JPS60246261A - Zirconia sintered body - Google Patents

Zirconia sintered body

Info

Publication number
JPS60246261A
JPS60246261A JP59097572A JP9757284A JPS60246261A JP S60246261 A JPS60246261 A JP S60246261A JP 59097572 A JP59097572 A JP 59097572A JP 9757284 A JP9757284 A JP 9757284A JP S60246261 A JPS60246261 A JP S60246261A
Authority
JP
Japan
Prior art keywords
sintered body
zirconia
powder
oxide
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59097572A
Other languages
Japanese (ja)
Other versions
JPH0469105B2 (en
Inventor
孝次 津久間
邦義 植田
月舘 隆明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Toyo Soda Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Soda Manufacturing Co Ltd filed Critical Toyo Soda Manufacturing Co Ltd
Priority to JP59097572A priority Critical patent/JPS60246261A/en
Publication of JPS60246261A publication Critical patent/JPS60246261A/en
Publication of JPH0469105B2 publication Critical patent/JPH0469105B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、熱耐久性に優れた高い機械的強度を有するジ
ルコニア系焼結体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a zirconia-based sintered body having excellent thermal durability and high mechanical strength.

安定化剤としてOeO,を添加した、主として正方晶の
結晶相からなるジルコニア焼結体(以下、0θ−psz
焼結体と略記する)は、高い強度と破壊靭性を発現する
。しかし、この焼結体は室温では、熱力学的に不安定な
結晶相である正方晶系の粒子を含有している。従って、
500℃以下の低い湿度環境下に長時間保持された場合
、正方晶粒子が安定相である単斜晶に徐々に転移し、こ
の転移に伴う体積膨張のために、焼結体に亀裂が発生す
るという、いわゆる熱経時劣化現象を生じる。従って、
これらの欠点を解消することにより、焼結体の用途を大
きく拡大できるので、その為の焼結体がめられている。
A zirconia sintered body consisting mainly of a tetragonal crystal phase (hereinafter referred to as 0θ-psz) to which OeO is added as a stabilizer.
(abbreviated as sintered compact) exhibits high strength and fracture toughness. However, this sintered body contains tetragonal particles, which is a thermodynamically unstable crystal phase at room temperature. Therefore,
When kept in a low humidity environment below 500°C for a long time, the tetragonal grains gradually transform into a stable monoclinic phase, and cracks occur in the sintered body due to the volume expansion associated with this transition. A so-called thermal aging phenomenon occurs. Therefore,
By eliminating these drawbacks, the uses of sintered bodies can be greatly expanded, and sintered bodies for this purpose are being sought.

Y、0)−Zr02系焼結体に於いては、この熱経時劣
化を抑制する方法として、正方晶粒子の粒径を小さくす
る方法、並びに安定化剤であるYvOsの添加量を多く
する方法が知られている。
In the Y,0)-Zr02-based sintered body, methods for suppressing this thermal aging deterioration include reducing the grain size of the tetragonal grains and increasing the amount of YvOs, which is a stabilizer. It has been known.

このような方法は0s−PSE焼結体にも適用できる。Such a method can also be applied to 0s-PSE sintered bodies.

すなわち、0s−PSZ焼結体の粒子径を小さくするこ
とによって、また00へ含量を多くすることによって、
熱経時劣化の少い、比較的安定な焼結体を得ることがで
きる。
That is, by reducing the particle size of the 0s-PSZ sintered body and increasing the content to 00,
A relatively stable sintered body with little thermal deterioration over time can be obtained.

本発明者等は、このような熱経時劣化をおこさないジル
コニア系焼結体及び熱経時劣化の抑制方法について研究
を行い、熱経時劣化が焼結体粒子の大きさと安定化剤の
量だけに依存するのではなく、焼結体中に共存する第2
相の存在に著しく依存するということを見出した。すな
わち、0e−PSZの第1相の他に、第2相としてアル
ミナ、アルミナ系複酸化物、La、N(1等を含むジル
コニア系複酸化物などを存在させることによって、従来
の0o−I’sz焼結体に比べて、より一層の熱耐久性
を保証できることを見出し、本発明を完成させるに至っ
た。
The present inventors have conducted research on zirconia-based sintered bodies that do not cause such thermal aging deterioration and methods for suppressing thermal aging deterioration, and have found that thermal aging deterioration is only due to the size of the sintered body particles and the amount of stabilizer. The second component coexists in the sintered body, rather than depending on it.
It was found that it significantly depends on the presence of phase. That is, in addition to the first phase of 0e-PSZ, by making alumina, an alumina-based double oxide, a zirconia-based double oxide containing La, N (1, etc.) exist as a second phase, the conventional 0o-I It has been discovered that the present invention can be guaranteed even more thermal durability than the 'sz sintered body, and the present invention has been completed.

