JPS6246959A - Heat-stability-resistant high toughness ceramic sintered body and manufacture - Google Patents

Heat-stability-resistant high toughness ceramic sintered body and manufacture

Info

Publication number
JPS6246959A
JPS6246959A JP60182726A JP18272685A JPS6246959A JP S6246959 A JPS6246959 A JP S6246959A JP 60182726 A JP60182726 A JP 60182726A JP 18272685 A JP18272685 A JP 18272685A JP S6246959 A JPS6246959 A JP S6246959A
Authority
JP
Japan
Prior art keywords
mol
ceo
zro
sintered body
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60182726A
Other languages
Japanese (ja)
Other versions
JPH06102574B2 (en
Inventor
正典 平野
博 稲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritake Co Ltd
Original Assignee
Noritake Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritake Co Ltd filed Critical Noritake Co Ltd
Priority to JP60182726A priority Critical patent/JPH06102574B2/en
Publication of JPS6246959A publication Critical patent/JPS6246959A/en
Publication of JPH06102574B2 publication Critical patent/JPH06102574B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は高靭性セラミック焼結体に関し、さらに詳しく
はY2O,及びCeO2あるいはCeO,を安定化剤と
して含むジルコニアと、A1、Si、B、周期率表4a
、5a、6a、族元素のホウ化物、炭化物、窒化物、A
1□○1、MgO” A 120 、(スピネル)、3
 A +20 s ・2 S io 2(ムライト)、
CrtO3乾性及び熱安定性に優れ、強度及び靭性の経
時劣化の極めて少ない高靭性セラミック焼結体及びその
製造方法に関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a high-toughness ceramic sintered body, and more specifically, zirconia containing Y2O and CeO2 or CeO as a stabilizer, A1, Si, B, Periodic rate table 4a
, 5a, 6a, borides, carbides, nitrides of group elements, A
1□○1, MgO” A 120, (spinel), 3
A +20 s ・2 S io 2 (mullite),
The present invention relates to a high-toughness ceramic sintered body having excellent CrtO3 drying properties and thermal stability, and extremely little deterioration of strength and toughness over time, and a method for producing the same.

[従来の技術1 ジルコニア焼結体は高温領域の立方晶から正方晶を経て
単斜晶に相転移をするが、その際体積変化を伴い、特に
正方晶から単斜晶への相転移の体積変化が大きく、その
ため焼結体がこの体積変化により破壊してしまうという
欠点がある。この欠点を取り除(ために、ZrO2に6
ab、MgO,Y2O,などを固溶させて転移を起こさ
せないようにし、常温でも立方晶からなる部分安定化ジ
ルコニアあるいは立方晶と単斜晶よりなる部分−安定化
ジルコニアが数多く発表されている。また、準安定相で
ある正方晶を常温で焼結体内に存在させた部分安定化ジ
ルコニアが高強度をしめすことが発表されている。これ
は−っには機械的な外部応力が加わった際に、準安定な
正方晶から室温安定相である単斜晶への相転移が誘起さ
れ、応力が吸収さ第1−7.ニー>にト]−− この様に常温において主として準安定な正方晶からなる
焼結体を得るための安定化剤としては、従来より主とし
てY2O3が用いられ待に高靭性、高強度を発現してい
る。しかし、この主として正方晶からなる部分安定化ジ
ルコニアは、高温相を低温域までもたらした結果上ずる
準安定であるため、その構造や性質が経時変化をし、特
に200℃ないし400℃という比較的低温における加
熱により単斜晶へ相転移を起こし、強度の経時劣化が極
めて大きい。また、この強度劣化は水分等の存在下では
着しく促進され、この様な特性の経時劣化がffJf題
となっている。
[Conventional technology 1 Zirconia sintered bodies undergo a phase transition from cubic to tetragonal to monoclinic in the high temperature range, but this is accompanied by a volume change, especially the volume of the phase transition from tetragonal to monoclinic. There is a drawback that the change is large and the sintered body is destroyed due to this volume change. To remove this drawback (in order to
A number of partially stabilized zirconias made of cubic crystals or partially stabilized zirconias made of cubic and monoclinic crystals have been published by dissolving ab, MgO, Y2O, etc. in order to prevent transitions. Furthermore, it has been announced that partially stabilized zirconia, in which a metastable phase of tetragonal crystals exists in a sintered body at room temperature, exhibits high strength. This is because when an external mechanical stress is applied to -, a phase transition from a metastable tetragonal crystal to a monoclinic crystal which is a stable phase at room temperature is induced, and the stress is absorbed. As described above, Y2O3 has been mainly used as a stabilizer to obtain a sintered body mainly consisting of tetragonal crystals which is metastable at room temperature, and has long been expected to exhibit high toughness and high strength. ing. However, this partially stabilized zirconia, which is mainly composed of tetragonal crystals, is metastable as a result of bringing the high temperature phase to a low temperature range, so its structure and properties change over time, especially at relatively low temperatures of 200°C to 400°C. Heating at low temperatures causes a phase transition to monoclinic crystal, and the strength deteriorates significantly over time. Further, this strength deterioration is severely accelerated in the presence of moisture, and such deterioration of properties over time is a ffJf problem.

ジルコニアの正方晶→単斜晶の相変態を利用した高靭性
セラミックスについては、異なる手法として、アルミナ
からなる基質内にマイクロクラックを内蔵させ、これに
より負荷がかかった場合に発生する応力を焼結体中に存
在するマイクロクラックによって吸収する破壊靭性の高
いセラミック成形体の製法が開示されている。(特開昭
52−8また、マイクロクラックの内蔵と異なり緻密な
非金属超硬物質を主体とする焼結体中に安定化剤を含ま
ない酸化ノルフニワム(ジルコニア)を50容量%まで
内蔵させ、強度を改善した焼結成形体が開示されている
。(特開昭54−61215)しかし、これら2つの例
に含まれるジルコニアはいずれも安定化剤を全く含まな
いものであるため、靭性及び曲げ強さの点では著しく改
善されたものの、熱的には非常に不安定で焼結体の経時
劣化は極めて大きい。
For high-toughness ceramics that utilize the tetragonal to monoclinic phase transformation of zirconia, a different method is to embed microcracks in an alumina matrix and sinter the stress that occurs when a load is applied. A method for manufacturing a ceramic molded body with high fracture toughness that absorbs microcracks present in the body is disclosed. (Unexamined Japanese Patent Publication No. 52-8) In addition, unlike micro-cracks built in, up to 50% by volume of norfuniwaum oxide (zirconia), which does not contain a stabilizer, is built into a sintered body mainly made of a dense non-metallic cemented carbide. A sintered compact with improved strength has been disclosed (Japanese Unexamined Patent Publication No. 54-61215).However, since the zirconia contained in these two examples does not contain any stabilizer, the toughness and bending strength are low. Although the sintered body was significantly improved in terms of thermal stability, it was thermally unstable and the sintered body deteriorated significantly over time.

これに対してアルミナ、ムライト、スピネル、S i=
Nイ、イツトリア部分安定化ジルコニア等のセラミック
マトリックス中にセラミック埋込み材料として安定化剤
を含まない単斜晶あるいは正方晶のジルコニアを5〜5
0容量%含む成形体、あるいは埋込み材料として2モル
%のY2O3で安定化された主として正方晶のジルコニ
アを5〜30容量%まで含むセラミック焼結成形体が開
示されている(特開昭59−64567)。しかし、前
者はジルフェアに安定化剤を含まないので強度の経時劣
化が避けられず、後者はジルコニアをイツトリアで部分
安定化したものであるため、熱的には極めて不安定であ
り容易に経時劣化を生じるという欠点がある。
On the other hand, alumina, mullite, spinel, Si=
Ni, monoclinic or tetragonal zirconia containing no stabilizer is used as a ceramic embedding material in a ceramic matrix such as partially stabilized zirconia.
Ceramic sintered bodies containing up to 5 to 30 volume % of mainly tetragonal zirconia stabilized with 2 mol % of Y2O3 as an embedding material have been disclosed (Japanese Patent Laid-Open No. 59-64567). ). However, since the former does not contain a stabilizer in Zirphere, its strength deteriorates over time, and the latter is made by partially stabilizing zirconia with ittria, so it is extremely unstable thermally and easily deteriorates over time. It has the disadvantage of causing

また、高靭性ジルコニア焼結体として、Y2O1、Mg
O,6aOを安定化剤として含むジルコニアにA1□O
3を065〜60重量%まで含む焼結体(特開昭58−
32066)及びY2O1、MgO16aOを安定化剤
として含むジルコニアにA12O3あるいは各種のホラ
化物、炭化物、窒化物及びAl2O、を含む焼結体(特
開昭58−120571)が開示されている。
In addition, as a high toughness zirconia sintered body, Y2O1, Mg
A1□O to zirconia containing O,6aO as a stabilizer
Sintered body containing up to 065 to 60% by weight of
32066) and a sintered body containing A12O3 or various phorides, carbides, nitrides, and Al2O in zirconia containing Y2O1 and MgO16aO as stabilizers (Japanese Patent Application Laid-Open No. 120571/1983).

しかし、これらの開示されたジルコニア焼結体のうちM
FiOl6aOを安定化剤とするものは、Y2O、を安
定化剤とするものに比べ機械的強度が低い上、1000
℃付近の長時間の保持により、脱安走化すなわち正方晶
から単斜晶への変態を生じ、その結果+1!械的強度の
低下を生ずるだめ、vI構造材しての用途は限られたも
のとなっている。さらア焼結体は、上記したように20
0“0〜400°Cの低温において容易に相転移を生じ
、時間と共に焼結体表面より内部へ向かって転移が進行
し強度、靭性の劣化は者しく、強靭化のメカニズムが作
用しなくなることはもとより、相転移に伴う体積膨張に
より、マイクロクラックが発生してついには破壊してし
まうという重大な欠陥を有し、構造材としての信頼性に
乏しいのである。
However, among these disclosed zirconia sintered bodies, M
Those using FiOl6aO as a stabilizer have lower mechanical strength than those using Y2O as a stabilizer, and
Holding the temperature around ℃ for a long time causes breakathaxis, that is, transformation from tetragonal to monoclinic, resulting in +1! Due to the decrease in mechanical strength, its use as a VI structural material is limited. As mentioned above, the free-flowing sintered body has a temperature of 20
0 "Phase transition occurs easily at low temperatures of 0 to 400°C, and over time, the transition progresses from the surface of the sintered body toward the inside, resulting in severe deterioration of strength and toughness, and the toughening mechanism no longer works. In addition, it has a serious defect in that microcracks occur due to the volume expansion associated with phase transition, and it eventually breaks, making it unreliable as a structural material.

