占められても、その含有割合、すな
わち単斜晶/正方晶の容量比で6/4以下であ
る場合には高靭性を保持することができる。 また、この発明のZrO2系セラミツクにおいて
は、多くの場合、配合粉末の混合時に、炭化タン
グステン、Co、Ni、およびFeなどのうちの1種
以上が不可避不純物として混入する場合がある
が、その含有量が総量で3容量%を越えない限
り、セラミツク特性に何らの影響を及ぼすもので
はない。 つぎに、この発明のZrO2系セラミツクおよび
その製造法を実施例により具体的に説明する。 実施例 1 原料粉末として、平均粒径:1.2μmを有する
CaO安定化立方晶ZrO2粉末、同0.6μmのAl2O3
粉末および非安定化ZrO2粉末を用意し、これら
原料粉末を第1表に示される配合組成にそれぞれ
配合し、ボールミルにて2日間混合した後、
1ton/cm2の圧力にて圧粉体に成形し、ついでこの
圧粉体を、CO:1torr、N2:0.5torrからなる炭素
を含む還元ガスと窒素ガスとの混合ガス雰囲気
中、温度:1600℃に1.5時間保持の条件で焼結す
ることによつて、同じく第1表に示される組成を
有し、かつ前記両ZrO2の表面部がZrCNで構成さ
れた組織を有する本発明セラミツク1〜5をそれ
ぞれ製造した。 また、比較の目的で、焼結雰囲気を、1気圧の
大気とする以外は、上記本発明セラミツク1〜5
と同一の製造条件にて比較セラミツク1〜5をそ
れぞれ製造した。 この結果得られた本発明セラミツク1〜5およ
び比較セラミツク1〜5について、ロツクウエル
硬さ(Aスケール)および破壊靭性値を測定し、
その測定結果を第1表に合せて示した。 第1表に示される結果から、本発明セラミツク
1〜5は、いずれも高硬度と高靭性を合せもつの
に対して、比較セラミツク1〜5においては、焼
The present invention relates to a zirconium oxide ceramic having both high hardness and high toughness. In general, ceramics have high hardness but low toughness, so their uses are limited.
Recently, zirconium oxide (hereinafter referred to as ZrO 2 ) ceramics, which have high toughness, have been attracting attention in place of aluminum oxide (hereinafter referred to as Al 2 O 3 ) type ceramics, which have traditionally been the mainstream. This high-toughness ZrO 2 ceramic has a main component of
It has a composition consisting of ZrO 2 and a small amount of Al 2 O 3 , but the reason why this ceramic has high toughness is
ZrO 2 , the main component, consists of tetragonal and cubic crystals, or monoclinic, tetragonal, and cubic crystals, and thus two or three types of ZrO 2 with different crystal structures can be used.
It is said that this is due to the coexistence of the two. but,
On the other hand, this high-toughness ZrO 2 ceramic has low hardness and is problematic in terms of wear resistance. Therefore, from the above-mentioned viewpoint, the present inventors focused on the above-mentioned conventional high-toughness ZrO 2 ceramic and conducted research to impart high hardness to it without impairing its high toughness. As a result, zirconium carbide (hereinafter referred to as ZrC) or zirconium carbonitride (hereinafter referred to as ZrCN) was added to the ZrO 2 during sintering, rather than as a dispersed phase forming component.
They found that if a part of ZrO 2 , that is, the surface part, is contained in a reduced-converted state, the resulting ZrO 2 ceramic will have high hardness and toughness. Therefore, the present invention has been made based on the above-mentioned knowledge, and uses unstabilized ZrO 2 powder, which has a monoclinic crystal structure at room temperature and a tetragonal crystal structure at about 1000° C. or higher, as a raw material powder; Unstabilized ZrO 2 powder with one of oxides such as Ca, Mg, and Y
Stabilized cubic ZrO 2 powder containing more than one species to have a cubic crystal structure stable at room temperature, and
Prepare Al 2 O 3 powder and carbon powder if necessary. These raw material powders are blended into a predetermined composition, mixed under normal conditions, and formed into a green compact. This green compact is then heated in a vacuum. The unstabilized and stabilized cubes are sintered under normal conditions, in a nitrogen atmosphere, in a carbon-containing reducing gas atmosphere, or in a mixed gas atmosphere of a carbon-containing reducing gas and nitrogen gas. ZrC or ZrCN : 1-20%, Al2O3 : 0.5-5%, tetragonal or tetragonal, produced by reducing the surface part of crystalline ZrO2 to ZrC or ZrCN. ZrO 2 of crystal and monoclinic crystal (however, in this case, the monoclinic/tetragonal capacitance ratio is 6/4 or less):
5-30%, cubic ZrO 2 and unavoidable impurities: the remainder, and has a composition consisting of tetragonal and cubic
ZrO 2 , or monoclinic, tetragonal, and cubic ZrO 2 , the surface of which is composed of ZrC or ZrCN , and has a structure in which Al 2 O 3 is uniformly dispersed, and has high hardness and toughness. It has the following characteristics. Next, the reason for limiting the component composition range as described above in the ZrO 2 ceramic of the present invention will be explained. (a) ZrC or ZrCN These components have the effect of significantly increasing the hardness of ceramic and improving its wear resistance . It has the effect of metastabilizing and further improving toughness, but its content is 1%.
If the content is less than 20%, the desired effect cannot be obtained, and on the other hand, if the content exceeds 20%, sintering will be required for an unnecessarily long time, which is not economical. ~20%. (b) Al 2 O 3 This component has the effect of suppressing the grain growth of ZrO 2 and preventing a decrease in the toughness of ceramics.
If the content is less than 0.5%, the desired grain growth suppressing effect cannot be obtained, while if the content exceeds 5%, the sinterability will deteriorate and cause a decrease in toughness. Therefore, the content should be reduced to 0.5%. It was set at ~5%. (c) The presence of truncated ZrO 2 in the metastable state of tetragonal ZrO 2 gives ceramics excellent toughness, but if the content is less than 5%, the desired high toughness cannot be achieved. However, if the content exceeds 30%, the hardness of the ceramic will decrease significantly, so the content was set at 5 to 30%. In this case, even if a part of the tetragonal ZrO 2 is occupied by monoclinic ZrO 2 , if the content ratio, that is, the monoclinic/tetragonal capacity ratio is 6/4 or less, the high Toughness can be maintained. Furthermore, in the ZrO 2 ceramic of the present invention, in many cases, one or more of tungsten carbide, Co, Ni, and Fe may be mixed as unavoidable impurities when mixing the blended powder. As long as the content does not exceed 3% by volume in total, it will not affect the ceramic properties in any way. Next, the ZrO 2 ceramic of the present invention and its manufacturing method will be specifically explained with reference to Examples. Example 1 As raw material powder, average particle size: 1.2 μm
CaO stabilized cubic ZrO 2 powder, 0.6 μm Al 2 O 3
Powder and non-stabilized ZrO 2 powder were prepared, these raw material powders were blended into the composition shown in Table 1, and after mixing in a ball mill for 2 days,
The green compact is formed into a green compact at a pressure of 1 ton/cm 2 and then heated in a mixed gas atmosphere of carbon-containing reducing gas and nitrogen gas consisting of CO: 1 torr and N 2 : 0.5 torr at a temperature of: By sintering under the conditions of holding at 1600°C for 1.5 hours, a ceramic 1 of the present invention having the composition shown in Table 1 and having a structure in which the surface portions of both ZrO 2 are composed of ZrCN can be obtained. -5 were produced, respectively. In addition, for the purpose of comparison, the ceramics 1 to 5 of the present invention were prepared with the exception that the sintering atmosphere was 1 atm atmosphere.
Comparative ceramics 1 to 5 were manufactured under the same manufacturing conditions as in Example 1. Rockwell hardness (A scale) and fracture toughness values were measured for the resulting ceramics 1 to 5 of the present invention and comparative ceramics 1 to 5, and
The measurement results are shown in Table 1. From the results shown in Table 1, ceramics 1 to 5 of the present invention all have high hardness and high toughness, while comparative ceramics 1 to 5 have