本発明の焼結体は熱耐久性ばかりでなく、機械的強度に
おいても高い強度を有するものである。
The sintered body of the present invention has not only high thermal durability but also high mechanical strength.

すなわち、本発明はOeQ、を主体とした安定化剤を5
〜50モル%含有するZr0,60〜99重量%とA〜
へ1人馬へ−MgO系酸化物、A−へ−81へ系酸化物
およびLa、 Pr、 Nd又はPmとZrの複酸化物
のうちの少くとも1種以上からなる酸化物1〜40重量
%よりなるジルコニア系焼結体を提供するものである。
That is, the present invention uses a stabilizer mainly composed of OeQ.
Zr0.60 to 99% by weight containing ~50 mol% and A~
1 to 40% by weight of an oxide consisting of at least one of the following: MgO-based oxide, A-he-81-based oxide, and a double oxide of La, Pr, Nd, or Pm and Zr. The present invention provides a zirconia-based sintered body consisting of the following.

以下、本発明をさらに詳細に説明する。The present invention will be explained in more detail below.

本発明で使用されるOeQ、を主体とした安定化剤とは
、安定化剤として0eO1が主成分になっているという
意味で、これ以外にMgO,Oak、 Y、01及びO
s。
The stabilizer mainly composed of OeQ used in the present invention means that OeO1 is the main component as a stabilizer, and in addition to this, MgO, Oak, Y, 01 and O
s.

Pr、 Nd、 Pm以外のランタン系希土類元素の酸
化物などが例示されるが、これらが少量台まれることは
何らさしつかえない。
Examples include oxides of lanthanum-based rare earth elements other than Pr, Nd, and Pm, but there is no harm in using a small amount of these.

該安定化剤の量は、ジルコニアに対して5〜30モル%
の範囲でなければならない。この範囲であれば、ジルコ
ニアは主として正方晶又は正方晶と立方晶の混合相から
なり好ましい。しかし、この他に30重量%以下の単斜
晶が共存していてもさしつかえない。5モル%より少な
く、又は30モル%をこえる範囲においては、正方品ジ
ルコニアが生成されなかったり、機械的強度が充分得ら
れなくなったりするので好ましくない。
The amount of the stabilizer is 5 to 30 mol% based on zirconia.
must be within the range. Within this range, zirconia is preferably composed mainly of tetragonal crystals or a mixed phase of tetragonal crystals and cubic crystals. However, there is no problem even if monoclinic crystals coexist in an amount of 30% by weight or less. If it is less than 5 mol % or more than 30 mol %, it is not preferable because tetragonal zirconia will not be produced or sufficient mechanical strength will not be obtained.

本発明焼結体で共存する酸化物は、アルミナ系又はジル
コニア系酸化物であり、これらの割合としては、1〜4
0重量%である。40重量%をこえると、正方晶よりな
るジルコニアに基因する強化機構が減少し、強度低下を
おこし好ましくない。
The oxides coexisting in the sintered body of the present invention are alumina-based or zirconia-based oxides, and the ratio of these is 1 to 4.
It is 0% by weight. If it exceeds 40% by weight, the strengthening mechanism based on the tetragonal zirconia is reduced, resulting in a decrease in strength, which is not preferable.

また、1重量%よりも少ないと、熱耐久性が充分でなく
なる。
Moreover, if it is less than 1% by weight, thermal durability will not be sufficient.