[発明が解決しようとする問題点1 このように安定化剤としてY2O,を含むY 20 )
Z r O2系の主として正方晶より成る部分安定化ジ
ルコニアを含有する高靭性ジルコニア焼結体は、熱的に
極めて不安定であり、200℃〜400℃の低温におい
て容易に相転移を起こし、経時劣化を生じるという欠点
があり、さらには部分安定化ジルコニアは耐摩耗性に劣
るという欠点を有士るのであるが、本発明は高靭性ジル
コニアのこのような問題、αを解決すべくなされたもの
であって、正方晶の熱安定性を飛躍的に増大し熱経時劣
化のkat2、x+hJJI−+−[Jqン+lAm7
.:121hl+’)’:J’f:加M:デpen!:
体を提供し、高靭性ノルコニア焼結体の構造材としての
性能を向上し、その用途を拡大することを目的とするも
のである。
[Problem to be solved by the invention 1: Y20 containing Y2O as a stabilizer as described above]
High-toughness zirconia sintered bodies containing partially stabilized zirconia mainly composed of ZrO2-based tetragonal crystals are extremely unstable thermally, easily undergo phase transition at low temperatures of 200°C to 400°C, and deteriorate over time. Partially stabilized zirconia has the disadvantage of causing deterioration, and furthermore, it has the disadvantage of poor wear resistance.The present invention was made to solve these problems of high toughness zirconia. , which dramatically increases the thermal stability of the tetragonal crystal and reduces thermal aging deterioration.
.. :121hl+')':J'f:KAM:Depen! :
The purpose of this project is to improve the performance of high-toughness norconia sintered bodies as structural materials and expand their applications.

E問題点を解決するための手段] 本発明の第1発明の耐熱安定性に優れた高靭性セラミッ
ク焼結体は、I20.とCeO2および/またはCe 
O2を安定化剤として含む主として正方晶より成る部分
安定化ジルコニアに、A1、Si、B。
Means for Solving Problem E] The high toughness ceramic sintered body having excellent heat resistance stability according to the first aspect of the present invention has an I20. and CeO2 and/or Ce
A1, Si, and B in partially stabilized zirconia mainly composed of tetragonal crystals containing O2 as a stabilizer.

周期律表4a、5a、6μ族元素のホウ化物、炭化物、
窒化4&I、AI□O,、M go−A I203(X
 ヒ* ル)、3AIzO*・2SiOz(ムライト)
、Cr 203から選ばれた1種または2種以上を分散
成分として1〜70内部重量%含む焼結体で、焼結体中
に含まれる正方晶ジルコニアの結晶粒子の平均粒子径が
2μ−以下であることを要旨とするものである。
Borides and carbides of elements in groups 4a, 5a, and 6μ of the periodic table,
Nitride 4&I, AI□O,, M go-A I203(X
3AIzO*・2SiOz (mullite)
A sintered body containing 1 to 70% by internal weight of one or more selected from , Cr 203 as a dispersion component, and the average particle size of tetragonal zirconia crystal particles contained in the sintered body is 2μ or less. The gist is that

この第1発明の耐熱安定性に優れた高靭性セラミック焼
結体に含まれる部分安定化ジルコニアのZrO3、Y 
OIaS、CeO3、の組成範囲を、添付図面に示すよ
うに正三角形に交わる三軸にそれぞれZrO3、Y O
2、2、CeO2のmol%を表示した三角座標におい
て、 点A(ZrOz87.5mol%、YOI、512a+
o1%、CeOzO.5mol%) 点B(ZrOz95,5mol%、Y O2、s 4 
mol%、CeO20.5mol%) 点C(Z ro 295 、5 mol%、YOl、5
2mol%、CeO□2.5論01%) 点D(ZrO292,Omol%、YO+、sO++o
1%、CeO28.0mol%) 点E(Zr0.84.5mol%、YO3,.0mol
%、CeO,15,5論O1%) で示された特定5組成点を結ぶ線で囲まれた範囲内の組
成とすることができる。
Partially stabilized zirconia ZrO3 and Y contained in the high toughness ceramic sintered body having excellent heat resistance stability of the first invention
The composition ranges of OIaS and CeO3 are plotted along three axes intersecting an equilateral triangle as shown in the attached drawing.
2, 2, In the triangular coordinates displaying the mol% of CeO2, point A (ZrOz87.5mol%, YOI, 512a+
o1%, CeOzO. 5 mol%) Point B (ZrOz95, 5 mol%, Y O2, s 4
mol%, CeO20.5 mol%) Point C (Z ro 295 , 5 mol%, YOl, 5
2 mol%, CeO□2.5 theory 01%) Point D (ZrO292, Omol%, YO+, sO++o
1%, CeO28.0 mol%) Point E (Zr0.84.5 mol%, YO3, .0 mol%
%, CeO, 15, 5 theory O1%).

また、この第1発明の耐熱安定性に優れた高靭性セラミ
ック焼結体に含まれる分散成分のうちA       
□11、Si、B、周期律表4a、5a、6μ族元素の
ホウ化物、炭化物、窒化物をAIN%TiC,TiN。
Furthermore, among the dispersed components contained in the high toughness ceramic sintered body having excellent heat resistance stability of the first invention, A
□11, Si, B, borides, carbides, and nitrides of elements in groups 4a, 5a, and 6μ of the periodic table in AIN% TiC, TiN.

TiCN5TiB3、Si、N1、SiC%B、C,W
C,、T aC、N bC、Cr= C3、Crz B
 %Z rN 1Z rB 3、ZrC,HrN、Hf
B3、HfC,BNとすることができる。
TiCN5TiB3, Si, N1, SiC%B, C, W
C,, T aC, N bC, Cr= C3, Crz B
%Z rN 1Z rB 3, ZrC, HrN, Hf
B3, HfC, and BN can be used.

本発明の第2発明の耐熱安定性に優れた高靭性セラミッ
ク焼結体の製造方法は、I20.とCe O2および/
またはCeO,を安定化剤として含むZrO2粉末また
はI20.粉末及びCeO2粉末及びZrO2粉末また
はCe O2粉末及びZrO2粉末と、A1、Si、B
、周期律表4a、5a、6μ族元素のホウ化物、炭化物
、窒化物、A 1.0 2、Mg0−A I203(X
ピネル)、3ALOs・2SiO2(ムライト)、Cr
2O、から選ばれた1種または2fi以上の粉末を分散
成分として、Z r O2粉末に対して1〜70内部重
量%の範囲で粉砕混合して得られた混合粉末の成形体を
焼成し、含まれる正方晶ノルフェアの結晶粒子の平均粒
子径が2μω以下である焼結体を製造することを要旨と
するものである。
The method for manufacturing a high toughness ceramic sintered body having excellent heat resistance stability according to the second aspect of the present invention is based on I20. and CeO2 and/
or ZrO2 powder containing CeO, as a stabilizer, or I20. Powder and CeO2 powder and ZrO2 powder or CeO2 powder and ZrO2 powder and A1, Si, B
, borides, carbides, nitrides of elements in groups 4a, 5a, and 6μ of the periodic table, A 1.0 2, Mg0-A I203 (X
pinel), 3ALOs・2SiO2 (mullite), Cr
A molded body of mixed powder obtained by pulverizing and mixing one type or 2fi or more powder selected from ZrO2 powder in a range of 1 to 70 internal weight % with respect to ZrO2 powder is fired, The gist of the present invention is to produce a sintered body in which the average particle diameter of the tetragonal norphea crystal particles contained therein is 2 μω or less.

この、tJIJ2発明の製造方法に用いられるY2O3
、CeO□、ZrO2粉末の組成割合は、添付図面に示
すように正三角形に交わる三軸にそれぞれZ r O3
、Y OI+S、CeO2のmol%を表示した三角座
標において、 点A(ZrOz87.5mol%、YO,、,12mo
l%、CeO20,5mol%) 点B(ZrO295.5mol%、YO,、s4mol
%、CeO20,5IIO1%) ′ 点C(ZrO295,5T6o1%、YO1.52mo
l%、CeO22.5 鵬o1%) 点D(ZrO292,Omol%、Y O+ 、 s 
Omol%、CeO28 .0mol%) 点E(Zr0284.5too1%、Y O3,sOl
llol%、CeO215.5mol%、YO1.50
mol%、CeO215.5mol%)で示された特定
5組成点を結ぶ線で囲まれた範囲内の組成とすることが
できる。
Y2O3 used in this manufacturing method of the tJIJ2 invention
, CeO□, and ZrO2 powder, as shown in the attached drawing, Z r O3
,YO In the triangular coordinates displaying the mol% of OI+S and CeO2, point A (ZrOz87.5mol%, YO, , 12mol
1%, CeO20.5 mol%) Point B (ZrO295.5 mol%, YO,, s4 mol
%, CeO20,5IIO1%) ' Point C (ZrO295,5T6o1%, YO1.52mo
l%, CeO22.5 Peng o1%) Point D (ZrO292, Omol%, Y O+ , s
Omol%, CeO28. 0mol%) Point E (Zr0284.5too1%, Y O3, sOl
llol%, CeO215.5mol%, YO1.50
The composition can be within a range surrounded by a line connecting five specific composition points shown in mol%, CeO2 (15.5 mol%).

また、この第2発明の製造方法に用い−られる分散成分
のうちA1、Si、B、周期律表48.5a、6μ族元
素のホウ化物、炭化物、窒化物をAlN、TiC,Ti
N5TiCN、TiB3、S i*NいSiC,B、C
,WC,TaC,NbC1CrmC3、Cr2B 、 
Z rN 、 Z rB 3、ZrC,HfN、HfB
z、Hf0% BNとすることができる。
In addition, among the dispersed components used in the manufacturing method of the second invention, A1, Si, B, borides, carbides, and nitrides of elements in groups 48.5a and 6μ of the periodic table are substituted with AlN, TiC, Ti.
N5TiCN, TiB3, Si*NiSiC, B, C
, WC, TaC, NbC1CrmC3, Cr2B,
Z rN , Z rB 3, ZrC, HfN, HfB
z, Hf0% BN.

さらに、この第2発明の製造方法に用いられるY2O,
とCe O2および/またはCeO2を安定化剤として
含むZrO,粉末は、ZrO□のゾルおよび/または水
溶性の塩をY 203とCeO□の水溶性の塩と共に溶
液の状態で均一に混合した後、沈澱の形で分離して得ら
れたZ r O2粉末とすることができる。
Furthermore, Y2O used in the manufacturing method of this second invention,
ZrO, powder containing CeO2 and/or CeO2 as a stabilizer is prepared by uniformly mixing a sol and/or water-soluble salt of ZrO□ with Y203 and a water-soluble salt of CeO□ in a solution state. , the Z r O2 powder obtained can be separated in the form of a precipitate.

なお、第1発明及び第2発明を通じてZ r O2の一
部または全部をHf O2で置換することができる。
Note that through the first invention and the second invention, part or all of Z r O2 can be replaced with Hf O2.

[作用1 本発明の高靭性セラミック焼結体は、従来のY、o、−
ZrO□系の部分安定化ジルフェア焼結体組成にCe 
Oz成分と、A1、Si、B、周期律表4a。
[Effect 1] The high toughness ceramic sintered body of the present invention is different from conventional Y, o, -
Ce is added to the ZrO□-based partially stabilized Zirphere sintered body composition.
Oz component, A1, Si, B, periodic table 4a.

5a、6a族元素のホウ化物、炭化物、窒化物、Al2
01、MgO・A 1.0 、(スピネル)、3A+2
03・2SiOa(ムライト)、Cr2O3から選ばれ
た1種または2種以上を分散成分として新たに添加する
ことにより高強度、高靭性を発現し、従来上り、熱的に
不安定とされる温度領域での長時間に亙る熱劣化試験後
も殆ど変化がなく、極めて高い強度を示し熱安定性に者
しく優れる。
Borides, carbides, nitrides, Al2 of group 5a and 6a elements
01, MgO・A 1.0, (spinel), 3A+2
03.2 By newly adding one or more selected from SiOa (mullite) and Cr2O3 as a dispersion component, high strength and high toughness are achieved, and the temperature range is conventionally considered to be thermally unstable. There was almost no change after a long-term thermal deterioration test, showing extremely high strength and excellent thermal stability.

