JPH0365554A - Mullite-based sintered material and production thereof - Google Patents

Mullite-based sintered material and production thereof

Info

Publication number
JPH0365554A
JPH0365554A JP1202036A JP20203689A JPH0365554A JP H0365554 A JPH0365554 A JP H0365554A JP 1202036 A JP1202036 A JP 1202036A JP 20203689 A JP20203689 A JP 20203689A JP H0365554 A JPH0365554 A JP H0365554A
Authority
JP
Japan
Prior art keywords
mullite
based sintered
sintered body
particle size
particle diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1202036A
Other languages
Japanese (ja)
Inventor
Atsushi Nishiyama
敦 西山
Takeo Sasaki
佐々木 丈夫
Yoshihiro Ohinata
大日向 義宏
Hiroshi Sasaki
博 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP1202036A priority Critical patent/JPH0365554A/en
Publication of JPH0365554A publication Critical patent/JPH0365554A/en
Pending legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To inexpensively produce mullite-based sintered materials having excellent characteristics such as high-temperature strength by making a composition consisting of a specific amount of WC and mullite having a specific particle diameter. CONSTITUTION:(A) Mullite (at least two or more selected from purified clay minerals, Bayer alumina and silica rock having 10-100mum particle diameter and comprising >=90% particles with <=5mum particle diameter are used as main raw and a composition ratio of Al2O3/SiO2 is prepared into a mullite formation range) is blended with (B) 3-40wt.% based on the component A of WC (particle diameter: <=50mum), dried, molded and calcined (at >=1,600 deg.C for >=1 hour) to give a mullite-based sintered material.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はムライト系焼結体及びその製造方法に係り、特
に高温強度等の特性に優れ、しかも安価に提供されるム
ライト系焼結体及びその製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a mullite-based sintered body and a method for producing the same, and particularly to a mullite-based sintered body that has excellent properties such as high-temperature strength and is inexpensively provided. It relates to its manufacturing method.

[従来の技術] ムライトはAu203とSiO2からなり、化学組成は
理論的には3AJ2203−2S i 02であり、そ
の特性としては、耐熱性に優れ、特にクリープ特性が良
好である。また、熱衝撃特性は良好であるが電気的特性
はあまり良くない。
[Prior Art] Mullite is composed of Au203 and SiO2, and its chemical composition is theoretically 3AJ2203-2S i 02, and its properties include excellent heat resistance and particularly good creep properties. Also, although the thermal shock properties are good, the electrical properties are not so good.

ムライトセラミックスはオールドセラミックスに属し、
その研究の歴史は永く、原料と、しては、アルミナ源と
してカオリン、バイヤーアルミナ、シリカ源として珪石
が主に用いられている。最近では、天然ムライトを改質
することにより、合成ムライト並の物性を出すことがで
きるようになったが、この研究の主体はムライト組成中
のSiO2相の析出及びガラス化の防止であり、原料の
調製や焼結条件などを検討したものである。
Mullite ceramics belong to old ceramics.
This research has a long history, and the main raw materials used are kaolin and Bayer alumina as an alumina source, and silica as a silica source. Recently, it has become possible to achieve physical properties comparable to synthetic mullite by modifying natural mullite, but the focus of this research is on preventing the precipitation and vitrification of the SiO2 phase in the mullite composition, and The preparation and sintering conditions were investigated.

一方、ファインセラセックス技術を用いた高純度ムライ
トという理論組成の素材もあり、これは金属アルコキシ
ドから理論組成となるように共沈法で製造したものであ
る。
On the other hand, there is also a material with a theoretical composition called high-purity mullite using fine ceramics technology, which is produced by a coprecipitation method from metal alkoxides to a theoretical composition.

しかして、これらの原料を目的に合わせて混合し、焼結
したものがムライト系セラくツクス材料といわれ、ムラ
イト系セラよツクスはアルよナセラミックスと同様、高
温強度が比較的大きく、天然原料を用いたものは安価な
素材であることから、炉材、サヤ、セッター材、耐熱材
、構造材等、主に耐火材料として用いられてきた。
The mixture of these raw materials according to the purpose and sintering is called mullite-based ceramics material.Mullite-based ceramics has relatively high high-temperature strength and is a natural raw material, just like aluminum ceramics. Because it is an inexpensive material, it has been used mainly as a fireproof material, such as furnace materials, sheaths, setter materials, heat-resistant materials, and structural materials.

[発明が解決しようとする課題] 従来のムライトセラミックスのうち、天然ムライトを改
質したものでは、長期間の使用や高温使用時に、もとも
と入っているAl2O3−3iO2ボンデイングが分解
し、5i02がムライト粒界にガラス相として析出する
。このため、強度が著しく低下し、連続的な使用や繰り
返しの使用に難があった。
[Problem to be solved by the invention] Among conventional mullite ceramics, in those modified from natural mullite, the Al2O3-3iO2 bonding originally contained decomposes during long-term use or high-temperature use, and 5i02 becomes mullite grains. It precipitates as a glass phase in the field. For this reason, the strength was significantly reduced, making it difficult to use continuously or repeatedly.

アルコシキト法による高純度ムライトは、上記欠点を解
決するために開発されたものであるが、高純度ムライト
は高温強度、耐久性等に大きな改善効果を有するものの
、価格が高いために従来より用いられている耐熱材料等
の工業材料の分野で使用するにはコスト的に不利であっ
た。
High-purity mullite produced by the alkoxyquito method was developed to solve the above-mentioned drawbacks, but although high-purity mullite has the effect of greatly improving high-temperature strength and durability, it has not been used conventionally due to its high price. It was disadvantageous in terms of cost for use in the field of industrial materials such as heat-resistant materials.