共存する酸化物としては、アルミナ系では、A¥IA1
^−MgO系酸化物又は訂^−81へ系酸化物があげら
れ、Alzom MgO系酸化物ではスピネル型結晶相
が、封^−1910.系酸化物ではムライト型結晶相が
主体となる。一方、ジルコニア系では、La、 Pr、
 N(l又はPmとZrの複酸化物があげられ、これら
はパイロクロア型の立方晶結晶相が主体となる。
For alumina-based oxides, A\IA1
ニ-MgO-based oxides or ^-81-based oxides are mentioned, and Alzom MgO-based oxides have a spinel-type crystal phase, and ニ-1910. The mullite type crystal phase is the main component of the system oxide. On the other hand, in the zirconia system, La, Pr,
Examples include a double oxide of N(l or Pm and Zr), which mainly has a pyrochlore cubic crystal phase.

さらに、本発明の焼結体の結晶の平均粒子径は5μm以
下であることが好ましい。5μmをこえると結晶の粒成
長による強度低下が著しくなり好ましくない。
Furthermore, it is preferable that the average grain size of the crystals of the sintered body of the present invention is 5 μm or less. If it exceeds 5 μm, the strength decreases significantly due to crystal grain growth, which is not preferable.

以上説明した熱耐久家優れた焼結体とは、焼結体を20
0〜300℃の温度、4〜20關Hgの水蒸気分圧を有
する空気環境下で1000時間のエージング後、焼結体
表面の単斜晶が全体の50重量%以下であり、かつ曲げ
強度値がエージング前の値の20%以上の減少を示さな
いような焼結体であることを意味する。
The above-mentioned sintered body with excellent thermal durability is a sintered body with 20%
After aging for 1000 hours in an air environment with a temperature of 0 to 300°C and a partial pressure of water vapor of 4 to 20 degrees Hg, the monoclinic crystals on the surface of the sintered body account for 50% by weight or less of the total, and the bending strength value This means that the sintered body does not show a decrease of more than 20% of its value before aging.

以下、本発明の焼結体の製造方法について説明する。Hereinafter, the method for manufacturing a sintered body of the present invention will be explained.

OeO!を主体とした安定化剤を含むzro、としては
、安定化側酸化物粉末とZrへ粉末を混合する方法。
OeO! For ZRO containing a stabilizer mainly composed of Zr, there is a method of mixing the powder with the stabilizing oxide powder and Zr.

安定他剤元素とZrを含む水溶液を用いて湿式合成法に
よって粉末を得る方法などいずれの方法でもさしつかえ
ない。
Any method may be used, including a method of obtaining a powder by a wet synthesis method using an aqueous solution containing a stabilizing agent element and Zr.

共存させる酸化物の添加方法は、AI、O,粉末。The methods of adding oxides to coexist are AI, O, and powder.

Altol−wgo系酸化物ではスピネル粉末、Alt
へ−81へ系酸化物ではムライト粉末として、ジルコニ
ア粉末に混合する方法、アルミナ、マグネシア。
For Altol-wgo oxides, spinel powder, Alt
He-81 He-based oxides are mixed with zirconia powder as mullite powder, alumina, and magnesia.

シリカの各粉末を所定量ジルコニア粉末に添加混合する
方法、或いはジルコニウム、アルミニウム。
A method of adding and mixing a predetermined amount of each powder of silica to zirconia powder, or zirconium or aluminum.

マグネシウム、ケイ素などのイオンを含む水溶液を用い
て、湿式合成法によって粉末を得る方法、いずれの方法
も適用できる。
Any method of obtaining powder by wet synthesis using an aqueous solution containing ions such as magnesium and silicon can be applied.

La、 Pr、 Na又はPmとZrからなる複酸化物
では、パイロクロア型の酸化物粉末として、添加混合す
る方法も勿論可能であるが、上記ランタン系希土類金属
酸化物をジルコニアに混合すれば、焼結過程でこれら酸
化物とジルコニアの自発的な反応がおこり、パイロクロ
ア型で立方晶の化合物が形成される。また、ジルコニウ
ムと上記ランタン系希土類金属を含む溶液から湿式合成
法によって粉末を得ることもよい方法である。
For a double oxide consisting of La, Pr, Na, or Pm and Zr, it is of course possible to add and mix it as a pyrochlore type oxide powder, but if the lanthanum-based rare earth metal oxide is mixed with zirconia, During the crystallization process, a spontaneous reaction between these oxides and zirconia occurs, forming a pyrochlore-type cubic compound. It is also a good method to obtain a powder from a solution containing zirconium and the above-mentioned lanthanum-based rare earth metal by a wet synthesis method.