これはfjrJlに、Ce 02の添加によって安定化
された正方晶ジルコニアの結晶構造が、従来のY2O、
によって安定化された正方晶ジルコニアより、もジルコ
ニアの高温安定相である立方晶の結晶構造により近くな
っているためである。@2に、Al2O、等の分散成分
の添加が正方晶の含有量を高め、弾性率の上昇による破
壊エネルギーの増大に寄与し、高い強度を示すとともに
分散成分の存在がZ r O2の粒?iL部分の強化に
役立ち、また準安定正方晶ジルコニアの安定性を高め、
さらにCe O2成分の存在による安定性との相乗効果
の結果、耐熱安定性が着しく改善されるものと考えられ
る。
This is because the crystal structure of tetragonal zirconia stabilized by the addition of Ce 02 in fjrJl is different from that of conventional Y2O,
This is because the crystal structure of zirconia is closer to the cubic crystal structure, which is a high temperature stable phase of zirconia, than that of tetragonal zirconia stabilized by zirconia. Addition of a dispersion component such as Al2O to @2 increases the content of tetragonal crystals, which contributes to an increase in fracture energy due to an increase in elastic modulus, exhibiting high strength, and the presence of a dispersion component increases the Z r O2 grains. It helps strengthen the iL part and also increases the stability of metastable tetragonal zirconia.
Furthermore, it is thought that the heat resistance stability is significantly improved as a result of the synergistic effect with stability due to the presence of the CeO2 component.

また、分散成分の存在により硬度も改善され、ZrO2
の耐摩耗性を一段と優れたものとし、高温におけるジル
フニア焼結体の硬度、強度、クリープ等の機械的特性を
改善するものである。 本発明の焼結体に含まれ、熱的
により安定で劣化を示さなイY 203− Ce O2
Z r O2系の正方晶ノルフェアは、準安定な正方晶
であるために、Z r 02粒子近傍に応力集中を受け
た場合には、低温安定相である単斜晶への変態を生じ、
応力を緩和する作用を有する。このため、本発明の高靭
性セラミック焼結体は着しい高強度、高靭性を示すもの
である。
In addition, the hardness is also improved due to the presence of the dispersion component, and ZrO2
It further improves the wear resistance of the zirconia sintered body, and improves the mechanical properties such as hardness, strength, and creep of the zirconia sintered body at high temperatures. Y203-CeO2, which is contained in the sintered body of the present invention and is more thermally stable and does not show deterioration.
Since the Z r O2-based tetragonal norphea is a metastable tetragonal crystal, when stress is concentrated near the Z r O2 particles, it transforms into a monoclinic crystal which is a low-temperature stable phase.
It has the effect of relieving stress. Therefore, the high toughness ceramic sintered body of the present invention exhibits high strength and high toughness.

本発明ではジルコニアの安定化剤としてY 20 y及
びCe 02を必要とする。Y2O,、Ce O3、Z
rO2の三成分の配合量は、図面に示すような三角座標
において、点A、B、C,D、E、を結ぶ線で囲まれた
範囲内で選ぶとよい。この範囲内であると正方晶の安定
性が高(耐熱性に優れるが、この範囲を外れると大幅に
耐熱性が低下し、また機械的特性も劣ったものとなる。
The present invention requires Y 20 y and Ce 02 as stabilizers for zirconia. Y2O,, Ce O3, Z
The blending amounts of the three components of rO2 are preferably selected within the range surrounded by lines connecting points A, B, C, D, and E in triangular coordinates as shown in the drawing. If it is within this range, the stability of the tetragonal crystal is high (excellent in heat resistance), but if it is outside this range, the heat resistance will be significantly reduced and the mechanical properties will also be poor.

すなわち1.αA(YO,、s12mol%)よりもY
 O+ 、 sを多く含むと靭性が低下し、J: B 
(Y O+ 、 s 4 mol%)よりもY O2、
That is, 1. Y than αA(YO,,s12mol%)
If a large amount of O+ and s are included, the toughness decreases, and J:B
Y O2, than (Y O+ , s 4 mol%)
.

が少ない場合には、耐熱安定性が失われる。点C(Y 
O1,s 2 mol%tce022.5mol%)よ
りもYOl、及びCeO2が少ない場合は、耐熱安定性
が乏しくなる。また、点D(CeO28mol%)より
もCeO2が少ないと耐熱安定性が劣り、点E (Ce
O215。
When the amount is small, heat resistance stability is lost. Point C(Y
If YOl and CeO2 are less than O1,s2 mol%tce022.5 mol%), the heat stability will be poor. In addition, if CeO2 is less than point D (CeO28 mol%), the heat resistance stability will be poor, and point E (CeO28 mol%) will be inferior.
O215.

Smol%)上Q t、CF!O、が多い場合には充分
な機械的強度が得られない。
Smol%) Upper Q t, CF! If there is too much O, sufficient mechanical strength cannot be obtained.

本発明をより効果あるものとするためには、上記三成分
の配合量を図面に示すような三角座標において、   
 ・ 点A(ZrOz87.5mol%−Y O1,s 12
 +*o1%、CeO20.5a+o1%) 、’#、H(ZrO294,5mol%tYO1,s4
mol%、CeO□1,5cao1%) 点G(ZrOz94.5+o1%、YO+、s2.5m
ol%。
In order to make the present invention more effective, the amounts of the three components mentioned above should be expressed in triangular coordinates as shown in the drawings.
・ Point A (ZrOz87.5mol%-Y O1,s 12
+*o1%, CeO20.5a+o1%),'#,H(ZrO294,5mol%tYO1,s4
mol%, CeO□1.5cao1%) Point G (ZrOz94.5+o1%, YO+, s2.5m
ol%.

CeOz3IIlo1%) 点F(Zr0.81mol%、Y O2、、Omol%
、Ce O29mol%) 点E(ZrO284,5io1%、YO1.,Omol
%、 CeOz15.5mol%) を結ぶ実線で囲まれる範囲内に選択するとよい。
CeOz3IIlo1%) Point F (Zr0.81mol%, Y O2,, Omol%
, Ce O29mol%) Point E (ZrO284,5io1%, YO1., Omol
%, CeOz15.5 mol%).

なお、Y2O,の一部をNd2O,、Yb20.、La
2O5、Er、03等の希土類金属酸化物で置換するこ
とも可能である。
Note that a part of Y2O, is replaced with Nd2O, Yb20. , La
It is also possible to substitute with rare earth metal oxides such as 2O5, Er, 03, etc.

本発明では、A1、Si%B、周期律表4a、5a。In the present invention, A1, Si%B, Periodic Table 4a, 5a.

6a族元素のホウ化物、炭化物、窒化物、A1□01、
MgO・A I203(スピネル)、3A+□03・2
SiO2(ムライト)、Cr2O,から選ばれた1!g
iまたは2種以上を分散成分として1〜70内部重量%
含む必要がある。分散成分の添加量を限定した理由は、
1内部重量%以下では添加の効果が少なく、70内部重
量%以上では靭性あるZrO□の含有量を低めるからで
ある。
Borides, carbides, nitrides of group 6a elements, A1□01,
MgO・A I203 (spinel), 3A+□03・2
1 selected from SiO2 (mullite), Cr2O,! g
1 to 70% by internal weight of i or 2 or more as a dispersion component
Must be included. The reason for limiting the amount of dispersion component added is
This is because if it is less than 1% by internal weight, the effect of addition is small, and if it is more than 70% by internal weight, the content of ZrO□, which has toughness, is reduced.

本発明をより効果あるものとするためには分散成分の添
加量を5〜50内部重量%の範囲に選択するとよい。
In order to make the present invention more effective, it is preferable to select the amount of the dispersion component added in the range of 5 to 50% by internal weight.

これら分散成分としては、A I20 2、MgO・A
l2O,(スピネル)、3Al□0.・2SiOz(ム
ライト )、 Cr 2O3 、 AlN、  TiC
% TiN % T1CN 1TiB2.5izN<、
SiC,B4C,WC,TaC。
These dispersion components include A I20 2, MgO・A
l2O, (spinel), 3Al□0.・2SiOz (mullite), Cr2O3, AlN, TiC
% TiN % T1CN 1TiB2.5izN<,
SiC, B4C, WC, TaC.

N bC、Cr3 C3、Cr2B、ZrN、ZrB3
、ZrC。
N bC, Cr3 C3, Cr2B, ZrN, ZrB3
, ZrC.

HfN、HfB3、HfC,BNl及びこれらの相互固
溶体が上げられ、好ましいものである。特にA1□01
、AlN、TiC1TiN%TiCN5TiBz、si
3N4、sic、B、C,WCXTaC,NbCがよい
HfN, HfB3, HfC, BNl and mutual solid solutions thereof are mentioned and preferred. Especially A1□01
, AlN, TiC1TiN%TiCN5TiBz, si
3N4, sic, B, C, WCXTaC, NbC are good.

本発明の第2発明の製造方法は、通常次のように実施さ
れる。Y2O3及びCen2を安定化剤として含むZr
O2粉末あるいはY2O,及びCe O2及びZrO2
粉末と、A1、Si、B、周期律表4a、5a、6B族
元素のホウ化物、炭化物、窒化物、A1□0つ、M[l
O・A I203(X l:’ * ル)、3A120
i”2Si○2(ムライ))、Cr2O,から選ばれた
iMiまたは2種以上の粉末を分散成分として加えた粉
末を粉砕混合したのち、必要に応じてポリビニールアル
コール等の成形助剤を加えて所定の形状にし、分散成分
が酸化物である場合は大気中、真空中、酸素雰囲気中、
水素雰囲気中、炭素雰囲気中、N3、アルゴンガス等の
不活性ガス雰囲気中で、また、分散成分が非酸化物を含
む場合には真空中、N3、アルゴンがス等の不活性ガス
雰囲気、炭素雰囲気など非酸化性雰囲気中で、常圧、加
圧下、1350−1650°C″r0.5−5hr焼成
する。
The manufacturing method according to the second aspect of the present invention is usually carried out as follows. Zr containing Y2O3 and Cen2 as stabilizers
O2 powder or Y2O, and CeO2 and ZrO2
Powder, A1, Si, B, borides, carbides, nitrides of elements of groups 4a, 5a, and 6B of the periodic table, A1□0, M[l
O・A I203 (X l:' * le), 3A120
i"2Si○2 (Murai)), Cr2O, or two or more powders added as dispersion components are pulverized and mixed, and then molding aids such as polyvinyl alcohol are added as necessary. If the dispersed component is an oxide, it is heated in air, vacuum, or oxygen atmosphere.
In a hydrogen atmosphere, a carbon atmosphere, an inert gas atmosphere such as N3 or argon gas, or in a vacuum if the dispersed component contains a non-oxide, an inert gas atmosphere such as N3 or argon gas, or carbon Sintering is performed at 1350-1650°C for 0.5-5 hours in a non-oxidizing atmosphere such as normal pressure under pressure.

特に非酸化物分散成分量が多い場合には、ホットプレス
法(HP法)またはホットアイソスタテチックプレス法
(HI P法)を適用することが好ましい。
In particular, when the amount of non-oxide dispersed components is large, it is preferable to apply a hot press method (HP method) or a hot isostatic press method (HIP method).

