JPS60141671A - Manufacture of zirconia sintered body - Google Patents

Manufacture of zirconia sintered body

Info

Publication number
JPS60141671A
JPS60141671A JP58248781A JP24878183A JPS60141671A JP S60141671 A JPS60141671 A JP S60141671A JP 58248781 A JP58248781 A JP 58248781A JP 24878183 A JP24878183 A JP 24878183A JP S60141671 A JPS60141671 A JP S60141671A
Authority
JP
Japan
Prior art keywords
weight
oxide powder
sintered body
powder
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58248781A
Other languages
Japanese (ja)
Other versions
JPS647030B2 (en
Inventor
中田 孝夫
宇田川 重和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP58248781A priority Critical patent/JPS60141671A/en
Publication of JPS60141671A publication Critical patent/JPS60141671A/en
Publication of JPS647030B2 publication Critical patent/JPS647030B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は高強度、高耐熱性を有するジルコニア焼結体(
以下焼結体という)の製造方法に関する。
Detailed Description of the Invention The present invention provides a zirconia sintered body (
The present invention relates to a method for producing a sintered body (hereinafter referred to as a sintered body).

従来酸化ジルコニウム安定化剤としてイツトリウム、マ
グネシウム等の酸化物を少量添加して焼結体を製造する
と曲げ強さ、硬度等が格段に向上することが特公昭58
−9784号公報によシ知られている。このような焼結
体を製造するには。
Conventionally, it has been reported in 1983 that bending strength, hardness, etc. are significantly improved when sintered bodies are manufactured by adding small amounts of oxides such as yttrium and magnesium as zirconium oxide stabilizers.
This is known from Japanese Patent No. 9784. How to manufacture such a sintered body.

気相、液相反応等を利用して酸化ジルコニウムと安定化
剤とを均一に混合した超微粒の原料粉を使用し、厳密に
制御した温度条件で焼成して焼結体に含まれる結晶粒径
を規定する必要がある。しかし複雑な工程で作られる微
粒を原料とするため高価であり、成形あるいは焼成過程
で大きな収縮を生じ、クラック、変形等を起こしやすく
大型品の製造は困難である。さらに酸化イツトリウムを
使用した焼結体は200〜300℃で、酸化マグネシウ
ムを使用した焼結体は1000℃で結晶形態が変化し1
強度低下しるため熱を受ける部分での長期使用はできな
い。このため断熱性が良いという焼結体の特徴も生かさ
れなかった。
The crystal grains contained in the sintered body are created by using ultrafine raw material powder, which is a uniform mixture of zirconium oxide and a stabilizer using gas phase and liquid phase reactions, and firing it under strictly controlled temperature conditions. It is necessary to specify the diameter. However, it is expensive because it uses fine particles produced through a complicated process as a raw material, and it is difficult to manufacture large products because it is prone to large shrinkage during the molding or firing process, causing cracks and deformation. Furthermore, the crystal form of the sintered body using yttrium oxide changes at 200 to 300°C, and the crystal form of the sintered body using magnesium oxide changes at 1000°C.
It cannot be used for long periods in areas that are exposed to heat because its strength will decrease. For this reason, the characteristic of the sintered body, which is good heat insulation, was not utilized.

本発明はかかる欠点のない焼結体の製造方法を提供する
ことを目的とするものである。
It is an object of the present invention to provide a method for producing a sintered body free of such drawbacks.

本発明者らは上記の欠点について種々検討を進めた結果
、安定化剤として酸化イツ) リウム粉と酸化セリウム
粉との2種を酸化ジルコニウム粉に添加すれば、いずれ
かのみを添加する場合より高強度化し、焼結体の熱的安
定性も改善され、使用原料粉は超微粒である必要がなく
なシ原料費の低減、クラック、変形等の発生もなく大型
品が容易に製造できることを見出した。
The inventors of the present invention have carried out various studies regarding the above-mentioned drawbacks, and have found that adding zirconium oxide powder and cerium oxide powder as a stabilizer to zirconium oxide powder is better than adding either one of them alone. The strength has been increased, the thermal stability of the sintered body has been improved, and the raw material powder used no longer needs to be ultra-fine, reducing raw material costs and making it easier to manufacture large products without cracking or deformation. I found it.

本発明は酸化ジルコニウム粉65.0〜96.0重量%
、酸化セリウム粉0.6〜26.0重量%および酸化イ
ツトリウム粉0.8〜9.0重量%からなる混合物を成
形、焼成する焼結体並びに酸化ジルコニウム粉65.0
〜96.0重量%、酸化セリウム粉0.6〜26.0重
量%および酸化イツトリウム粉0.8〜9.0重量%か
らなる混合物50重量−以上100重量−未満に、酸化
アルミニウム粉を50重量%以下添加し、成形、焼成す
る焼結体の製造方法に関する。
The present invention uses zirconium oxide powder of 65.0 to 96.0% by weight.
, a sintered body formed by molding and firing a mixture consisting of cerium oxide powder 0.6 to 26.0% by weight and yttrium oxide powder 0.8 to 9.0% by weight, and zirconium oxide powder 65.0%
~96.0% by weight, cerium oxide powder 0.6-26.0% by weight and yttrium oxide powder 0.8-9.0% by weight. It relates to a method for producing a sintered body by adding less than % by weight, shaping and firing.

本発明において酸化セリウム粉の含有量は0.6〜26
.0重量%の範囲とされ、0.6重量−未満であると焼
結体の熱的安定性の改善効果はなく。
In the present invention, the content of cerium oxide powder is 0.6 to 26
.. If the amount is less than 0.6% by weight, there will be no effect of improving the thermal stability of the sintered body.

26.0重量%を越えると焼結体の熱的安定性は良いが
強度が低くなる。酸化イツ) IJウム粉の含有量は0
.8〜9.0重量条の範囲とされ、0.8重量%未満で
あると添加による強度増加の効果は得られず、9.0重
量%を越えると焼結体の強度が低下する。また酸化ジル
コニウム粉の含有量は65.0〜96.0重量%の範囲
とされ、96.0重量%を越えると焼結体の強度および
熱的安定性が劣り、65.0重量%未満であると焼結体
の強度が低下する。
If it exceeds 26.0% by weight, the sintered body will have good thermal stability but will have low strength. The content of IJum powder is 0.
.. The content is in the range of 8 to 9.0% by weight, and if it is less than 0.8% by weight, no effect of increasing the strength will be obtained by addition, and if it exceeds 9.0% by weight, the strength of the sintered body will decrease. In addition, the content of zirconium oxide powder is in the range of 65.0 to 96.0% by weight; if it exceeds 96.0% by weight, the strength and thermal stability of the sintered body will be poor, and if it is less than 65.0% by weight, the sintered body will have poor strength and thermal stability. If it exists, the strength of the sintered body will decrease.

第二の発明において酸化アルミニウム粉が添加されるが
、その添加量は上記原料の混合物50重量%以上100
重量%未満に50重重量板下とされ、それ以上添加する
と焼結体の強度が低下する。
In the second invention, aluminum oxide powder is added, but the amount added is 50% or more by weight or more than 100% by weight of the mixture of the above raw materials.
If the amount is less than 50% by weight, the strength of the sintered body will decrease.

また使用する各原料粉は純度99チ以上で平均粒径が5
μm以下のものが望ましく、酸化ジルコニウム粉に関す
れば圧電体製造、塗料用等さらには耐火物原料に使用さ
れる比較的低級グレードの粉体が使用可能である。
In addition, each raw material powder used has a purity of 99% or more and an average particle size of 5.
A zirconium oxide powder with a diameter of μm or less is desirable, and relatively low-grade powders used for piezoelectric material production, paints, etc., and also as raw materials for refractories can be used.

なお酸化ジルコニウム粉含有量の中には酸化ジルコニウ
ムと性質が類似で分離が困難な酸化・・フニウム粉が含
有していてもよい。また酸化ジルコニウム粉としては炭
酸ジルコニウム粉、水酸化ジルコニウム粉等加熱すると
酸化ジルコニウムになる材料も含むものとする。
Note that the zirconium oxide powder content may include oxidized ..fnium powder, which has similar properties to zirconium oxide and is difficult to separate. The zirconium oxide powder also includes materials that become zirconium oxide when heated, such as zirconium carbonate powder and zirconium hydroxide powder.

酸化イツトリウム粉、酸化セリウム粉および酸化アルミ
ニウム粉も上記と同様に低級なグレードのもの、水酸化
物などを使用してもよい。
As for yttrium oxide powder, cerium oxide powder and aluminum oxide powder, lower grade powders, hydroxides, etc. may be used in the same manner as above.

原料の混合は湿式ボールミル混合法等で混合し。The raw materials are mixed using a wet ball mill mixing method.

原料の混合と共に平均粒径1μIn以下に才で粉砕した
方がより良い性質を有する焼結体となり望ましい。
It is desirable to mix the raw materials and grind them to an average particle size of 1 μIn or less, as this results in a sintered body with better properties.

また本発明では酸化ジルコニウム粉、酸化イツトリウム
粉および酸化セリウム粉の2種(残り1種は熱処理後添
加する)又は3種を混合、粉砕したものを1000℃以
上、望甘しくけ1300〜1450℃で熱処理を行ない
、ついで第二の発明においては、酸化アルミニウム粉を
添加し、混合、。
In addition, in the present invention, two or three types of zirconium oxide powder, yttrium oxide powder, and cerium oxide powder (the remaining one is added after heat treatment) are mixed and pulverized at 1000°C or higher, preferably at 1300 to 1450°C. Then, in the second invention, aluminum oxide powder is added and mixed.

粉砕を行なうと、成形、焼成における寸法ばらつき、あ
るいはクラックの発生が低減できるため大型品の製造に
好ましい。
Pulverization is preferable for manufacturing large products because it can reduce dimensional variations or cracks during molding and firing.

焼成温度は1500〜1700℃が好オしく。The firing temperature is preferably 1500 to 1700°C.

1550〜1650℃であれば性能のばらつきが小さく
、高性能の焼結体が得られるので好廿しい。
A temperature of 1,550 to 1,650°C is preferable because variations in performance are small and a high-performance sintered body can be obtained.

以下実施例により本発明を説明する。The present invention will be explained below with reference to Examples.

実施例1 酸化ジルコニウム粉(第−希元素製、EPグレード、純
度99.5%)、酸化イツトリウム粉(信越化学製、純
度99.9%)および酸化セリウム粉(信越化学製、純
度99.9%)を第1表に示す配合割合に秤量し、ボー
ルミルで平均粒径1.0μm以下になるまで湿式粉砕、
混合した。次に乾燥した後1400°Cで1時間熱処理
を行ない中間原料を得た。この中間原料に酸化アルミニ
ウム粉(アルコア社製、商品名A−168G)k第1表
に示す量添加し、再びボールミルで平均粒径0.7μm
になるまで湿式粉砕、混合した。この混合物(粉体50
重惜チ、水49,9重址チ)にポリビニルアルコール(
I)VA)0.08重量%およびワックス002重量係
を添加し、噴霧乾燥法で造粒して成形粉を得、さらに前
記の成形粉を1.2トン/cm2の圧力にて加圧成形し
、6X12X100mmの成形体を得た。次にこの成形
体を1400〜1700℃の温度で焼成して焼結体を得
た。
Example 1 Zirconium oxide powder (manufactured by Rare Elements, EP grade, purity 99.5%), yttrium oxide powder (manufactured by Shin-Etsu Chemical, purity 99.9%), and cerium oxide powder (manufactured by Shin-Etsu Chemical, purity 99.9%) ) were weighed to the proportions shown in Table 1, wet milled in a ball mill until the average particle size was 1.0 μm or less,
Mixed. Next, after drying, heat treatment was performed at 1400°C for 1 hour to obtain an intermediate raw material. Aluminum oxide powder (manufactured by Alcoa, trade name A-168G) was added in the amount shown in Table 1 to this intermediate raw material, and the average particle size was 0.7 μm using a ball mill again.
Wet milled and mixed until . This mixture (powder 50
Add polyvinyl alcohol (100% water, 49.9% water) to
I) VA) 0.08% by weight and Wax 002% by weight were added and granulated by spray drying to obtain molded powder, and the molded powder was further pressure molded at a pressure of 1.2 tons/cm2. A molded body of 6 x 12 x 100 mm was obtained. Next, this molded body was fired at a temperature of 1400 to 1700°C to obtain a sintered body.

次に前記の温度で焼成して高い強度が得られた温度、す
なわち第1表に示す温度で焼成を行なって得られた焼結
体を用いて各種試験を行なった。
Next, various tests were conducted using the sintered bodies obtained by firing at the temperatures at which high strength was obtained by firing at the above-mentioned temperatures, that is, at the temperatures shown in Table 1.

その試験結果を合わせて第1表に示す。なお試験方法に
おいて2曲げ強さは3点曲げ試験法で、熱的安定性は6
X12X100mの成形体の一端を1200℃に加熱し
、他の一端を室温中で1000時間放置した後の曲げ強
さを調べた。
The test results are shown in Table 1. In addition, in the test method, 2 bending strength is a 3-point bending test method, and thermal stability is 6
One end of the molded product measuring 12×100 m was heated to 1200° C., and the other end was left at room temperature for 1000 hours, and then the bending strength was examined.

第1表により2本発明の製造方法によって得られる焼結
体は熱的安定性が高く9機械的強度が高いことが示され
る。
Table 1 shows that the sintered bodies obtained by the manufacturing method of the present invention have high thermal stability and high mechanical strength.

実施例2 酸化ジルコニウム粉(第−希元素製、ACGMグレード
、純度99.2 % 、他に酸化珪素0.3重量%、酸
化第二鉄0.2重量%および酸化チタン0.3重量%含
有)、酸化イツトリウム粉(信越化学製。
Example 2 Zirconium oxide powder (manufactured by Daiki Elements, ACGM grade, purity 99.2%, also containing 0.3% by weight of silicon oxide, 0.2% by weight of ferric oxide, and 0.3% by weight of titanium oxide) , yttrium oxide powder (manufactured by Shin-Etsu Chemical).

純度99.9%)および酸化セリウム粉(信越化学製、
純度99.9%)を第2表に示す配合割合に秤量し、以
下実施例1と同様の方法により焼結体を得た。また各種
試験も実施例1と同様の方法で行ない、その試験結果も
合わせて第2表に示す。なお各種試験は1600℃で焼
成を行なって得られた焼結体を用いて行なった。
purity 99.9%) and cerium oxide powder (manufactured by Shin-Etsu Chemical,
(purity 99.9%) was weighed to the blending ratio shown in Table 2, and a sintered body was obtained in the same manner as in Example 1. Various tests were also conducted in the same manner as in Example 1, and the test results are also shown in Table 2. Note that various tests were conducted using sintered bodies obtained by firing at 1600°C.

第2表によシ7本発明の製造方法によって得られる焼結
体は実施例1と同様に熱的安定性が高く。
According to Table 2, the sintered body obtained by the manufacturing method of the present invention has high thermal stability as in Example 1.

機械的強度が高いことが示される。This indicates high mechanical strength.

本発明によれば超微粒の原料粉を使用したり。According to the present invention, ultrafine raw material powder is used.

精密な温度制御を必要としないため安価にそして容易に
高強度、高耐熱性に優れた焼結体を製造することができ
る。
Since precise temperature control is not required, a sintered body with high strength and high heat resistance can be easily produced at low cost.

また酸化セリウム粉の添加量の増減によシ、室温から高
温の使用に適した断熱用の機械部品に使用可能であると
共に大型品の製造も可能であるなどの効果を有する。
In addition, depending on the amount of cerium oxide powder added, it can be used for heat-insulating mechanical parts suitable for use at room temperature to high temperatures, and large-sized products can also be manufactured.

代理人 弁理士 若 林 邦 彦Agent: Patent Attorney Kunihiko Wakabayashi

Claims (1)

【特許請求の範囲】 1、酸化ジルコニウム粉65.0〜96.0重量%。 酸化セリウム粉0.6〜26.0重量%および酸化イツ
トリウム粉0.8〜9.0重量%からなる混合物を成形
、焼成することを特徴とするジルコニア焼結体の製造方
法。 2、酸化ジルコニウム粉65.0〜96.0重量%。 酸化セリウム粉0.6〜26.0重量%および酸化イツ
トリウム粉0.8〜9.0i4:量チからなる混合物5
0重量%以上100重量%未満に、酸化アルミニウム粉
を50重量%以下添加し、成形、焼成することを特徴と
するジルコニア焼結体の製造方法。
[Claims] 1. Zirconium oxide powder 65.0 to 96.0% by weight. A method for producing a zirconia sintered body, which comprises molding and firing a mixture consisting of 0.6 to 26.0% by weight of cerium oxide powder and 0.8 to 9.0% by weight of yttrium oxide powder. 2. Zirconium oxide powder 65.0-96.0% by weight. Mixture 5 consisting of 0.6 to 26.0% by weight of cerium oxide powder and 0.8 to 9.0% by weight of yttrium oxide powder
A method for producing a zirconia sintered body, which comprises adding aluminum oxide powder in an amount of 0% by weight or more and less than 100% by weight and 50% by weight or less, followed by molding and firing.
JP58248781A 1983-12-27 1983-12-27 Manufacture of zirconia sintered body Granted JPS60141671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58248781A JPS60141671A (en) 1983-12-27 1983-12-27 Manufacture of zirconia sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58248781A JPS60141671A (en) 1983-12-27 1983-12-27 Manufacture of zirconia sintered body