これら、各成分を含有した粉末をラバープレス法などに
より成形した後、1400〜1650°Cの温度で焼成
することにより、本発明焼結体が得られる。
The sintered body of the present invention can be obtained by molding the powder containing each of these components by a rubber press method or the like and then firing it at a temperature of 1400 to 1650°C.

以上、説明した様に、本発明焼結体は、熱経時劣化に対
して強い、つまり熱耐久性の良い特性を有するものであ
るが、その効果を明確にするために、熱経時劣化をおこ
さない焼結体結晶の平均粒子径と安定化剤の量の関係に
ついて第1図に示す。
As explained above, the sintered body of the present invention is resistant to thermal aging deterioration, that is, has good thermal durability. The relationship between the average particle diameter of sintered body crystals and the amount of stabilizer is shown in FIG.

oa−pszのみからなる焼結体では、点線aより右の
■の領域が熱耐久性を示す組成範囲であったが、本発明
の焼結体の一例であるLa!01とNdtOsを2モル
%含むZrO,を添加した例では、実線すと点線aに囲
まれた斜線部■の部分にまで熱耐久性の範囲が顕著に拡
大されたことがわかる。さらに従来の焼結体よりも、よ
り長時間にわたって熱経時劣化をおこさない焼結体でも
ある。
In the sintered body consisting only of oa-psz, the region marked ■ to the right of the dotted line a was the composition range showing thermal durability, but La! It can be seen that in the example in which ZrO containing 01 and 2 mol% of NdtOs was added, the range of thermal durability was significantly expanded to the shaded area (2) surrounded by the solid line (2) and the dotted line (a). Furthermore, it is a sintered body that does not deteriorate over a longer period of time than conventional sintered bodies.

この様に、本発明焼結体は、機械的強度ばかりでなく、
熱耐久性も優れているため、工業材料として、ダイス、
ノズル、粉砕、メディア、ベアリング等の用途ばかりで
なく、熱のかかる部分での使用例えばエンジン部品など
広い用途に好適である。
In this way, the sintered body of the present invention has not only mechanical strength but also
Due to its excellent thermal durability, dice,
It is suitable not only for use in nozzles, grinding, media, bearings, etc., but also for a wide range of applications, such as in areas subject to heat, such as engine parts.

以下、さらに本発明を実施例により説明するが、本発明
はこれらにより限定されるものではない。
EXAMPLES Hereinafter, the present invention will be further explained with reference to Examples, but the present invention is not limited thereto.

実施例1 オキシ塩化ジルコニウムと塩化セリウム及び塩化ランタ
ン又は塩化ネオジウムを所定量混合した溶液にpH=9
となるようにアンモニア水を添加し、沈澱を得た。この
沈澱を口過分離後、乾燥した後温度950℃で2時間焼
成して、焼結体用原料微粉末を得た。また、比較のため
に、0@痔とZrO。
Example 1 A solution containing a predetermined amount of zirconium oxychloride, cerium chloride, and lanthanum chloride or neodymium chloride was mixed with pH=9.
Aqueous ammonia was added to obtain a precipitate. This precipitate was separated by mouth, dried, and then fired at a temperature of 950° C. for 2 hours to obtain a fine raw material powder for a sintered body. Also, for comparison, 0@hemorrhoids and ZrO.

だけからなる粉末も同様の操作によって合成した。A powder consisting of

得られた粉末をラバープレス法によって成形体とし、1
400〜1650℃の温度で2時間焼成して、焼結体を
得た。
The obtained powder was made into a molded body by a rubber press method, and 1
A sintered body was obtained by firing at a temperature of 400 to 1650°C for 2 hours.