HP法の場合は非酸化性雰囲気中で成形体を黒鉛のモー
ルド内に装填し、50−300 Kg/cm2の圧力下
1350〜1650°Cで焼成する。HIP法の場合は
常圧焼結、〃ス加圧焼結、ホットプレス等で予め相N密
度95%以上の非通気性焼結体を得たのち、熱間静水圧
プレス内にて100OKH/car2以上ののガス圧力
、1100°C以上1800゛C以下の温度条件にて0
 、5 hr以上の焼結を竹うことが好適である。
In the case of the HP method, the compact is loaded into a graphite mold in a non-oxidizing atmosphere and fired at 1350-1650°C under a pressure of 50-300 Kg/cm2. In the case of the HIP method, a non-porous sintered body with a phase N density of 95% or more is obtained in advance by normal pressure sintering, hot pressure sintering, hot pressing, etc., and then 100 OKH/ 0 at a gas pressure of car2 or higher and a temperature of 1100°C or higher and 1800°C or lower.
It is preferable to carry out sintering for 5 hours or more.

本発明の部分安定化ノルコニアはZrO2のゾルおよび
/または水溶性の塩を安定化”削の水溶性の塩と共に溶
液の状態で均一に混合した後沈澱の形で分離して得られ
た原料を用いるので、ZrO2に安定化剤が均一に分散
し、極めて微粒子からなる易焼結性の粉体を原料とする
ことができる。この結果、微粒で均一な組成を有し、マ
イクロポアの殆どない焼結体が得られ、強度及び靭性に
ついても所期の値が得られる。
The partially stabilized norconia of the present invention is a raw material obtained by uniformly mixing a ZrO2 sol and/or a water-soluble salt in a solution state with a stabilized water-soluble salt and then separating it in the form of a precipitate. As a result, the stabilizer is uniformly dispersed in ZrO2, and an easily sinterable powder consisting of extremely fine particles can be used as a raw material.As a result, it has a fine and uniform composition and has almost no micropores. A sintered body is obtained, and desired values of strength and toughness are also obtained.

本発明において、分散成分として使用する原料n it
 +11+Q  l’l  ’M +?丁 1− m 
 t、  e> he h−t  幸 l  いAc 
  Q  O−98%のものも有効に使用できる。粒度
は極微粒の場合、平均粒径よりも比表面積で表すことが
適当であり、本発明の目的を達成するには、比表面積5
n+2/F1以上好韮しくけ10m2/g以上のものを
使用することがよい。
In the present invention, raw materials used as dispersion components
+11+Q l'l'M +? Ding 1-m
t, e> he h-t happy Ac
QO-98% can also be used effectively. In the case of extremely fine particles, it is more appropriate to express the particle size by the specific surface area than by the average particle diameter.
It is preferable to use a material with a thickness of n+2/F1 or more and a density of 10 m2/g or more.

なお、本発明の高靭性セラミック焼結体は、耐熱安定性
を高めるため焼結体の相対密度が95%以上が好ましく
、より好ましくは98%以上がよい。また、相対密度が
高いほど焼結体に含まれる正方晶ノルフェアの安定性が
高まり、耐熱安定性、強度及び靭性にすぐれる。
The high toughness ceramic sintered body of the present invention preferably has a relative density of 95% or more, more preferably 98% or more, in order to improve heat resistance stability. Furthermore, the higher the relative density, the higher the stability of the tetragonal norphea contained in the sintered body, resulting in excellent heat resistance stability, strength, and toughness.

本発明の組成を有するノルコニア焼結体は主として正方
晶より成る部分安定化ジルコニーアであるので、高強度
・高靭性を示す。本来正方晶は準安定相であるため試料
表面の研削によって一部が単斜晶へ転移を生じ表面層の
残留圧縮応力により焼結体の強化に寄与する。この強化
の程度は研削による表面粗さと焼結体の粒径に依存して
いる。このため、本発明による主として正方晶よりなる
部分安定化ノルコニアとは、x#1回折による結晶柑の
測定において鏡面状態で正方晶系を少なくとも20%以
上含むジルコニアをいう。正方晶系が20%以下になる
と、靭性が低下するので正方晶系は20%以上含まれる
ことが必要である。
Since the norconia sintered body having the composition of the present invention is partially stabilized zirconia mainly composed of tetragonal crystals, it exhibits high strength and high toughness. Tetragonal crystal is originally a metastable phase, so when the sample surface is ground, a portion of the sample undergoes a transition to monoclinic crystal, and the residual compressive stress in the surface layer contributes to the strengthening of the sintered body. The degree of this strengthening depends on the surface roughness caused by grinding and the grain size of the sintered body. Therefore, the partially stabilized norconia mainly composed of tetragonal crystals according to the present invention refers to zirconia containing at least 20% or more of tetragonal crystals in a mirror state as measured by x#1 diffraction. If the tetragonal system content is 20% or less, the toughness will decrease, so it is necessary that the tetragonal system content be 20% or more.

本発明の焼結体は、焼結体に含まれる正方晶ジルフェア
の平均結晶粒子径が2μm以下であることが必要である
。好ましくは1μμ以下であることが良い。さらに好ま
しくは0.5μm以下が良い。
In the sintered body of the present invention, it is necessary that the average crystal grain size of the tetragonal zylphere contained in the sintered body is 2 μm or less. Preferably it is 1 μμ or less. More preferably, the thickness is 0.5 μm or less.

平均結晶粒子径が2μ論を越えると単斜晶に変わり靭性
が低下する。*た、正方晶ジルコニアの平均結晶粒子径
が小さい程、安定性が向上し耐熱性に優れたものとなる
When the average crystal grain size exceeds 2 μm, it becomes monoclinic and its toughness decreases. *In addition, the smaller the average crystal grain size of the tetragonal zirconia, the better the stability and the better the heat resistance.

本発明において、ノルフェアの平均結晶粒子径は、Cu
Ka線を用いたX線回折法で行い、式として D=0,89λバB −b)cosθ より求めた。ここでDは求めるジルコニアの結晶粒子径
、人はCuKQ線の波長で1.541A、 Bはジルコ
ニアの単斜晶(111)面あるいは正方晶(111)面
の回折線の生滅値幅(ラジアン)のうち大きい方の値、
bは内部標準として添加する結晶粒子[3000X以上
のa石英の(101)面の半減値幅(ラジアン)、θは
ノルフェアの半減値幅の測定に用いた回折線の回折角2
θの172の値である。
In the present invention, the average crystal particle size of Norphea is Cu
It was determined by the X-ray diffraction method using Ka rays, using the formula D=0,89λ(B−b)cosθ. Here, D is the desired crystal grain size of zirconia, which is the wavelength of the CuKQ line, which is 1.541A, and B is the width (in radians) of the diffraction line of the monoclinic (111) or tetragonal (111) plane of zirconia. The larger value of these,
b is the half-life width (in radians) of the (101) plane of the crystal grain [3000X or more a quartz] added as an internal standard, and θ is the diffraction angle 2 of the diffraction line used to measure the half-life width of Norphea.
The value of θ is 172.

本発明のジルコニア焼結体のZr0=は、その一部以上
全部までHFO2によって置換しても、全く同様の特性
を示すものである。
Zr0= of the zirconia sintered body of the present invention exhibits exactly the same characteristics even if part or all of it is replaced with HFO2.

[実施例1 以下に本発明の詳細な説明し、本発明の効果を明らかに
する。
[Example 1] The present invention will be described in detail below to clarify the effects of the present invention.

(実施例1) 得られる粉末が第1表の割合になるように、純度99.
9%のオキシ塩化ジルコニウムの水溶液の加水分解によ
って得られたノルフニアゾル溶液に、純度99.9%の
塩化イツトリウム、純度99.9%の塩化セリウムを加
え、均一に混合した溶液をアルカリで凝結させ水酸化物
の沈澱とし、これを脱水乾燥し、900℃にて仮焼して
部分安定化ジルコニア粉末を得た。この粉末は25a+
”7gの比表面積を示す。
(Example 1) The purity of the obtained powder was 99.
Yttrium chloride with a purity of 99.9% and cerium chloride with a purity of 99.9% are added to the Norfnia sol solution obtained by hydrolysis of a 9% aqueous solution of zirconium oxychloride, and the uniformly mixed solution is coagulated with an alkali and water is added. The oxide was precipitated, dehydrated and dried, and calcined at 900°C to obtain partially stabilized zirconia powder. This powder is 25a+
``It shows a specific surface area of 7g.

この粉末に平均粒径0.38m1純度99.9%のAl
2O,及び平均粒径0,1μm、純度99.9%の微粒
TiNをPJS1表の割合で加え、湿式混合f&乾燥さ
せた粉末を、1 、5 ton/ am2の圧力で等方
的に成形し、窒素中で1400〜1650℃の温度で2
時間焼成した。得られた焼結体に含まれる正方晶のジル
コニアの平均結晶粒子径は全て2μm以下であった。
This powder contains Al with an average particle size of 0.38 m1 and a purity of 99.9%.
2O and fine particles of TiN with an average particle size of 0.1 μm and a purity of 99.9% were added in the proportions shown in the PJS1 table, and the wet mixed & dried powder was isotropically molded at a pressure of 1.5 ton/am2. , 2 at a temperature of 1400-1650°C in nitrogen
Baked for an hour. The average crystal grain size of the tetragonal zirconia contained in the obtained sintered body was all 2 μm or less.

得られた焼結体は、3 X 4 X 40 tnmに切
断研摩加工し、嵩密度、結晶相、抗折強度、及び破壊靭
性並びに熱劣化試験後の焼結体表面の結晶相及び抗折強
度を測定しその結果を第1表に示す。
The obtained sintered body was cut and polished to a size of 3 x 4 x 40 tnm, and the bulk density, crystal phase, flexural strength, and fracture toughness, as well as the crystal phase and flexural strength of the sintered body surface after a thermal deterioration test, were evaluated. The results are shown in Table 1.

なお、各物性の測定方法として、抗折強度はJIS規格
に従い、3X4X40mm試料片を用い、スパン301
1 クロスヘッド速度0.5 +nm/ minの3点
曲げにより10本の平均値を示した。
In addition, as a method for measuring each physical property, the bending strength was measured according to the JIS standard using a 3x4x40mm sample piece, with a span of 301 mm.
1 The average value of 10 pieces was shown by three-point bending at a crosshead speed of 0.5 + nm/min.

破壊靭性は、マイクロインデンテーション法により、荷
重50Kgで圧痕を入れて測定を行い、KIC値は新涼
らの式を用いた。
Fracture toughness was measured by making an indentation under a load of 50 kg by the microindentation method, and the KIC value was determined using Shinryo et al.'s formula.

た。すなわち、ダイヤモンドペーストにて鏡面研摩した
試料の単斜晶の(111)面と(111)面の積分強度
IMと正方晶の(111)面及び立方晶の(111)面
の積分強度IT、ICより単斜晶量は、M (単斜晶量)=        X100・・・(1)
IT+Ic+IN の式により決定した1次に焼結体を5μ+a以下に微粉
砕し、X#X回析により同条件で単斜晶ZrO□と立方
晶Z r O2の積分強度IM及びICを求めた。
Ta. That is, the integrated intensity IM of the monoclinic (111) plane and the (111) plane of the sample mirror-polished with diamond paste, and the integrated intensity IT and IC of the tetragonal (111) plane and the cubic (111) plane. Therefore, the amount of monoclinic crystal is M (amount of monoclinic crystal) = X100...(1)
The primary sintered body determined by the formula IT+Ic+IN was pulverized to 5μ+a or less, and the integrated intensities IM and IC of monoclinic ZrO□ and cubic ZrO2 were determined by X#X diffraction under the same conditions.