Publications (2)

Publication Number Publication Date
JPS60141671A true JPS60141671A (en) 1985-07-26
JPS647030B2 JPS647030B2 (en) 1989-02-07

Family

ID=17183291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58248781A Granted JPS60141671A (en) 1983-12-27 1983-12-27 Manufacture of zirconia sintered body

Country Status (1)

Country Link
JP (1) JPS60141671A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60246261A (en) * 1984-05-17 1985-12-05 東ソー株式会社 Zirconia sintered body
US4820666A (en) * 1985-03-22 1989-04-11 Noritake Co., Limited Zirconia base ceramics
JPH06263533A (en) * 1993-08-23 1994-09-20 Noritake Co Ltd High-toughness ceramic sintered compact excellent in thermal stability and its production
US5658837A (en) * 1994-09-23 1997-08-19 Aisimag Technical Ceramics, Inc. Stabilized zirconia
JP2013515665A (en) * 2009-12-24 2013-05-09 サン−ゴバン サントル ド レシェルシュ エ デテュド ユーロペアン Powder containing zirconia and alumina granules

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5832066A (en) * 1981-08-13 1983-02-24 日本特殊陶業株式会社 Tenacious zirconia sintered body
JPS5836976A (en) * 1981-08-25 1983-03-04 日本特殊陶業株式会社 High tenacity zirconia sintered body
JPS59162173A (en) * 1983-03-07 1984-09-13 東ソー株式会社 Zirconia sintered body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5832066A (en) * 1981-08-13 1983-02-24 日本特殊陶業株式会社 Tenacious zirconia sintered body
JPS5836976A (en) * 1981-08-25 1983-03-04 日本特殊陶業株式会社 High tenacity zirconia sintered body
JPS59162173A (en) * 1983-03-07 1984-09-13 東ソー株式会社 Zirconia sintered body

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60246261A (en) * 1984-05-17 1985-12-05 東ソー株式会社 Zirconia sintered body
JPH0469105B2 (en) * 1984-05-17 1992-11-05 Tosoh Corp
US4820666A (en) * 1985-03-22 1989-04-11 Noritake Co., Limited Zirconia base ceramics
JPH06263533A (en) * 1993-08-23 1994-09-20 Noritake Co Ltd High-toughness ceramic sintered compact excellent in thermal stability and its production
US5658837A (en) * 1994-09-23 1997-08-19 Aisimag Technical Ceramics, Inc. Stabilized zirconia
JP2013515665A (en) * 2009-12-24 2013-05-09 サン−ゴバン サントル ド レシェルシュ エ デテュド ユーロペアン Powder containing zirconia and alumina granules

Also Published As

Publication number Publication date
JPS647030B2 (en) 1989-02-07

Similar Documents

Publication Publication Date Title
JPS6054976A (en) Silicon nitride sintered body and manufacture
JPS60141671A (en) Manufacture of zirconia sintered body
JP3736649B2 (en) Zirconia sintered body, method for producing the same, and pulverized component material
JPH0515667B2 (en)
JP3076682B2 (en) Alumina-based sintered body and method for producing the same
JPS60141672A (en) Manufacture of zirconia sintered body
JPS6357383B2 (en)
JPH0544428B2 (en)
JPS5825070B2 (en) Manufacturing method for low-shrinkage quartz glass refractories
JPS5919073B2 (en) Method for manufacturing sintered compacts
JPS61117153A (en) Manufacture of alumina sintered body
JPH0696471B2 (en) Method for manufacturing zirconia ceramics
JPS6141872B2 (en)
JPH0615191A (en) Member for crushing machine
JPS6090870A (en) Manufacture of high strength zirconia ceramic
JPS60200859A (en) Manufacture of zirconia ceramic
JPS6090869A (en) Manufacture of high strength zirconia ceramic
KR910003901B1 (en) Manufacture method of sic sintering material
JPH0383851A (en) Mullite-based sintered compact and production thereof
JPH0383852A (en) Mullite-based sintered compact and its production
JP2616773B2 (en) Method for producing zirconia ceramics
WO1993023347A1 (en) Wear-resistant zirconia sinter and production thereof
JPS63134561A (en) Zirconia ceramic composition
JPS6283367A (en) Manufacture of zirconia sintered body
JPS5891057A (en) Non-oxide ceramic sintered body