【表】 結雰囲気を大気としたため、ZrCNの形成がない
ことから、相対的に硬さが低く、かつ正方晶
ZrO2に対する単斜晶ZrO2の割合が高いものは靭
性の劣つたものになつていることが明らかであ
る。 実施例 2 原料粉末として、平均粒径1μmを有する
Y2O3安定化立方晶ZrO2粉末、同0.6μmのAl2O3
粉末および非安定化ZrO2粉末、さらに同2μm
の黒鉛粉末を用意し、これら原料粉末をそれぞれ
第2表に示される配合組成に配合し、ボールミル
にて2日間混合した後、1ton/cm2の圧力で圧粉体
に成形し、ついでこの圧粉体を0.1torrのCOガス
雰囲気中、温度:1600℃に2時間保持の条件で焼
結することによつて、同じく第2表に示される組
成を有し、かつ前記両ZrO2の表面部がZrCで構成
された組織を有する本発明セラミツク6〜10をそ
れぞれ製造した。 また、比較の目的で、配合組成を同じく第2表
に示されるものとし、かつ焼結雰囲気を1気圧の
大気とする以外は、本発明セラミツク6〜10と
[Table] Because the crystal atmosphere is air, there is no formation of ZrCN, so the hardness is relatively low and the tetragonal crystal structure is formed.
It is clear that those with a high ratio of monoclinic ZrO 2 to ZrO 2 have poor toughness. Example 2 Raw material powder has an average particle size of 1 μm
Y2O3 stabilized cubic ZrO2 powder , 0.6μm Al2O3
Powder and unstabilized ZrO 2 powder, as well as 2 μm
Prepare graphite powder, mix these raw powders to the composition shown in Table 2, mix them in a ball mill for 2 days, and then shape them into a green compact at a pressure of 1 ton/cm 2 . By sintering the powder in a CO gas atmosphere of 0.1 torr at a temperature of 1600°C for 2 hours, the powder has the same composition shown in Table 2 and the surface portion of both ZrO 2 . Ceramics 6 to 10 of the present invention each having a structure composed of ZrC were manufactured. For the purpose of comparison, ceramics 6 to 10 of the present invention were also prepared with the same composition as shown in Table 2, and with the exception that the sintering atmosphere was 1 atm atmosphere.

【表】【table】

【表】 同一の製造条件にて比較セラミツク6〜10をそれ
ぞれ製造した。この結果得られたセラミツクにつ
いても実施例1におけると同様に硬さと破壊靭性
値を測定し、その結果を第2表に示した。 第2表に示されるように、本発明セラミツク6
〜10は高硬度と高靭性を有するのに対して、比較
セラミツク6〜10は、ZrCの形成がないために、
相対的に硬さが低く、しかも単斜晶の割合が多い
ものほど靭性が劣ることが明らかである。 なお、上記実施例1,2におけるセラミツク組
成の成分含有量は、試料の鏡面研磨表面に所定の
出力でX線を照射し、それぞれの成分について、
成分個有の反射角でのピーク高さを測定し、この
結果のピーク高さの標準試料で求められているピ
ーク高さに対する割合を算出することにより求め
た。 上述のように、この発明の方法によつて製造さ
れたZrO2系セラミツクは、高硬度と高靭性を具
備し、かつ耐熱性および耐食性にもすぐれている
ので、これらの特性が要求される切削工具や、軸
受および線引ダイスなどの耐摩耗性部品、さらに
はシールリング材などとして使用した場合に著し
くすぐれた性能を長期に亘つて安定的に発揮する
ものである。
[Table] Comparative ceramics 6 to 10 were each manufactured under the same manufacturing conditions. The hardness and fracture toughness of the resulting ceramics were also measured in the same manner as in Example 1, and the results are shown in Table 2. As shown in Table 2, the ceramic 6 of the present invention
~10 has high hardness and high toughness, whereas comparative ceramics 6~10 have high hardness and toughness due to the absence of ZrC formation.
It is clear that the toughness is inferior when the hardness is relatively low and the proportion of monoclinic crystals is high. In addition, the component contents of the ceramic compositions in Examples 1 and 2 above were determined by irradiating the mirror-polished surface of the sample with X-rays at a predetermined output, and for each component,
It was determined by measuring the peak height at a reflection angle unique to each component and calculating the ratio of the resulting peak height to the peak height determined for the standard sample. As mentioned above, the ZrO 2 ceramic produced by the method of the present invention has high hardness and toughness, as well as excellent heat resistance and corrosion resistance, so it can be used in cutting applications that require these properties. When used as tools, wear-resistant parts such as bearings and wire-drawing dies, and seal ring materials, it stably exhibits outstanding performance over a long period of time.

Claims (1)