この微粉砕の過程で焼結体中に存在していた正方晶Z 
r O2はfi+戒的心的応力りすべて単斜晶ZrO2
へ変態すると考えられる。よって立方晶量は、により決
定し、これより正方晶は (f方品量)=100−+(単斜晶量)+(立方晶量)
)により決定した。
During this pulverization process, the tetragonal crystal Z that existed in the sintered body
r O2 is fi + mental stress all monoclinic ZrO2
It is thought that it will metamorphose into Therefore, the amount of cubic crystals is determined by, and from this, the amount of tetragonal crystals is (f amount of crystals) = 100 - + (amount of monoclinic crystals) + (amount of cubic crystals)
) was determined.

熱劣化試験は、300℃の電気炉内に3000時間保持
した後、試料を取り出し物性を測定した。
In the thermal deterioration test, the sample was held in an electric furnace at 300° C. for 3000 hours, and then the sample was taken out and its physical properties were measured.

熱劣化試験後の単斜晶量は、試料表面のX線回折により
同様に上記(1)式より求めた。
The amount of monoclinic crystals after the thermal deterioration test was determined by X-ray diffraction of the sample surface in the same manner from the above formula (1).

本実施例では、添加成分としてA I20 、とTiN
の一定ff1(本実施例では20重量%及び10重量%
)を添加し、Y O2、、を0−10uo1%まで順次
段階的に増やしながらCe O2を種々のm01%で添
加したものである。
In this example, A I20 and TiN were used as additive components.
constant ff1 (in this example, 20% by weight and 10% by weight)
) was added, and CeO2 was added at various m01% while Y2O2,... was gradually increased stepwise from 0 to 10 uo1%.

第1表において、試料No、1−5はY O2、、を全
く添加せず、Ce O2の添加モル数を順次増やしたも
のである。比較例であるNo、1は、ZrO□、Y O
、,5、CeO2のm01%を表示した三角座標の組成
点りよりも6aO,を少なく含むものであるが、熱劣化
試験後の単糸十品量が多く曲げ強度が極めて低い。また
、逆に三角座標の組成点EよりもCeO2を多く含むN
o、5は、破壊有性、曲げ強度共に低い値しか得られな
い。これに対して点りと点Eの間の組成である本発明例
No、2〜4は相対密度、破壊靭性、曲げ強度のいずれ
も高い値を示し熱劣化試験後も単斜晶への転移が見られ
ず曲げ強度も殆ど劣化しないことがfI!明した。
In Table 1, Sample No. 1-5 does not contain any Y2O2, and the number of moles of CeO2 added is gradually increased. Comparative example No. 1 is ZrO□, Y O
, 5. It contains less 6aO than the composition point of triangular coordinates indicating m01% of CeO2, but the amount of single yarns after the thermal deterioration test is large and the bending strength is extremely low. Conversely, N containing more CeO2 than the composition point E on the triangular coordinates
o, 5, only low values can be obtained for both fracture propensity and bending strength. On the other hand, inventive examples Nos. 2 to 4, which have compositions between point E and point E, showed high values for all of the relative density, fracture toughness, and bending strength, and even after the thermal deterioration test, they showed a transition to monoclinic crystal. The fact that there is no visible deterioration in bending strength and that there is almost no deterioration in bending strength is fI! I made it clear.

試料No、6−9は、Y O2、、を2 、5 m01
%とし例であるN006は、ZrO3、YOl、9、C
e O2のm01%を表示した三角座標のABCDEの
5ML成点で囲まれた範囲よりもCe O2の少ない側
に外れた組成のものであるが、曲げ強度、破壊靭性共に
高い値を示すものの、熱劣化試験後における単斜晶が多
く強度の劣化が甚だしい。試料No、9はZrO3、Y
 Ol+5、CeO2の鴫01%を表示した三角座標の
ABCDEの5組成、αで囲まれた範囲よりもCeO2
の多い側に外れた比較例であるが、相対密度は高いもの
の破壊靭性、曲げ強度に充分な値かえられない。これに
対して三角座標のABODEの5組成点で囲まれた範囲
内にある発明例No、7〜8は、破壊靭性、曲げ強度共
に高い値が得られ、熱劣化試験によっても単斜晶への虻
移が起こらず強度の劣化が見られないことが確認された
Sample No. 6-9 has YO2, 2,5 m01
% and the example N006 is ZrO3, YOl, 9, C
Although it has a composition that deviates from the range surrounded by the 5ML points of ABCDE, the triangular coordinate system that displays m01% of eO2, on the side with less CeO2, it shows high values for both bending strength and fracture toughness. There are many monoclinic crystals after the thermal deterioration test, and the strength deteriorates significantly. Sample No. 9 is ZrO3, Y
Ol+5, 5 composition of ABCDE of triangular coordinates displaying 01% of CeO2, CeO2 than the range surrounded by α
This is a comparative example that is on the high side, and although the relative density is high, the fracture toughness and bending strength are not sufficiently improved. On the other hand, invention examples No. 7 to 8, which are within the range surrounded by the 5 composition points of ABODE in the triangular coordinates, have high values for both fracture toughness and bending strength, and even in the thermal deterioration test, they become monoclinic. It was confirmed that no migration occurred and no deterioration in strength was observed.

試料No、10〜14はY O1,sの組成を4mol
%とし、Cen2の添加−01%を変化させたものであ
る。比較例No、10はCeO2を全く添加せず、上記
三角座標のABCDHの5組成点で囲まれた厖に高い値
を示すものの、熱劣化試験後における単斜晶が多く強度
の劣化が益だしい。また、CeO□を上記三角座標のA
BCDEの5.lL成点で囲まれた範囲よりも多く添加
した比較例No、14は、相対密度は高いものの破壊靭
性、曲げ強度に充分な値かえられない。これに対してC
eO2の添加量が上記三角座標のABCDHの5組成点
で囲まれた範囲である発明例No、11〜13は、破壊
靭性、曲げ強度共に高い値が得られ、熱劣化試験によっ
ても単斜晶への献移が起こらず、強度も劣化しないこと
が明らかになった。
Samples No. 10 to 14 have a composition of 4 mol of Y O1,s.
%, and the addition of Cen2 is changed by -01%. Comparative example No. 10 did not add CeO2 at all, and although it showed a high value in the area surrounded by the five composition points of ABCDH in the above triangular coordinates, there were many monoclinic crystals after the thermal deterioration test, and the strength deteriorated. stomach. Also, let CeO□ be A of the above triangular coordinates.
5 of BCDE. In Comparative Example No. 14, in which the amount was added in an amount larger than the range surrounded by the 1L point, although the relative density was high, the fracture toughness and bending strength could not be sufficiently changed. On the other hand, C
Inventive examples Nos. 11 to 13, in which the amount of eO2 added is within the range surrounded by the five composition points of ABCDH in the above triangular coordinates, obtained high values for both fracture toughness and bending strength, and even in the thermal deterioration test, they were found to be monoclinic. It became clear that no dedication occurred and the strength did not deteriorate.

以下同様に、試料No、15−18はY O1,sの組
成を6mol%とじ、試料No、19−22はYO18
,の組成を8aAo1%とじて、それぞれCe O2を
0〜12輪〇1%添加したものであり、試料No、23
はY O2、、の組成を10mol%としてCeO,を
2m。
Similarly, sample No. 15-18 has a composition of 6 mol% of YO1,s, and sample No. 19-22 has a composition of YO18.
, with the composition of 8aAo1%, and 0~12㎜1% CeO2 added, respectively. Sample No., 23
The composition of Y O2, , is 10 mol %, and CeO, is 2 m.

1%添加したものである。CeO□を全く添加しない比
較例であるNo、15及びNo、19は、相N密度は高
いものの熱劣化試験後の単斜晶への軒移が多く、曲げ強
度の劣化が着しい、また、CeO2を、Z r O3、
Y O、,6、CeO2のmol%を表示した三角座標
のABCDEの5IIL成点で囲まれた範囲よりも多く
添加した比較例であるNo、18及びN0022では、
相対密度は高いものの破壊靭性、曲げ強度に充分な値か
えられない、これに比較して、本発明の組成範囲である
ZrO,、Y O1,s、CeO2のmol%を表示し
た三角座標のABCDEの5組成点で囲まれた範囲内の
Y O3,s及びCeO2を余む試料No、16−17
、No、2O321’、No、23は、いずれも破壊靭
性、曲げ強度共に高い値が得られ、熱劣化試験によって
も単斜晶への軒移が起こらず強度の劣化が見られないこ
とが確認された。なお、本発明の他の分散成分及び添加
量においでも本実施例と同様の結果が得られることが確
認された。
1% was added. Comparative examples No. 15 and No. 19, in which no CeO□ was added, had a high phase N density, but after the thermal deterioration test, there was a lot of transition to monoclinic crystal, and the bending strength deteriorated severely. CeO2, Z r O3,
Comparative examples No. 18 and No. 0022 were added in an amount larger than the range surrounded by the 5IIL point of ABCDE, the triangular coordinate system showing the mol% of YO, , 6, CeO2,
Although the relative density is high, the fracture toughness and bending strength cannot be changed sufficiently. In comparison, ABCDE of triangular coordinates showing the mol% of ZrO, YO1,s, CeO2, which is the composition range of the present invention. Sample No. 16-17 with excess Y O3,s and CeO2 within the range surrounded by the five composition points of
, No., 2O321', No. 23, all obtained high values for both fracture toughness and bending strength, and it was confirmed that no transition to monoclinic crystal occurred and no deterioration in strength was observed in the thermal deterioration test. It was done. It was confirmed that the same results as in this example could be obtained with other dispersion components and amounts added according to the present invention.

(実施例2) 25m2/gの比表面積を有する純度99%以上の単斜
晶系ジルコニアに対し、安定化剤としてY2O1、Ce
 O2を第2表の割合で添加し、これに分散成分として
、平均粒径0.3μm、純度99.9%のA1□O1、
平均粒径0.3μ醜、純度99.9%のMg0−A I
203(スピネル)、比表面積28II12/B、 A
 I203/ S io f比が71.8/28,2の
合成ムライト(3A120s・2S+02)、平均粒径
065μm、純度99%のCr 20 s及び純度98
%以上、比表面積10鵜27g以上のAIN%TiC,
TiN。
(Example 2) For monoclinic zirconia with a specific surface area of 25 m2/g and a purity of 99% or more, Y2O1 and Ce were added as stabilizers.
O2 was added in the proportions shown in Table 2, and A1□O1 with an average particle size of 0.3 μm and a purity of 99.9% was added as a dispersion component.
Mg0-A I with average particle size of 0.3μ and purity of 99.9%
203 (spinel), specific surface area 28II12/B, A
Synthetic mullite (3A120s・2S+02) with I203/S io f ratio of 71.8/28.2, average particle size 065 μm, 99% purity Cr 20 s and purity 98
% or more, AIN% TiC with a specific surface area of 10 to 27 g or more,
TiN.

T iCN %T i B z、5isN−1SiC%
B、C%WC1T a C、N b CSCr y C
3、Cr2 B SZ rN 1Z rB 3、ZrC
,HfB3、BNを12表の割合で加え、湿式混合後乾
燥させた粉末をカーボン型に充填し、200Kg/cm
2.1400〜1500℃の条件で、ホットプレス法に
より約1時間焼成した。
T iCN %T i B z, 5isN-1SiC%
B, C%WC1T a C, N b CSCr y C
3, Cr2 B SZ rN 1Z rB 3, ZrC
, HfB3, and BN in the proportions shown in Table 12, wet-mixed and dried powder was filled into a carbon mold, and the mixture was heated to 200 kg/cm.
2. Baking was performed for about 1 hour using a hot press method at a temperature of 1400 to 1500°C.

得られた焼結体に含まれる正方晶ジルコニアの平均結晶
粒子径は、総て2μm以下であった。得られた焼結体は
、実施例1と同様にして嵩密度、結晶相、抗折強度、及
び破壊靭性並びに熱劣化試験後の結晶体表面の結晶相及
び抗折強度を測定し、結果を12表に示した。
The average crystal grain size of the tetragonal zirconia contained in the obtained sintered body was all 2 μm or less. The bulk density, crystal phase, flexural strength, and fracture toughness of the obtained sintered body were measured in the same manner as in Example 1, and the crystal phase and flexural strength of the surface of the crystal body after the thermal deterioration test were measured. It is shown in Table 12.

本実施例では、安定化剤としてY O2、、を3百01
%、CeO2を6+ao1%添加し、これに種々の分散
成分を30重量%加えたものである。
In this example, 3001 YO2 was used as a stabilizer.
%, CeO2 was added at 6+ao1%, and various dispersion components were added at 30% by weight.

試料No、24−26.28−31.33−34、ハA
 + 20 )、M 8o−A I203(スヒ* ル
)、3AI□O1・2Si○2(ムライト)、AlN、
TiC,TiN。
Sample No. 24-26.28-31.33-34, HaA
+20), M8o-A I203 (Shi*ru), 3AI□O1・2Si○2 (mullite), AlN,
TiC, TiN.

T1CN、Si3N4、5iC1を単独で30重量%添
加したものである。また、試料No、27.32.36
−43.45は、Al20325重量%と、Cr2O7
、T i B 3、B 4C、W C、T a C、N
 b C、Cr)C3、Cr2B、ZrN、ZrB3、
ZrC,BNをそれぞれ5重量%添加したものであり、
試料N0844及び46は、5i3N425重量%と、
Hf B 2またはTiNを5重量%加えたものである
。第2表から明らかなように、分散成分を単独で添加し
たものも2種類添加したものも、いずれも相N密度、破
壊靭性及び曲げ強度が高く、熱劣化試験によっても単斜
晶への転移が見られず、曲げ強度も殆ど劣化しない。な
お、試料No、47は安定化剤とし/V   A   
/F−11,?−1−p六−1−114410511−
n  k  7−J+(Al[F30重量%の分散成分
の添加によっても、熱劣化が甚だしく、熱劣化試験後に
おいては単斜晶量が増加し、曲げ強度が着しく劣化して
しまう。
T1CN, Si3N4, and 5iC1 were added individually in an amount of 30% by weight. Also, sample No. 27.32.36
-43.45 is Al20325% by weight and Cr2O7
, T i B 3, B 4C, W C, T a C, N
b C, Cr) C3, Cr2B, ZrN, ZrB3,
ZrC and BN are added in an amount of 5% by weight,
Samples N0844 and 46 contained 25% by weight of 5i3N4,
5% by weight of Hf B 2 or TiN was added. As is clear from Table 2, the phase N density, fracture toughness, and bending strength are high for both the single dispersion component and the two dispersion components, and even in the thermal deterioration test, the transition to monoclinic crystal was observed. There is no visible change in bending strength, and there is almost no deterioration in bending strength. In addition, sample No. 47 is a stabilizer /VA
/F-11,? -1-p6-1-114410511-
Even with the addition of 30% by weight of a dispersion component of n k 7-J+ (Al[F), thermal deterioration is severe, and after the thermal deterioration test, the amount of monoclinic crystals increases and the bending strength deteriorates severely.

(実施例3) 得られる粉末が第3表の割合になるように、純度99.
9%のオキシ塩化ジルコニウムの水溶液の加水分解によ
って得られたノルコニアシル溶液に、4i度99.9%
の塩化イツトリウム、純度99.9%の塩化セリウムを
加え、均一に混合した溶液をアルカリで凝結させ、水酸
化物の沈澱とし、これを脱水乾燥し900 ’Cにて仮
焼して部分安定化ジルコニア粉末を得た。この粉末は2
5II12/ビ比表面積を示す。
(Example 3) The purity of the obtained powder was 99.
Norconiacyl solution obtained by hydrolysis of a 9% aqueous solution of zirconium oxychloride contains 4i degree 99.9%
Yttrium chloride of 99.9% purity and cerium chloride of 99.9% purity are added, and the uniformly mixed solution is coagulated with alkali to form a hydroxide precipitate, which is dehydrated and dried and calcined at 900'C to partially stabilize it. Zirconia powder was obtained. This powder is 2
5II12/Bi specific surface area is shown.

この粉末に、平均粒径0,3μm1純度99.9%のA
1□03及び比表面積10m2/g以上、純度98%以
上のT i CN SS i C、S i 3 N 1
、AINを、分散成分として第3表の割合で加え、湿式
混合後乾燥させた粉末を、1 、5 ton/ c++
+2の圧力で等方的に成形し、1350〜1500″C
の温度で2時間予備焼結するか、あるいは200 Kg
/ can21350〜1500°Cで1時間ホットプ
レスして、理論密度の95%以上の非通気性焼結体を得
た。この焼結体をA「ガス雰囲気中で2000Kg/c
1112の圧力下1450〜1600℃で1時間、熱間
静水圧プレス内にて焼成を行った。得られた焼結体に含
まれる正方晶ジルコニアの平均粒子径は総で2μm以下
であった。
To this powder, A with an average particle size of 0.3 μm and a purity of 99.9% was added.
1□03 and specific surface area of 10 m2/g or more, purity of 98% or more T i CN SS i C, S i 3 N 1
, AIN were added as dispersion components in the proportions shown in Table 3, and the powder was wet-mixed and dried at 1.5 ton/c++.
Molded isotropically at +2 pressure, 1350~1500″C
Pre-sinter for 2 hours at a temperature of 2 hours or 200 Kg
/can21 Hot-pressed at 350 to 1500°C for 1 hour to obtain a non-porous sintered body having a theoretical density of 95% or more. This sintered body was
Firing was carried out in a hot isostatic press at 1450-1600° C. under 1112° C. pressure for 1 hour. The average particle diameter of the tetragonal zirconia contained in the obtained sintered body was 2 μm or less in total.

得られた焼結体は、実施例1と同様にして、嵩密度、結
晶相、抗折強度、及び破壊靭性並びに熱劣化試験後の焼
結体表面の結晶相及び抗折強度を測定しその結果をPt
53表に示した。
The obtained sintered body was measured in the same manner as in Example 1 for bulk density, crystal phase, flexural strength, fracture toughness, and crystal phase and flexural strength on the surface of the sintered body after the thermal deterioration test. Pt the result
It is shown in Table 53.

第3表において、試料No、48〜52は安定化剤とし
てYOl、s4+ao1%とCeO24L6o1%を添
加し、これに分散成分としてA1□0つを5〜70重量
%添加したものである。また、試料No、53〜54は
安定化剤として4a+o1%のY O、,5とCeO。
In Table 3, samples Nos. 48 to 52 have 1% of YOl, s4+ao and 1% of CeO24L6o added as stabilizers, and 5 to 70% by weight of 0 A1□ as a dispersion component. In addition, samples Nos. 53 to 54 contained 4a+o1% YO, ,5 and CeO as stabilizers.

を添加し、これに分散成分としてSi、N4. At2
01、及びAINの3種類を合計で50〜70重量%添
加したものであり、試料No、55〜56は同じ安定化
耐量で、分散成分としてS isN 、を25〜40重
量%添加したものである。試料No、57〜59も同じ
安定化耐量で、分散成分としてはAl2O、とSiC及
びT1CNを組み合わせて25〜40重量%添加したも
のである。いずれの試料も相対密度、破壊靭性及び抗折
強度共に高い数字を示し、さらに熱劣化試験後において
も単斜晶への転移が測定されず、抗折強度も殆ど劣化せ
ず本発明の効果が確認された。なお、試料No、60は
安定化剤としてそれぞれ4mol%のYOl、s及びC
eO2を添加し、分散成分として本発明の組成範囲以上
のAl2O,を添加した比較例であるが、相対密度は高
いものの破壊靭性、曲げ強度に充分な値かえられない。
to which Si, N4. At2
Samples No. 01 and AIN were added in a total of 50 to 70% by weight, and samples Nos. 55 to 56 had the same stabilization tolerance and added 25 to 40% by weight of S isN as a dispersion component. be. Samples Nos. 57 to 59 also had the same stabilizing tolerance, and the dispersion component was a combination of Al2O, SiC, and T1CN added in an amount of 25 to 40% by weight. All samples showed high values in relative density, fracture toughness, and flexural strength, and furthermore, even after the thermal deterioration test, no transition to monoclinic crystal was measured, and the flexural strength hardly deteriorated, demonstrating the effect of the present invention. confirmed. In addition, sample No. 60 contains 4 mol% of YOl, s, and C as stabilizers, respectively.
This is a comparative example in which eO2 is added and Al2O in a composition range above the composition range of the present invention is added as a dispersion component, but although the relative density is high, the fracture toughness and bending strength cannot be sufficiently changed.

試料No、61〜67では、安定化剤としてYOl+5
を6慎01%と一定にしCeO2を無添加の場合と添加
した場合について、分散成分の添加量を変えたちのであ
る。Ce O2を全く添加しない試料No。
In samples No. 61 to 67, YOl+5 was used as a stabilizer.
The amount of the dispersion component added was varied between when CeO2 was not added and when CeO2 was added while keeping it constant at 6.01%. Sample No. with no addition of Ce O2.

61〜63では、分散成分を添加しても、熱劣化が甚だ
しく、熱劣化試験後に単斜晶へ転移してし主って、曲げ
強度が著しく劣化してしまう。試料No、64は、安定
化剤としてCeO21.5mol%添加し、分散成分を
全く添加しない比較例であるが、同様に熱劣化が生じる
In Nos. 61 to 63, even if a dispersion component was added, the thermal deterioration was severe, and after the thermal deterioration test, the materials transformed to monoclinic crystals, resulting in a significant deterioration in bending strength. Sample No. 64 is a comparative example in which 1.5 mol % of CeO2 is added as a stabilizer and no dispersion component is added, but thermal deterioration similarly occurs.

これに対して、試料No、65〜67は安定化剤として
Y2O,及びCe O2を含み、分散成分として   
   iA l 203を10〜4Ofi量%を添加し
た本発明例であるが、いずれも破壊靭性、曲げ強度共に
高い値が得られ、熱劣化試験によっても単斜晶への転移
が起こらず強度の劣化が見られないことが確認された。
On the other hand, samples Nos. 65 to 67 contain Y2O and CeO2 as stabilizers and as dispersion components.
In the present invention examples in which iAl 203 was added in an amount of 10 to 4 Ofi, high values were obtained for both fracture toughness and bending strength, and even in thermal deterioration tests, no transition to monoclinic crystal occurred and the strength did not deteriorate. It was confirmed that it was not visible.

また、本実施例の試料のうち、No、49〜50.55
〜57.59.61について、ロックウエルスーパーフ
イッシャル硬度計を用いて荷重45Kgで硬度を測定し
その結果を第4表に示した。
Moreover, among the samples of this example, No. 49 to 50.55
~57.59.61, the hardness was measured using a Rockwell Superficial hardness tester under a load of 45 kg, and the results are shown in Table 4.

fjS4表より、安定化剤として4mol%のY O2
、。
From the fjS4 table, 4 mol% Y O2 as a stabilizer
,.