焼結体の曲げ強度をJ工8 R1601−1981に規
定された方法に準じて測定した。また、エージングによ
る熱劣化テストは、焼結体を温度200℃の電気炉て、
露点20℃の空気を流通しながら、1000時間保持し
たのち、その曲げ強度を測定することによって行った。
The bending strength of the sintered body was measured according to the method specified in J Engineering 8 R1601-1981. In addition, the thermal deterioration test due to aging was performed by placing the sintered body in an electric furnace at a temperature of 200°C.
The bending strength was measured after holding for 1000 hours while circulating air with a dew point of 20°C.

得られた結果を表1に示す。The results obtained are shown in Table 1.

実施例2 平均−次粒子径が30OAの0e−PSZ粉末に、高純
度アルミナ粉末を所定量添加し、ボールミルで湿式混合
粉砕して、得られた粉末をラバーブレス法によって成形
した後、1400〜1650℃の温度で2時間焼結して
焼結体を作成した。この焼結体について、実施例1に記
載した方法に従って、熱劣化の有無を判定した。結果を
表2に示す。
Example 2 A predetermined amount of high-purity alumina powder was added to 0e-PSZ powder with an average primary particle size of 30 OA, wet-mixed and pulverized in a ball mill, and the resulting powder was molded by a rubber press method. A sintered body was produced by sintering at a temperature of 1650° C. for 2 hours. The presence or absence of thermal deterioration of this sintered body was determined according to the method described in Example 1. The results are shown in Table 2.

また、アルミナ粉末の換わりに平均−次粒子径がα2μ
mのAltO,−MgO系酸化物(スピネル粉末)又は
人1tos−8101系酸化物 (ムライト粉末)を用
いて、上記と同様の焼結体作製及び熱劣化テストを行い
、表2に記載した結果を得た。
Also, instead of alumina powder, the average particle size is α2μ
The same sintered body preparation and thermal deterioration test as above were performed using AltO, -MgO-based oxide (spinel powder) or human-1tos-8101-based oxide (mullite powder), and the results are shown in Table 2. I got it.

358−358-

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、熱耐久性についてOa−P S Z焼結体と
本発明焼結体のそれぞれの効果を発現する範囲を示すも
のである。 ■・・・0・−psz焼結体の効果範囲■・・・本発明
焼結体により拡大された効果範囲1・・・0θ−PEI
Z焼結体の効果の境界線)・・・本発明焼結体の効果の
境界線 特許出願人 東洋曹達工業株式会社 第1区 (’:(I02含量(千](嗟)
FIG. 1 shows the range in which the Oa-P SZ sintered body and the sintered body of the present invention exhibit their respective effects regarding thermal durability. ■... Effective range of 0-psz sintered body ■... Effective range expanded by the sintered body of the present invention 1...0θ-PEI
Boundary line of effect of Z sintered body)...Boundary line of effect of sintered body of the present invention Patent applicant Toyo Soda Kogyo Co., Ltd. District 1 (': (I02 content (thousands) (嗟)

Claims (3)

【特許請求の範囲】[Claims] (1) 0eC4を主体とした安定化剤を5〜60モル
%含むZrO,の60〜99重量%と下記A成分の1〜
40重量%よりなることを特徴とするジルコニア系焼結
体。 A成分: All0I 、 AI4os−MgO系酸化
物、肩^−8iO,系酸化物およびLa、 Pr、 N
d又はPmとZrの複酸化物のうちの 少くとも1種以上からなる酸化物
(1) 60 to 99% by weight of ZrO containing 5 to 60 mol% of a stabilizer mainly composed of 0eC4 and 1 to 99% of the following A component
A zirconia-based sintered body characterized by comprising 40% by weight. A component: All0I, AI4os-MgO-based oxide, shoulder^-8iO,-based oxide, and La, Pr, N
d or an oxide consisting of at least one kind of double oxide of Pm and Zr
(2) 焼結体中のジルコニア焼結体が、主として正方
晶又は正方晶と立方晶からなる特許請求の範囲第(1)
項記載のジルコニア系焼結体。
(2) Claim (1) in which the zirconia sintered body in the sintered body mainly consists of tetragonal crystals or tetragonal crystals and cubic crystals
The zirconia-based sintered body described in .
(3) 焼結体中の結晶の平均粒子径が5μm以下であ
る特許請求の範囲第(1)項又は第(2)項記載のジル
コニア系焼結体。
(3) The zirconia-based sintered body according to claim (1) or (2), wherein the average particle diameter of crystals in the sintered body is 5 μm or less.
JP59097572A 1984-05-17 1984-05-17 Zirconia sintered body Granted JPS60246261A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59097572A JPS60246261A (en) 1984-05-17 1984-05-17 Zirconia sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59097572A JPS60246261A (en) 1984-05-17 1984-05-17 Zirconia sintered body