【特許請求の範囲】 1 炭化ジルコニウムまたは炭窒化ジルコニウ
ム:1〜20%、 酸化アルミニウム:0.5〜5%、 正方晶酸化ジルコニウム:5〜30%、 立方晶酸化ジルコニウムおよび不可避不純物:
残り、 からなる組成(以上容量%)を有し、かつ正方晶
および立方晶酸化ジルコニウムの表面部が、炭化
ジルコニウムまたは炭窒化ジルコニウムで構成さ
れ、酸化アルミニウムが均一に分散した組織を有
することを特徴とする高硬度と高靭性を具備した
酸化ジルコニウム系セラミツク。 2 炭化ジルコニウムまたは炭窒化ジルコニウ
ム:1〜20%、 酸化アルミニウム:0.5〜5%、 単斜晶および正方晶酸化ジルコニウム(ただし
単斜晶/正方晶の容量比:6/4以下):5〜30
%、 立方晶酸化ジルコニウムおよび不可避不純物:
残り、 からなる組成(以上容量%)を有し、かつ単斜
晶、正方晶、および立方晶酸化ジルコニウムの表
面部が、炭化ジルコニウムまたは炭窒化ジルコニ
ウムで構成され、酸化アルミニウムが均一に分散
した組織を有することを特徴とする高硬度と高靭
性を具備した酸化ジルコニウム系セラミツク。
[Claims] 1. Zirconium carbide or zirconium carbonitride: 1 to 20%, aluminum oxide: 0.5 to 5%, tetragonal zirconium oxide: 5 to 30%, cubic zirconium oxide and inevitable impurities:
The remainder has a composition (volume % or more) consisting of the following, and the surface portion of the tetragonal and cubic zirconium oxides is composed of zirconium carbide or zirconium carbonitride, and has a structure in which aluminum oxide is uniformly dispersed. Zirconium oxide ceramic with high hardness and toughness. 2 Zirconium carbide or zirconium carbonitride: 1 to 20%, aluminum oxide: 0.5 to 5%, monoclinic and tetragonal zirconium oxide (monoclinic/tetragonal capacity ratio: 6/4 or less): 5 to 30
%, cubic zirconium oxide and unavoidable impurities:
The remainder has a composition (volume % or more) consisting of the following, and the surface portion of monoclinic, tetragonal, and cubic zirconium oxide is composed of zirconium carbide or zirconium carbonitride, and has a structure in which aluminum oxide is uniformly dispersed. A zirconium oxide ceramic having high hardness and high toughness.
JP57155716A 1982-09-07 1982-09-07 High hardness high tenacity zirconium oxide ceramic and manufacture Granted JPS5945969A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57155716A JPS5945969A (en) 1982-09-07 1982-09-07 High hardness high tenacity zirconium oxide ceramic and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57155716A JPS5945969A (en) 1982-09-07 1982-09-07 High hardness high tenacity zirconium oxide ceramic and manufacture

Publications (2)

Publication Number Publication Date
JPS5945969A JPS5945969A (en) 1984-03-15
JPS6222949B2 true JPS6222949B2 (en) 1987-05-20

Family

ID=15611924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57155716A Granted JPS5945969A (en) 1982-09-07 1982-09-07 High hardness high tenacity zirconium oxide ceramic and manufacture

Country Status (1)

Country Link
JP (1) JPS5945969A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1008844B (en) * 1984-10-02 1990-07-18 株式会社日立制作所 Thin film head slider fabrication and the method for preparing the thin film head slider fabrication material
CN108129167B (en) * 2018-01-09 2020-07-28 中南大学 High-temperature-resistant ablation-resistant modified ZrC-SiC ceramic coating and preparation method thereof
KR20210019443A (en) * 2018-06-18 2021-02-22 스미토모덴키고교가부시키가이샤 Sintered body and alumina solid solution partially stabilized zirconia

Also Published As

Publication number Publication date
JPS5945969A (en) 1984-03-15

Similar Documents

Publication Publication Date Title
KR0124366B1 (en) Silicon nitride base sintered body
JPS58185477A (en) High speed cutting ceramic for cutting tool
JPS638075B2 (en)
JPH05155662A (en) Silicon nitride sintered body excellent in wear resistance
JPS6222949B2 (en)
JPS6131071B2 (en)
JP3550420B2 (en) Wear-resistant silicon nitride sintered body, method for producing the same, and cutting tool
JPS6041020B2 (en) Alumina ceramic with high strength and hardness
JPS5918157A (en) Aluminum oxide ceramic for cutting tool
JPS6257597B2 (en)
JP2699104B2 (en) A1 Lower 2 O Lower 3-TiC ceramic material
JPS6316359B2 (en)
JPS6366796B2 (en)
JPH05208304A (en) Alumina-nitrocarbonate titanium system ceramic cutting tool
JP2684250B2 (en) Silicon nitride sintered body and method for producing the same
JP2712737B2 (en) Silicon nitride based sintered material with high toughness and high strength
JPH0797254A (en) High-strength sintered alumina
JPS6050747B2 (en) Aluminum oxide based ceramic with high toughness and hardness
JPS6050746B2 (en) Method for producing aluminum oxide-based ceramic with high toughness and hardness
JPS6257598B2 (en)
JPH0640770A (en) Alumina-based combined sintered compact and its production
JPH0570216A (en) High strength and high toughness aluminum oxide-based ceramics
JP2964830B2 (en) Aluminum oxide based ceramics with excellent toughness
JPH0294404A (en) Resistor
JPS638074B2 (en)