とCeO2を添加し、さらに分散成分としてA1□Oコ
等を添加した本発明例である試料No、49〜50.5
5〜57及び59は、安定化剤として6m。
Sample Nos. 49 to 50.5, which are examples of the present invention, added CeO2 and A1□O as a dispersion component.
5-57 and 59 are 6m as a stabilizer.

1%のY O2、、のみを添加し、分散成分を全く添加
しない比較例である試料No、61の部分安定化ジルコ
ニア焼結体よりも、著しく硬度が改善されていることが
判る。
It can be seen that the hardness is significantly improved compared to the partially stabilized zirconia sintered body of sample No. 61, which is a comparative example in which only 1% of Y 2 O 2 is added and no dispersion component is added.

(実施例4) 実施例2お上り実施例3の方法により調製した焼結体の
内、本発明例として試料No、24.50.66を、比
較例として試料No、61,62.64を用い、300
°Cの電気炉中に所定時間保持し、熱劣化試験を行い、
焼結体表面の単斜晶量を測定し、保持時間と単斜晶量の
関係を@2図に示した。
(Example 4) Among the sintered bodies prepared by the method of Example 3, sample No. 24.50.66 was used as an example of the present invention, and sample No. 61, 62.64 was used as a comparative example. used, 300
It was kept in an electric furnace at °C for a specified period of time and subjected to a thermal deterioration test.
The amount of monoclinic crystals on the surface of the sintered body was measured, and the relationship between the holding time and the amount of monoclinic crystals is shown in Figure @2.

第2図において、本発明例である試料No、24.50
.66は1500時間保持したにも拘わらず、単斜晶へ
の転移が殆ど起こっていない。これに対して、Y2O3
ZrO□系で分散成分を含まない比較例No、61、Y
2O,−ZrO2−ALOi系でCeO2を含まない比
較例No、63、及びY2O3CeO2ZrO2系で分
散成分を全く添加しない比較例No、64は、300℃
空気中で保持する間に単斜晶への転移が起こり、熱劣化
することが判る。
In FIG. 2, sample No. 24.50, which is an example of the present invention,
.. Although No. 66 was held for 1500 hours, almost no transition to monoclinic crystal occurred. On the other hand, Y2O3
Comparative example No. 61, Y which is ZrO□ system and does not contain dispersion components
Comparative Example No. 63, which is a 2O, -ZrO2-ALOi system and does not contain CeO2, and Comparative Example No. 64, which is a Y2O3CeO2ZrO2 system and does not contain any dispersion components, is heated at 300°C.
It can be seen that a transition to monoclinic crystal occurs during storage in air, resulting in thermal deterioration.

これより本発明の組成の高靭性セラミック焼結体は、比
較例の各焼結体に比べて極めて優れた熱安定性を示すこ
とが確認された6 [発明の効果1 本発明の耐熱安定性に優れた高靭性セ°ラミ・/り焼結
体は、従来のY2O−ZrO2系の部分安定化ジルフニ
ア焼結体組成に、Ce O2成分とA1%511B、周
!!!作表4a、5a、6a族元素のホウ化物、炭化物
、窒化物、Al2O3、MgO−A I203(X l
:’ネル)、3 A +20 s ’ 2 S io 
2(ムライト)、CrzO5から選ばれた1種または2
種以上を分散成分として新たに添加し、平均粒子径を規
制することにより、強度を改善すると共に、熱安定性に
優れ、強度、靭性の熱経時劣化が極めて少ない高靭性セ
ラミック焼結体である0本発明の耐熱安定性に優れた高
靭性セラミック焼結体を摺動部材として使用する場合は
、3モルY2O3部分安定化ノルコニア焼結体と比較し
て、約10倍以上の耐摩耗性が得られる。本発明はこの
ように部分安定化ノルコニア焼結体の硬度を改善し、耐
摩耗性も一段と優れるものである。さらに分散成分の添
加により、高温において従来のノルコニア焼結体と比較
し、硬度、強度、クリープ等の機械的特性にも優れる。
From this, it was confirmed that the high toughness ceramic sintered body having the composition of the present invention exhibits extremely superior thermal stability compared to each of the sintered bodies of comparative examples. The high-toughness ceramic/resintered body with excellent toughness is made of the conventional Y2O-ZrO2-based partially stabilized zilphnia sintered body, with CeO2 component, A1%511B, Z! ! ! Table 4a, 5a, 6a group elements borides, carbides, nitrides, Al2O3, MgO-A I203 (X l
:'Nel), 3 A +20 s' 2 S io
2 (mullite), one or two selected from CrzO5
By newly adding more than 100% of the seeds as a dispersion component and controlling the average particle size, it is a highly tough ceramic sintered body with improved strength, excellent thermal stability, and extremely little deterioration of strength and toughness over time. 0 When the high toughness ceramic sintered body of the present invention with excellent heat resistance stability is used as a sliding member, the wear resistance is about 10 times or more compared to the 3 mol Y2O3 partially stabilized norconia sintered body. can get. The present invention thus improves the hardness of the partially stabilized norconia sintered body and further improves the wear resistance. Furthermore, due to the addition of dispersion components, it has superior mechanical properties such as hardness, strength, and creep compared to conventional norconia sintered bodies at high temperatures.

本発明の耐熱安定性に優れた高靭性セラミック焼結体は
、このように常温及び高温において優れた特性を有する
ので、熱可塑性樹脂やセラミックスの射出成型機用の耐
摩耗性セラミックススクリュウ、真ちゅうロッドや鋼管
シェル等の熱間押し出しダイス、ガスタービン部品、デ
ィーゼルエンジン部品等の内燃機関、ポンプ部品、工業
用カッター、切削工具、粉砕機械用部品、摺動部材、人
工骨、人工歯、鋳造セラミックによる人工歯のブリッジ
芯材料、人工由根、デージ等の磯(戒工兵への応用及び
実用化と、性能向上に大きく寄与するものである。
The high toughness ceramic sintered body of the present invention with excellent heat resistance stability has excellent properties at room temperature and high temperature, so it can be used for wear-resistant ceramic screws and brass rods for injection molding machines for thermoplastic resins and ceramics. and hot extrusion dies such as steel pipe shells, internal combustion engine parts such as gas turbine parts and diesel engine parts, pump parts, industrial cutters, cutting tools, parts for crushing machines, sliding parts, artificial bones, artificial teeth, and cast ceramics. Bridge core materials for artificial teeth, artificial roots, daisies, etc. (these materials greatly contribute to the application and practical use of martial arts soldiers and to the improvement of performance.

第1図はZ r O3、YO1.5、CeO2の組成範
囲を示す三角座標、第2図は実施例4の熱劣化試験の時
間と単斜晶量との関係を示した図である。
FIG. 1 is a triangular coordinate showing the composition range of Z r O3, YO1.5, and CeO2, and FIG. 2 is a diagram showing the relationship between the time of the thermal deterioration test and the amount of monoclinic crystal in Example 4.

Claims (9)

【特許請求の範囲】[Claims] (1)Y_2O_3とCeO_2および/またはCeO
_2を安定化剤として含む主として正方晶より成る部分
安定化ジルコニアに、Al、Si、B、周期律表4a、
5a、6a族元素のホウ化物、炭化物、窒化物、Al_
2O_3、MgO・Al_2O_3(スピネル)、3A
l_2O_3・2SiO_2(ムライト)、Cr_2O
_3から選ばれた1種または2種以上を分散成分として
1〜70内部重量%含む焼結体で、焼結体中に含まれる
正方晶ジルコニアの結晶粒子の平均粒子径が2μm以下
であることを特徴とする耐熱安定性に優れた高靭性セラ
ミック焼結体。
(1) Y_2O_3 and CeO_2 and/or CeO
Partially stabilized zirconia mainly composed of tetragonal crystals containing _2 as a stabilizer contains Al, Si, B, 4a of the periodic table,
Borides, carbides, nitrides of group 5a and 6a elements, Al_
2O_3, MgO・Al_2O_3 (spinel), 3A
l_2O_3・2SiO_2 (mullite), Cr_2O
A sintered body containing 1 to 70% by internal weight of one or more selected from _3 as a dispersion component, and the average particle size of the tetragonal zirconia crystal particles contained in the sintered body is 2 μm or less. A high-toughness ceramic sintered body with excellent heat resistance and stability.
(2)部分安定化ジルコニアは、これに含まれるY_2
O_3、CeO_2が添付図面に示すように正三角形に
交わる三軸にそれぞれZrO_2、YO_1_._5、
CeO_2のmol%を表示した三角座標において、点
A(ZrO_287.5mol%、YO_1_._51
2mol%、CeO_20.5mol%) 点B(ZrO_295.5mol%、YO_1_._5
4mol%、CeO_20.5mol%) 点C(ZrO_295.5mol%、YO_1_._5
2mol%、CeO_22.5mol%) 点D(ZrO_292.0mol%、YO_1_._5
0mol%、CeO_28.0mol%) 点E(ZrO_284.5mol%、YO_1_._5
0mol%、CeO_215.5mol%) で示された特定5組成点を結ぶ線で囲まれた範囲内の組
成にある特許請求の範囲第1項記載の耐熱安定性に優れ
た高靭性セラミック焼結体。
(2) Partially stabilized zirconia contains Y_2
As shown in the attached drawing, ZrO_2, YO_1_. _5、
In the triangular coordinates displaying the mol% of CeO_2, point A (ZrO_287.5 mol%, YO_1_._51
2 mol%, CeO_20.5 mol%) Point B (ZrO_295.5 mol%, YO_1_._5
4 mol%, CeO_20.5 mol%) Point C (ZrO_295.5 mol%, YO_1_._5
2 mol%, CeO_22.5 mol%) Point D (ZrO_292.0 mol%, YO_1_._5
0 mol%, CeO_28.0 mol%) Point E (ZrO_284.5 mol%, YO_1_._5
0 mol%, CeO_215.5 mol%) A high toughness ceramic sintered body with excellent heat resistance stability according to claim 1 having a composition within the range surrounded by a line connecting five specific composition points shown as .
(3)Al、Si、B、周期律表4a、5a、6a族元
素のホウ化物、炭化物、窒化物が、AlN、TiC、T
iN、TiCN、TiB_2Si_3N_4、SiC、
B_4C、WC、TaC、NbC、Cr_3C_2、C
r_2B、ZrN、ZrB_2、ZrC、HrN、Hf
B_2、HfC、BN、である特許請求の範囲第1項記
載の耐熱安定性に優れた高靭性セラミック焼結体。
(3) Al, Si, B, borides, carbides, and nitrides of elements in groups 4a, 5a, and 6a of the periodic table are AlN, TiC, T
iN, TiCN, TiB_2Si_3N_4, SiC,
B_4C, WC, TaC, NbC, Cr_3C_2, C
r_2B, ZrN, ZrB_2, ZrC, HrN, Hf
The high toughness ceramic sintered body having excellent heat resistance stability according to claim 1, which is B_2, HfC, and BN.
(4)300℃大気中に3000時間保持後の焼結体に
含まれるジルコニアの単斜晶量が30%以下である特許
請求の範囲第1項記載の耐熱安定性に優れた高靭性セラ
ミック焼結体。
(4) The high-toughness ceramic sintered material having excellent heat resistance stability according to claim 1, wherein the zirconia monoclinic content contained in the sintered body after being held in the atmosphere at 300°C for 3000 hours is 30% or less. Concretion.
(5)ZrO_2の一部または全部をHfO_2で置換
した特許請求の範囲第1項〜第4項のいずれかに記載の
高靭性セラミック焼結体。
(5) The high-toughness ceramic sintered body according to any one of claims 1 to 4, in which part or all of ZrO_2 is replaced with HfO_2.
(6)Y_2O_3とCeO_2および/またはCeO
_2を安定化剤として含むZrO_2粉末またはY_2
O_3粉末及びCeO_2粉末及びZrO_2粉末また
はCeO_2粉末及びZrO_2粉末と、Al、Si、
B、周期律表4a、5a、6a族元素のホウ化物、炭化
物、窒化物、Al_2O_3、MgO・Al_2O_3
(スピネル)、3Al_2O_3・2SiO_2(ムラ
イト)、Cr_2O_3から選ばれた1種または2種以
上の粉末を分散成分として、ZrO_2粉末に対して1
〜70内部重量%の範囲で粉砕混合して得られた混合粉
末の成形体を焼成し、含まれる正方晶ジルコニアの結晶
粒子の平均粒子径が2μm以下である焼結体を製造する
ことを特徴とする高靭性セラミック焼結体の製造方法。
(6) Y_2O_3 and CeO_2 and/or CeO
ZrO_2 powder or Y_2 containing _2 as a stabilizer
O_3 powder and CeO_2 powder and ZrO_2 powder or CeO_2 powder and ZrO_2 powder, Al, Si,
B, borides, carbides, nitrides of elements of groups 4a, 5a, and 6a of the periodic table, Al_2O_3, MgO・Al_2O_3
(spinel), 3Al_2O_3, 2SiO_2 (mullite), and Cr_2O_3 as a dispersion component of one or more powders selected from ZrO_2 powder.
A molded body of mixed powder obtained by pulverizing and mixing in a range of ~70% by internal weight is fired to produce a sintered body in which the average particle size of the crystal grains of tetragonal zirconia contained is 2 μm or less. A method for manufacturing a high toughness ceramic sintered body.
(7)Y_2O_3、CeO_2、ZrO_2の組成割
合は、添付図面に示すように正三角形に交わる三軸にそ
れぞれZrO_2、YO_1_._5、CeO_2のm
ol%を表示した三角座標において、 点A(ZrO_287.5mol%、YO_1_._5
12mol%、CeO_20.5mol%) 点B(ZrO_295.5mol%、YO_1_._5
4mol%、CeO_20.5mol%) 点C(ZrO_295.5mol%、YO_1_._5
2mol%、CeO_22.5mol%) 点D(ZrO_292.0mol%、YO_1_._5
0mol%、CeO_28.0mol%) 点E(ZrO_284.5mol%、YO_1_._5
0mol%、CeO_215.5mol%) で示された特定5組成点を結ぶ線で囲まれた範囲内の組
成にある特許請求の範囲第6項記載の高靭性セラミック
焼結体の製造方法。
(7) The composition ratios of Y_2O_3, CeO_2, and ZrO_2 are determined by plotting ZrO_2, YO_1_. _5, m of CeO_2
In the triangular coordinates that display ol%, point A (ZrO_287.5mol%, YO_1_._5
12 mol%, CeO_20.5 mol%) Point B (ZrO_295.5 mol%, YO_1_._5
4 mol%, CeO_20.5 mol%) Point C (ZrO_295.5 mol%, YO_1_._5
2 mol%, CeO_22.5 mol%) Point D (ZrO_292.0 mol%, YO_1_._5
0 mol%, CeO_28.0 mol%) Point E (ZrO_284.5 mol%, YO_1_._5
7. The method for producing a high-toughness ceramic sintered body according to claim 6, wherein the composition is within a range surrounded by a line connecting five specific composition points shown as (0 mol%, CeO_215.5 mol%).
(8)Al、Si、B、周期律表4a、5a、6a族元
素のホウ化物、炭化物、窒化物が、AlN、TiC、T
iN、TiCN、TiB_2、Si_3N_4、SiC
、B_4C、WC、TaC、NbC、Cr_3C_2、
Cr_2B、ZrN、ZrB_2、ZrC、HfN、H
fB_2、HfC、BN、である特許請求の範囲第6項
記載の高靭性セラミック焼結体の製造方法。
(8) Al, Si, B, borides, carbides, and nitrides of elements of groups 4a, 5a, and 6a of the periodic table are AlN, TiC, T
iN, TiCN, TiB_2, Si_3N_4, SiC
, B_4C, WC, TaC, NbC, Cr_3C_2,
Cr_2B, ZrN, ZrB_2, ZrC, HfN, H
The method for producing a high toughness ceramic sintered body according to claim 6, which is fB_2, HfC, and BN.
(9)Y_2O_3とCeO_2および/またはCeO
_2を安定化剤として含むZrO_2粉末は、ZrO_
2のゾルおよび/または水溶性の塩をY_2O_3、C
eO_2の水溶性の塩と共に溶液の状態で均一に混合し
た後、沈澱の形で分離して得られたZrO_2粉末であ
る特許請求の範囲第6項記載の高靭性セラミック焼結体
の製造方法。
(9) Y_2O_3 and CeO_2 and/or CeO
ZrO_2 powder containing ZrO_2 as a stabilizer is
The sol and/or water-soluble salt of 2 is Y_2O_3, C
The method for producing a high toughness ceramic sintered body according to claim 6, wherein the ZrO_2 powder is obtained by uniformly mixing eO_2 in a solution state with a water-soluble salt and then separating it in the form of a precipitate.
JP60182726A 1985-08-20 1985-08-20 High toughness ceramic sintered body excellent in heat resistance stability and method for producing the same Expired - Lifetime JPH06102574B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60182726A JPH06102574B2 (en) 1985-08-20 1985-08-20 High toughness ceramic sintered body excellent in heat resistance stability and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60182726A JPH06102574B2 (en) 1985-08-20 1985-08-20 High toughness ceramic sintered body excellent in heat resistance stability and method for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP5227826A Division JP2537132B2 (en) 1993-08-23 1993-08-23 High toughness ceramic sintered body excellent in heat resistance stability and method for producing the same

Publications (2)

Publication Number Publication Date
JPS6246959A true JPS6246959A (en) 1987-02-28
JPH06102574B2 JPH06102574B2 (en) 1994-12-14

Family

ID=16123367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60182726A Expired - Lifetime JPH06102574B2 (en) 1985-08-20 1985-08-20 High toughness ceramic sintered body excellent in heat resistance stability and method for producing the same

Country Status (1)

Country Link
JP (1) JPH06102574B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62288162A (en) * 1986-06-03 1987-12-15 東芝タンガロイ株式会社 High hardness high strength ceramic sintered body and manufacture
US5104832A (en) * 1989-05-02 1992-04-14 Lonza Ltd. Sinterable zirconium oxide powder and process for its production
JPH06305829A (en) * 1993-04-26 1994-11-01 Shinagawa Refract Co Ltd Sintered zirconia material and its production
JP2009029667A (en) * 2007-07-27 2009-02-12 Kyocera Corp Electroconductive ceramics and manufacturing method thereof
CN109400148A (en) * 2018-11-01 2019-03-01 山东国瓷功能材料股份有限公司 A kind of large red zirconia ceramics and preparation method and application
CN116514543A (en) * 2023-05-16 2023-08-01 苏州宸泰医疗器械有限公司 Zirconia composite ceramic

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60108367A (en) * 1983-11-16 1985-06-13 日立化成工業株式会社 Zirconia sintered body
JPS60141673A (en) * 1983-12-27 1985-07-26 日本碍子株式会社 Zirconia ceramic and manufacture
JPS60246261A (en) * 1984-05-17 1985-12-05 東ソー株式会社 Zirconia sintered body
JPS61219757A (en) * 1985-03-25 1986-09-30 株式会社ノリタケカンパニーリミテド High toughness zirconia sintered body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60108367A (en) * 1983-11-16 1985-06-13 日立化成工業株式会社 Zirconia sintered body
JPS60141673A (en) * 1983-12-27 1985-07-26 日本碍子株式会社 Zirconia ceramic and manufacture
JPS60246261A (en) * 1984-05-17 1985-12-05 東ソー株式会社 Zirconia sintered body
JPS61219757A (en) * 1985-03-25 1986-09-30 株式会社ノリタケカンパニーリミテド High toughness zirconia sintered body

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62288162A (en) * 1986-06-03 1987-12-15 東芝タンガロイ株式会社 High hardness high strength ceramic sintered body and manufacture
US5104832A (en) * 1989-05-02 1992-04-14 Lonza Ltd. Sinterable zirconium oxide powder and process for its production
JPH06305829A (en) * 1993-04-26 1994-11-01 Shinagawa Refract Co Ltd Sintered zirconia material and its production
JP2009029667A (en) * 2007-07-27 2009-02-12 Kyocera Corp Electroconductive ceramics and manufacturing method thereof
CN109400148A (en) * 2018-11-01 2019-03-01 山东国瓷功能材料股份有限公司 A kind of large red zirconia ceramics and preparation method and application
CN109400148B (en) * 2018-11-01 2021-11-16 山东国瓷功能材料股份有限公司 Bright red zirconia ceramic, and preparation method and application thereof
CN116514543A (en) * 2023-05-16 2023-08-01 苏州宸泰医疗器械有限公司 Zirconia composite ceramic

Also Published As

Publication number Publication date
JPH06102574B2 (en) 1994-12-14

Similar Documents

Publication Publication Date Title
US5081082A (en) Production of alumina ceramics reinforced with β&#39;&#34;-alumina
EP0466836B1 (en) Ceramics with high toughness, strength and hardness
Witek et al. Zirconia particle coarsening and the effects of zirconia additions on the mechanical properties of certain commercial aluminas
JPH07277814A (en) Alumina-based ceramic sintered compact
JPS5832066A (en) Tenacious zirconia sintered body
US4939107A (en) Transformation toughened ceramic alloys
US5556816A (en) Methods for preparation of tetragonal zirconia polycrystal composites
JPS6246959A (en) Heat-stability-resistant high toughness ceramic sintered body and manufacture
JPS6126562A (en) Zirconia sintered body
Hou et al. Mechanical properties and microstructure of Ca2SiO4–CaZrO3 composites
JPH0535103B2 (en)
JPS6186466A (en) Spinel ceramics
JP2537132B2 (en) High toughness ceramic sintered body excellent in heat resistance stability and method for producing the same
JP2517253B2 (en) Manufacturing method of high strength zirconia sintered body
JP2517249B2 (en) High-strength zirconia-based HIP sintered body
Kim et al. Use of Mixed‐rare‐earth Oxide in the Preparation of Reaction‐Bonded Mullite at≤ 1300° C
JPH066512B2 (en) High toughness silicon nitride sintered body and method for producing the same
JPS63139044A (en) Alumina-zirconia base sintered body and manufacture
JPS6077406A (en) Substrate for thin film magnetic head and manufacture of the same
JP2925089B2 (en) Ceramic composite sintered body and method of manufacturing the same
JPH0450269B2 (en)
JP2690571B2 (en) Zirconia cutting tool and its manufacturing method
JPH0764631B2 (en) High toughness zirconia sintered body with excellent hot water stability
JPH0710746B2 (en) High toughness zirconia sintered body
KR940006423B1 (en) Process for the preparation of composite sintering ai2o3-zro2