Publications (2)

Publication Number Publication Date
JPS60246261A true JPS60246261A (en) 1985-12-05
JPH0469105B2 JPH0469105B2 (en) 1992-11-05

Family

ID=14195949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59097572A Granted JPS60246261A (en) 1984-05-17 1984-05-17 Zirconia sintered body

Country Status (1)

Country Link
JP (1) JPS60246261A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6246959A (en) * 1985-08-20 1987-02-28 株式会社ノリタケカンパニーリミテド Heat-stability-resistant high toughness ceramic sintered body and manufacture
JPS6433066A (en) * 1987-06-24 1989-02-02 Kaunsuru For Scient & Ind Res Sintered ceramic material and manufacture
US5658837A (en) * 1994-09-23 1997-08-19 Aisimag Technical Ceramics, Inc. Stabilized zirconia

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6090870A (en) * 1983-10-20 1985-05-22 日立化成工業株式会社 Manufacture of high strength zirconia ceramic
JPS60108367A (en) * 1983-11-16 1985-06-13 日立化成工業株式会社 Zirconia sintered body
JPS60141671A (en) * 1983-12-27 1985-07-26 日立化成工業株式会社 Manufacture of zirconia sintered body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6090870A (en) * 1983-10-20 1985-05-22 日立化成工業株式会社 Manufacture of high strength zirconia ceramic
JPS60108367A (en) * 1983-11-16 1985-06-13 日立化成工業株式会社 Zirconia sintered body
JPS60141671A (en) * 1983-12-27 1985-07-26 日立化成工業株式会社 Manufacture of zirconia sintered body

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6246959A (en) * 1985-08-20 1987-02-28 株式会社ノリタケカンパニーリミテド Heat-stability-resistant high toughness ceramic sintered body and manufacture
JPS6433066A (en) * 1987-06-24 1989-02-02 Kaunsuru For Scient & Ind Res Sintered ceramic material and manufacture
US5017532A (en) * 1987-06-24 1991-05-21 Csir Sintered ceramic product
US5658837A (en) * 1994-09-23 1997-08-19 Aisimag Technical Ceramics, Inc. Stabilized zirconia

Also Published As

Publication number Publication date
JPH0469105B2 (en) 1992-11-05

Similar Documents

Publication Publication Date Title
US5587346A (en) Translucent polycrystalline alumina
US4753902A (en) Transformation toughened zirconia-titania-yttria ceramic alloys
JPS63139050A (en) Zirconia base ceramics
JPH0352425B2 (en)
US4690910A (en) Sintered product of zirconia and method of producing the same
JPS6126562A (en) Zirconia sintered body
JPS60246261A (en) Zirconia sintered body
JPH0535103B2 (en)
JPS6186466A (en) Spinel ceramics
JPH0230663A (en) Sintered material of zirconia and production thereof
JPH01212273A (en) Alumina ceramic reinforced with zirconia
JP2943016B2 (en) Ceria stabilized zirconia / α-alumina / lanthanum-β-alumina composite sintered body
JPH0788251B2 (en) Zirconia sintered body
JPS6212662A (en) High toughness zirconia base sintered body
JPH0772102B2 (en) Method for manufacturing zirconia sintered body
JP3696959B2 (en) Tetragonal stabilized zirconia / lanthanum hexaferrite composite sintered body
JP2587704B2 (en) Zirconia sintered body and method for producing the same
JPH06219831A (en) High toughness zirconia-based sintered compact
JPH01234354A (en) Production of alumina ceramic containing zirconia
JPH05301767A (en) Multiple sintered compact
JPS62230667A (en) Manufacture of ceramics
JPH0362665B2 (en)
JP2627922B2 (en) Silicon nitride sintered body
JPS63139049A (en) Zirconia ceramics
JPH034505B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees