JPH0383851A - Mullite-based sintered compact and production thereof - Google Patents

Mullite-based sintered compact and production thereof

Info

Publication number
JPH0383851A
JPH0383851A JP1219942A JP21994289A JPH0383851A JP H0383851 A JPH0383851 A JP H0383851A JP 1219942 A JP1219942 A JP 1219942A JP 21994289 A JP21994289 A JP 21994289A JP H0383851 A JPH0383851 A JP H0383851A
Authority
JP
Japan
Prior art keywords
mullite
based sintered
raw materials
sintered compact
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1219942A
Other languages
Japanese (ja)
Inventor
Atsushi Nishiyama
敦 西山
Takeo Sasaki
佐々木 丈夫
Yoshihiro Ohinata
大日向 義宏
Hiroshi Sasaki
博 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP1219942A priority Critical patent/JPH0383851A/en
Publication of JPH0383851A publication Critical patent/JPH0383851A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an inexpensive mullite-based sintered compact excellent in high-temperature strength by dispersing BN in a specific proportion in mullite crystals or grain boundary surfaces and providing the sintered compact having a limited crystal grain diameter of the mullite. CONSTITUTION:The aforementioned mullite-based sintered compact is composed of BN and mullite with 5-30wt.% BN content based on the mullite and the grain diameter of the mullite is 10-100mum. The above-mentioned mullite-based sintered compact is obtained by the following method. That is at least two kinds selected from the group composed of purified clay mineral, alumina produced by the Bayer process and quartzite are used as main raw materials and prepared so as to afford the composition ratio of Al2O3/SiO2 within a range producing the mullite. The prepared raw materials are wet pulverized so as to provide >=90% thereof having <=5mum particle diameter and the BN having <=30mum particle diameter in an amount of 5-30wt.% based on the aforementioned prepared raw materials is than added and mixed therewith. The resultant mixture is subsequently dried, disintegrated and then formed using an organic binder. The obtained formed compact is subsequently sintered at >=1600 deg.C temperature for >=1hr.

Description

【発明の詳細な説明】 [fIi業上の利用分野] 本発明はムライト系焼結体及びその製造方法に係り、特
に高温強度等の特性に優れ、しかも安価に提供されるム
ライト系焼結体及びその製造方法に関する。
[Detailed description of the invention] [Field of application in fIi industry] The present invention relates to a mullite-based sintered body and a method for manufacturing the same, and in particular, a mullite-based sintered body that has excellent properties such as high-temperature strength and is provided at a low cost. and its manufacturing method.

[従来の技術] ムライトはAx= onと5i02からなり、化学組成
は理論的には3Aj2203−2S i 02 であり
、その特性としては、耐熱性に優れ、特にクリープ特性
が良好である。また、熱衝撃特性は良好であるが電気的
特性はあまり良くない。
[Prior Art] Mullite consists of Ax=on and 5i02, the chemical composition is theoretically 3Aj2203-2S i 02 , and its properties include excellent heat resistance and particularly good creep properties. Also, although the thermal shock properties are good, the electrical properties are not so good.

ムライトセラ稟ツクスはオールドセラミックスに属し、
その研究の歴史は永く、原料としては、アルよす源とし
てカオリン、バイヤーアルミナ、水酸化アル主ニウム、
シリカ源として珪石が主に用いられている。最近では、
天然ムライトを改質することにより、合成ムライト並の
物性を出すことができるようになったが、この研究の主
体はムライト組成中のS i 02相の析出及びガラス
化の防止であり、原料の調製や焼結条件などを検討した
ものである。
Mullite Ceramics belongs to old ceramics.
Its research has a long history, and raw materials include kaolin, Bayer alumina, aluminum hydroxide, and
Silica stone is mainly used as a silica source. recently,
By modifying natural mullite, it has become possible to achieve physical properties comparable to synthetic mullite, but the main focus of this research is to prevent the precipitation and vitrification of the S i 02 phase in the mullite composition. The preparation and sintering conditions were studied.

一方、ファインセラ主ツクス技術を用いた高純度ムライ
トという理論組成の素材もあり、これは金属アルコキシ
ドから理論組成となるように共沈法で製造したものであ
る。
On the other hand, there is also a material with a theoretical composition of high-purity mullite using Fine Ceramics technology, which is produced by a coprecipitation method from metal alkoxide to a theoretical composition.

しかして、これらの原料を目的に合わせて混合し、焼結
したものがムライト系セラξツクス材料といわれ、ムラ
イト系セラセックスはアルくナセラよツクスと同様、高
温強度が比較的大きく、天然原料を用いたものは安価な
素材であることから、炉材、サヤ、セッター材、耐熱材
、構造材等、主に耐火材料として用いられてきた。
The mixture of these raw materials according to the purpose and sintering is called mullite-based ceramic material.Mullite-based ceramic material has relatively high high-temperature strength like alkaline and nacella materials, and is a natural raw material. Because it is an inexpensive material, it has been used mainly as a fireproof material, such as furnace materials, sheaths, setter materials, heat-resistant materials, and structural materials.

[発明が解決しようとする課題] 従来のムライトセラミックスのうち、天然ムライトを改
質したものでは、長期間の使用や高温使用時に、もとも
と入っているAn20s −3iOaボンデイングが分
解し、5iOaがムライト粒界にガラス相として析出す
る。このため、強度が著しく低下し、連続的な使用や繰
り返しの使用に難があった。
[Problems to be solved by the invention] Among conventional mullite ceramics, in those modified from natural mullite, the An20s-3iOa bonding originally contained decomposes during long-term use or high-temperature use, and 5iOa becomes mullite grains. It precipitates as a glass phase in the field. For this reason, the strength was significantly reduced, making it difficult to use continuously or repeatedly.

アルコシキト法による高純度ムライトは、上記欠点を解
決するために開発されたものであるが、高純度ムライト
は高温強度、耐久性等に大きな改善効果を有するものの
、価格が高いために従来より用いられている耐熱材料等
の工業材料の分野で使用するにはコスト的に不利であっ
た。
High-purity mullite produced by the alkoxyquito method was developed to solve the above-mentioned drawbacks, but although high-purity mullite has the effect of greatly improving high-temperature strength and durability, it has not been used conventionally due to its high price. It was disadvantageous in terms of cost for use in the field of industrial materials such as heat-resistant materials.

本発明は上記従来の問題点を解決し、高温強度等の特性
に優れ、かつ安価に提供されるムライト系焼結体及びそ
の製造方法を提供することを目的とする。
An object of the present invention is to solve the above-mentioned conventional problems and to provide a mullite-based sintered body that has excellent properties such as high-temperature strength and can be provided at low cost, and a method for producing the same.

[課題を解決するための手段] 請求項(1)のムライト系焼結体は、BN(窒化硼素)
及びムライトよりなり、BN含有量がムライトに対して
5〜30重量%であって、ムライト粒径が10〜100
μmであることを特徴とする 請求項(2)のムライト系焼結体の製造方法は、精製粘
土鉱物、バイヤーアル主す及び珪石よりなる群から選ば
れる少なくとも2種を主原料として、A It 20 
s / S i O2の組成比がムライト生成範囲とな
るように調合し、該調合原料を90%以上が粒径5μm
以下となるように湿式粉砕した後、粒径30μm以下の
BNを前記調合原料に対して5〜30重量%添加混合し
、次いで、得られた混合物を乾燥、解砕し、その後、有
機質バインダーを用いて成形し、成形体を1600℃以
上の温度で1時間以上焼成することを特徴とする。
[Means for solving the problem] The mullite-based sintered body of claim (1) is made of BN (boron nitride).
and mullite, the BN content is 5 to 30% by weight based on mullite, and the mullite particle size is 10 to 100% by weight.
The method for producing a mullite-based sintered body according to claim (2), characterized in that the mullite-based sintered body has a particle diameter of 20
The composition ratio of s/S i O2 is blended to be in the mullite production range, and 90% or more of the blended raw materials have a particle size of 5 μm.
After wet pulverization as follows, BN with a particle size of 30 μm or less is added and mixed in an amount of 5 to 30% by weight based on the raw material, the resulting mixture is dried and crushed, and an organic binder is added. The molded body is then baked at a temperature of 1600° C. or higher for 1 hour or more.

即ち、本発明は、原料として従来より用いられている安
価な原料を用い、物性改良の手段として、特定のセラよ
ツクス粒子を第2相としてムライト結晶内又は粒界面に
分散させることにより高強度化を図り、高純度合成ムラ
イト並の特性を有する材料を提供するものである。
That is, the present invention uses inexpensive raw materials that have been conventionally used as raw materials, and as a means of improving physical properties, high strength is achieved by dispersing specific ceramic particles as a second phase within mullite crystals or at grain boundaries. The aim is to provide a material with properties comparable to that of high-purity synthetic mullite.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

請求項(1)のムライト系焼結体は、ムライトに対して
5〜30重量%のBNを含有するものである。BHの含
有量がムライトに対して5重量%未満では本発明による
強度の改善効果が得られず、301重量%を超えるとB
Nの畳が多くなり通ぎて、ムライト系焼結体としての特
性が損なわれる。従って、本発明においては、BN含有
量はムライトに対して5〜30!重量%とする。特に、
BN含有量がムライトに対して5〜10重量%であると
、とりわけ高強度なムライト系焼結体を得ることができ
る。
The mullite-based sintered body according to claim (1) contains BN in an amount of 5 to 30% by weight based on mullite. If the BH content is less than 5% by weight based on mullite, the strength improvement effect of the present invention cannot be obtained, and if it exceeds 301% by weight, BH
A large number of N tatami mats pass through, and the characteristics as a mullite-based sintered body are impaired. Therefore, in the present invention, the BN content is 5 to 30! Weight%. especially,
When the BN content is 5 to 10% by weight based on mullite, a particularly high-strength mullite-based sintered body can be obtained.

請求項(1)のムライト系焼結体中のムライト結晶は、
粒径が100μmの範囲のものである。
The mullite crystal in the mullite-based sintered body of claim (1) is
The particle size is in the range of 100 μm.

ムライト結晶の粒径が100tirnよりも大きいと得
られるムライト系焼結体の曲げ強度が低下し、また10
μmよりも小さいとBN粒子をムライト結晶内又は粒界
面に取り込み難くなる。従って、ムライト結晶の粒径は
10〜100μm1好ましくは1ON50μmとする。
When the grain size of the mullite crystal is larger than 100 turns, the bending strength of the obtained mullite-based sintered body decreases;
If it is smaller than μm, it becomes difficult to incorporate BN particles into mullite crystals or at grain interfaces. Therefore, the grain size of the mullite crystals is 10 to 100 μm, preferably 1ON50 μm.

一方、BN粒子の粒径が微細過ぎるとムライトと均一に
混合することが難しい。このため、ムライト結晶粒内に
均一に取り込まれなくなる。逆にBN粒子の粒径が大き
過ぎるとムライト結晶粒界にのみBNが存在するように
なり、粒界クラック発生の原因となる。従って、本発明
において、BN粒子の粒径は30μm以下、特に110
A1以下、とりわけ3〜10μmであることが好ましい
On the other hand, if the particle size of the BN particles is too fine, it is difficult to mix them uniformly with mullite. For this reason, it is no longer incorporated uniformly into the mullite crystal grains. On the other hand, if the grain size of the BN particles is too large, BN will exist only at the mullite crystal grain boundaries, causing grain boundary cracks to occur. Therefore, in the present invention, the particle size of the BN particles is 30 μm or less, particularly 110 μm or less.
It is preferably A1 or less, particularly 3 to 10 μm.

なお、ムライト系焼結体中のムライトはその組成が理論
組成(D A 1120 s / S i O2−3/
2(モル比) 即ち71.8728.2(重量%)であ
ることが好ましい。ムライト組成のAl2O3/SiO
Z203が理論組成よりも多過ぎるとAl2O3/Si
O2203中にムライト結晶が分散した形となり十分な
強度が得られない。逆に、ムライト組成のSiO2が理
論組成よりも多過ぎると、ムライト中に遊離シリカ相が
ガラス相となって生威し、十分な高温強度が得られない
。従って、ムライト系焼結体中のムライトは、理論組成
Aj1203/5iO2=3/2(モル比)にできるだ
け近い組成であるこヒが好ましい。
The composition of mullite in the mullite-based sintered body is the theoretical composition (D A 1120 s / S i O2-3 /
2 (molar ratio), that is, 71.8728.2 (wt%). Mullite composition Al2O3/SiO
If Z203 is too much than the theoretical composition, Al2O3/Si
Mullite crystals become dispersed in O2203 and sufficient strength cannot be obtained. On the other hand, if SiO2 in the mullite composition is too much than the theoretical composition, the free silica phase becomes a glass phase in the mullite and grows, making it impossible to obtain sufficient high-temperature strength. Therefore, the mullite in the mullite-based sintered body preferably has a composition as close as possible to the theoretical composition Aj1203/5iO2=3/2 (molar ratio).

このような請求項(1〉のムライト系焼結体は請求項(
2)の方法により容易かつ効率的に低コストにて製造す
ることができる。
The mullite-based sintered body of claim (1) is not covered by claim (1).
By the method 2), it can be manufactured easily and efficiently at low cost.

以下に請求項(2)のムライト系焼結体の製造方法はつ
いて説明する。
The method for producing a mullite-based sintered body according to claim (2) will be explained below.

請求項(2)の方法心おいては、まず、原料として精製
粘土鉱物、バイヤーアルミナ、水酸化アルミニウム又は
珪石(シリカ)を用い、A fL 203/ S i 
O2組成比がムライト生成範囲、好ましくはA 122
0 s / S i O2= 3 / 2(モル比)と
なるように調合する。この場合、特に原料としては精製
カオリンとバイヤーアルミナ又は水酸化アル主ニウム、
或いは、バイヤーアルミナ又は水酸化アルよニウムと珪
石を用いるのが好ましい。これらの原料はその所要量を
ボールミル、又はアトライター等によりアルコール等を
用いて90%以上が粒径5μm以下となるように湿式粉
砕する。次に、得られた粉砕物に粒径3゜μm以下、好
ましくは10μm以下、特に3〜10μmのBNを該粉
砕物に対して5〜30重量%、好ましくは5〜10重量
%添加し、更にボールミル等で混合する。
In the method of claim (2), first, refined clay minerals, Bayer alumina, aluminum hydroxide, or silica are used as raw materials, and A fL 203/S i
O2 composition ratio is in the mullite production range, preferably A 122
Blend so that 0 s/S i O2 = 3/2 (molar ratio). In this case, the raw materials include purified kaolin and Bayer alumina or aluminum hydroxide.
Alternatively, it is preferable to use Bayer alumina or aluminum hydroxide and silica stone. The required amount of these raw materials is wet-milled using alcohol or the like using a ball mill or attritor so that 90% or more of the powder has a particle size of 5 μm or less. Next, 5 to 30% by weight, preferably 5 to 10% by weight of BN having a particle size of 3 μm or less, preferably 10 μm or less, particularly 3 to 10 μm is added to the obtained pulverized product, Further, mix using a ball mill or the like.

得られた混合物は乾燥、解砕した後、ポリビニルアルコ
ール(PVA)等の有機質バインダーを用いて成形する
。成形は300 k g f / c m”以上での加
圧成形後、100100O/Cm’以上での静水圧プレ
ス成形による2段成形で行なうのが好ましい。
The resulting mixture is dried, crushed, and then molded using an organic binder such as polyvinyl alcohol (PVA). It is preferable that the molding is carried out in two steps, such as pressure molding at 300 kgf/cm' or higher, followed by isostatic press molding at 100,100 O/cm' or higher.

得られた成形体はホットプレス又は常圧焼結により焼成
し、ムライト系焼結体を得る。この場合、昇温速度は5
0〜b 好ましく、焼成温度は1600℃以上、好ましくは16
00〜1650℃とし、焼成時間は1時間以上、好まし
くは1〜3時間とするのが好ましい。なお、ホットプレ
スを採用する場合、圧力は300〜600kg/crr
l程度とするのが好ましい。
The obtained molded body is fired by hot pressing or pressureless sintering to obtain a mullite-based sintered body. In this case, the heating rate is 5
0 to b Preferably, the firing temperature is 1600°C or higher, preferably 16
It is preferable that the temperature is 00 to 1650°C and the firing time is 1 hour or more, preferably 1 to 3 hours. In addition, when using a hot press, the pressure is 300 to 600 kg/crr.
It is preferable to set it to about 1.

[作用] 一般に、精製カオリン、バイヤーアル稟す又は珪石等の
原料を用いて、これをボールミル等で微粉砕して混合し
ても、原子レベルで理論iJ!戒に混合することは不可
能であり、焼結により拡散させるためには長時間を必要
とする。
[Function] In general, even if raw materials such as refined kaolin, Bayer's crystal, or silica stone are used, and the raw materials are finely pulverized using a ball mill or the like and mixed, theoretical iJ! It is impossible to mix it into the soil, and it takes a long time to diffuse it by sintering.

これに対して、ムライト組成中に第2相とじてBN粒子
を5〜30重量%添加すると、ボールミル等による粉砕
混合でも、通常の成形、焼成により高温強度に優れたム
ライト系焼結体が得られる。
On the other hand, if 5 to 30% by weight of BN particles are added as a second phase to the mullite composition, a mullite-based sintered body with excellent high-temperature strength can be obtained by normal molding and firing, even when pulverized and mixed using a ball mill etc. It will be done.

このBN添加による高温強度改善の機構の詳細は明らか
ではないが、ムライト結晶内又は粒界面に取り込まれた
BN粒子がムライト中のSiO2のガラス相への移動を
ブロックしているため、更には、BN粒子がムライト結
晶粒内や結晶粒界へ分散し、ムライト結晶の成長を抑制
しているためと考えられる。
Although the details of the mechanism of this improvement in high-temperature strength due to the addition of BN are not clear, the BN particles incorporated into the mullite crystals or at the grain interfaces block the movement of SiO2 in the mullite to the glass phase. This is thought to be because the BN particles are dispersed within the mullite crystal grains and at the grain boundaries, suppressing the growth of the mullite crystals.

[実施例] 以下に実施例及び比較例を挙げて本発明をより具体的に
説明する。
[Example] The present invention will be described in more detail with reference to Examples and Comparative Examples below.

実施例1、比較例1 精製したカオリナイトに組成がA j22 ’03/5
iO2=3/2(モル比)となるようにアルミナを添加
し、ボールミル(ZrO2ボール)によりアルコールを
用いて48時時間式粉砕した。なお、この場合、メディ
ア攪拌型粉砕機(アトライター)を用いると1〜2時間
で処理することが可能である。原料を90%以上が粒径
5μm以下となるように粉砕した後、これにBN粉末(
昭和電工社製:平均粒径5μm)を第1表に示す量添加
しく比較例1は添加せず)、更にボールミルで5時間混
合した。これを乾燥、解砕した後、有機質バインダー(
PVA)を5重量%添加して十分に混練した。
Example 1, Comparative Example 1 Composition of purified kaolinite is A j22 '03/5
Alumina was added so that iO2 = 3/2 (molar ratio), and the mixture was milled using alcohol in a ball mill (ZrO2 ball) for 48 hours. In this case, if a media agitation type pulverizer (attritor) is used, the treatment can be completed in 1 to 2 hours. After pulverizing the raw material so that 90% or more has a particle size of 5 μm or less, BN powder (
(manufactured by Showa Denko Co., Ltd.: average particle diameter 5 μm) was added in the amount shown in Table 1 (comparative example 1 was not added), and further mixed in a ball mill for 5 hours. After drying and crushing this, an organic binder (
PVA) was added in an amount of 5% by weight and thoroughly kneaded.

混練物をプレス成形により50mmφX5rnmに50
0 k g / c tn’で成形した後、ラバープレ
スにより1500kg/cm”で更に加圧して成形体を
得た。この成形体を焼結してムライト系焼結体を得た。
The kneaded material was press-molded to a size of 50mmφ x 5rnm.
After molding at 0 kg/ctn', it was further pressed at 1500 kg/cm" using a rubber press to obtain a molded body. This molded body was sintered to obtain a mullite-based sintered body.

なお、焼結はホットプレスを用い、昇温速度は150℃
/ h rとし、300 kg/crrrにてI 60
0℃で1時間行なった。
Note that sintering uses a hot press, and the temperature increase rate is 150°C.
/ hr, I 60 at 300 kg/crrr
The test was carried out at 0°C for 1 hour.

得られたムライト系焼結体の緒特性を第1表に示す。Table 1 shows the properties of the obtained mullite-based sintered body.

第 表 第1表より所定量のBNを添加したムライト系焼結体に
より、常温から1300tといった高温まで安定して著
しく高い強度が得られることが明らかである。
From Table 1, it is clear that the mullite-based sintered body to which a predetermined amount of BN has been added can stably provide extremely high strength from room temperature to high temperatures such as 1300 tons.

[発明の効果] 以上詳述した通り、本発明のムライト系焼結体は、安価
な原料を用いて低コストに提供されるものであり、しか
も、高温強度、耐久性等の特性に著しく優れる。従って
、本発明のムライト系焼結体は、工業用耐火材料等とし
て、長期にわたり極めて有効に使用することができる。
[Effects of the Invention] As detailed above, the mullite-based sintered body of the present invention can be provided at low cost using inexpensive raw materials, and has outstanding properties such as high-temperature strength and durability. . Therefore, the mullite-based sintered body of the present invention can be used extremely effectively for a long period of time as an industrial refractory material.

しかして、このような本発明のムライト系焼結体は、本
発明の方法により容易かつ効率的に低コストにて製造す
ることが可能とされる。
Therefore, such a mullite-based sintered body of the present invention can be easily and efficiently manufactured at low cost by the method of the present invention.

Claims (2)

【特許請求の範囲】[Claims] (1)BN及びムライトよりなり、BN含有量がムライ
トに対して5〜30重量%であって、ムライト粒径が1
0〜100μmであることを特徴とするムライト系焼結
体。
(1) Consisting of BN and mullite, the BN content is 5 to 30% by weight relative to mullite, and the mullite particle size is 1
A mullite-based sintered body having a diameter of 0 to 100 μm.
(2)精製粘土鉱物、バイヤーアルミナ及び珪石よりな
る群から選ばれる少なくとも2種を主原料として、Al
_2O_3/SiO_2の組成比がムライト生成範囲と
なるように調合し、該調合原料を90%以上が粒径5μ
m以下となるように湿式粉砕した後、粒径30μm以下
のBNを前記調合原料に対して5〜30重量%添加混合
し、次いで、得られた混合物を乾燥、解砕し、その後、
有機質バインダーを用いて成形し、成形体を1600℃
以上の温度で1時間以上焼成することを特徴とするムラ
イト系焼結体の製造方法。
(2) Al
_2O_3/SiO_2 is blended so that the composition ratio falls within the mullite production range, and more than 90% of the blended raw materials have a particle size of 5μ.
After wet pulverization to a particle size of 30 μm or less, 5 to 30% by weight of BN with a particle size of 30 μm or less is added and mixed to the raw material, and the resulting mixture is dried and crushed.
Molded using an organic binder and heated to 1600℃
A method for producing a mullite-based sintered body, which comprises firing at a temperature above 1 hour or more.
JP1219942A 1989-08-25 1989-08-25 Mullite-based sintered compact and production thereof Pending JPH0383851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1219942A JPH0383851A (en) 1989-08-25 1989-08-25 Mullite-based sintered compact and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1219942A JPH0383851A (en) 1989-08-25 1989-08-25 Mullite-based sintered compact and production thereof

Publications (1)

Publication Number Publication Date
JPH0383851A true JPH0383851A (en) 1991-04-09

Family

ID=16743445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1219942A Pending JPH0383851A (en) 1989-08-25 1989-08-25 Mullite-based sintered compact and production thereof

Country Status (1)

Country Link
JP (1) JPH0383851A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992003391A1 (en) * 1990-08-23 1992-03-05 Commonwealth Scientific And Industrial Research Organisation Ceramics composite material and production thereof
JPH05146848A (en) * 1991-04-30 1993-06-15 Union Carbide Coatings Service Technol Corp Mullite/boron nitride composite break ring
CN116239374A (en) * 2023-04-14 2023-06-09 中钢集团洛阳耐火材料研究院有限公司 Anti-chlorination carbonization refractory material and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992003391A1 (en) * 1990-08-23 1992-03-05 Commonwealth Scientific And Industrial Research Organisation Ceramics composite material and production thereof
JPH05146848A (en) * 1991-04-30 1993-06-15 Union Carbide Coatings Service Technol Corp Mullite/boron nitride composite break ring
CN116239374A (en) * 2023-04-14 2023-06-09 中钢集团洛阳耐火材料研究院有限公司 Anti-chlorination carbonization refractory material and preparation method thereof

Similar Documents

Publication Publication Date Title
US3758318A (en) Production of mullite refractory
US3652307A (en) Alumina refractories
US4774209A (en) Mullite ceramic whisker composite article exhibiting high-temperature strength
JPH0383851A (en) Mullite-based sintered compact and production thereof
JPH0365554A (en) Mullite-based sintered material and production thereof
JPH0383852A (en) Mullite-based sintered compact and its production
JP2586151B2 (en) Alumina-silica based sintered body and method for producing the same
JP2586153B2 (en) Alumina-silica based sintered body and method for producing the same
JPH03131566A (en) Sintered mullite and production thereof
JPS6360106A (en) Spinel powder and its production
JPH03131564A (en) Sintered mullite and production thereof
JPH0323255A (en) Mullite-type sintered compact and its production
JPH0446058A (en) Alumina-silica-based sintered body and production thereof
JPH0365555A (en) Mullite-based sintered material and production thereof
JPH03131565A (en) Sintered mullite and production thereof
JPH0383853A (en) Mullite-based sintered compact and its production
JPH03131567A (en) Sintered mullite and production thereof
JPH03146464A (en) Mullite-based sintered body and its production
JPH03146462A (en) Mullite-based sintered body and its production
JPS6272556A (en) Manufacture of fine polycrystal mgal2o4 spinel
JPH03146463A (en) Mullite-based sintered body and its production
JPH03164465A (en) Sintered body of alumina silica system and production thereof
JPS60141671A (en) Manufacture of zirconia sintered body
JPH03187971A (en) Alumina-silica-based sintered material and production thereof
JPH03153569A (en) Alumina-silica-based sintered body and its production