本発明は上記従来の問題点を解決し、高温強度等の特性
に優れ、かつ安価に提供されるムライト系焼結体及びそ
の製造方法を提供することを目的とする。
An object of the present invention is to solve the above-mentioned conventional problems and to provide a mullite-based sintered body that has excellent properties such as high-temperature strength and can be provided at low cost, and a method for producing the same.

[課題を解決するための手段] 請求項(1)のムライト系焼結体は、WC(炭化タング
ステン)及びムライトよりなり、WC含有量がムライト
に対して3〜40重量%であって、ムライト粒径が10
〜100μmであることを特徴とする 請求項(2)のムライト系焼結体の製造方法は、精製粘
土鉱物、バイヤーアルミナ及び珪石よりなる群から選ば
れる少なくとも2種を主原料として、A It 203
 / S i O2の組成比がムライト生成範囲となる
ように調合し、該調合原料を90%以上が粒径5μm以
下となるように湿式粉砕した後、粒径50μm以下のW
Cを前記調合原料に対して3〜40重量%添加混合し、
次いで、得られた混合物を乾燥、解砕し、その後、有機
質バインダーを用いて成形し、成形体を1600℃以上
の温度で1時間以上焼成することを特徴とする。
[Means for Solving the Problem] The mullite-based sintered body of claim (1) is made of WC (tungsten carbide) and mullite, and has a WC content of 3 to 40% by weight based on mullite, and Particle size is 10
The method for producing a mullite-based sintered body according to claim (2), wherein the mullite-based sintered body has a particle diameter of 100 μm, uses A It 203 as main raw materials at least two selected from the group consisting of purified clay mineral, Bayer alumina, and silica stone.
/ S i O2 is blended so that the composition ratio is in the mullite production range, and the blended raw material is wet-pulverized so that 90% or more has a particle size of 5 μm or less, and then W with a particle size of 50 μm or less is mixed.
C is added and mixed in an amount of 3 to 40% by weight with respect to the blended raw materials,
Next, the resulting mixture is dried and crushed, then molded using an organic binder, and the molded product is fired at a temperature of 1600° C. or higher for 1 hour or more.

即ち、本発明は、原料として従来より用いられている安
価な原料を用い、物性改良の手段として、特定のセラミ
ックス粒子を第2相としてムライト結晶内又は粒界面に
分散させることにより高強度化を図り、高純度合成ムラ
イト並の特性を有する材料を提供するものである。
That is, the present invention uses inexpensive raw materials that have been conventionally used as raw materials, and as a means of improving physical properties, high strength is achieved by dispersing specific ceramic particles as a second phase within mullite crystals or at grain boundaries. The aim is to provide a material with properties comparable to that of high-purity synthetic mullite.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

請求項(1)のムライト系焼結体は、ムライトに対して
3〜40重量%のWCを含有するものである。WCの含
有量がムライトに対して3重量%未満では本発明による
強度の改善効果が得られず、40重量%を超えるとWC
の量が多くなり過ぎて、ムライト系焼結体としての特性
が損なわれる。従って、本発明においては、WC含有量
はムライトに対して3〜40重量%とする。特に、WC
含有量がムライトに対して5〜20重量%であると、と
りわけ高強度なムライト系焼結体を得ることができる。
The mullite-based sintered body according to claim (1) contains WC in an amount of 3 to 40% by weight based on mullite. If the WC content is less than 3% by weight based on mullite, the strength improvement effect of the present invention cannot be obtained, and if it exceeds 40% by weight, the WC
If the amount becomes too large, the properties of the mullite-based sintered body will be impaired. Therefore, in the present invention, the WC content is 3 to 40% by weight based on mullite. In particular, W.C.
When the content is 5 to 20% by weight based on mullite, a particularly high-strength mullite-based sintered body can be obtained.

請求項(1)のムライト系焼結体中のムライト結晶は、
粒径が100μmの範囲のものである。
The mullite crystal in the mullite-based sintered body of claim (1) is
The particle size is in the range of 100 μm.

ムライト結晶の粒径が100μmよりも大きいと得られ
るムライト系焼結体の曲げ強度が低下し、また10μm
よりも小さいとWC粒子をムライト結晶内又は粒界面に
取り込み難くなる。従って、ムライト結晶の粒径は10
〜100μm1好ましくは10〜50μmとする。
When the grain size of the mullite crystal is larger than 100 μm, the bending strength of the obtained mullite-based sintered body decreases;
If the particle diameter is smaller than 1, it becomes difficult to incorporate the WC particles into the mullite crystal or at the grain interface. Therefore, the grain size of mullite crystals is 10
~100 μm, preferably 10 to 50 μm.

一方、ムライト結晶又は粒界面に取り込まれてムライト
系焼結体内に含有されているWC粒子の粒径が微細過ぎ
ると表面活性が生じ、WC自身の表面酸化が起きる。ま
た、ムライトと均一に混合することが難しい、逆にWC
粒子の粒径が大き過ぎるとムライト結晶粒界にのみWC
が存在するようになり、粒界クランク発生の原因となる
。従って、本発明において、WC粒子の粒径は50μm
以下、特1ζ10 /4 m以下、とりわけ3・・10
μmであるごJ・が好ましい。
On the other hand, if the particle size of the WC particles incorporated into the mullite crystals or grain boundaries and contained in the mullite-based sintered body is too fine, surface activity will occur and the surface oxidation of the WC itself will occur. In addition, it is difficult to mix uniformly with mullite, and conversely, WC
If the particle size is too large, WC will form only at the mullite grain boundaries.
comes to exist, causing the occurrence of grain boundary cranks. Therefore, in the present invention, the particle size of the WC particles is 50 μm.
Below, especially 1ζ10 /4 m or less, especially 3...10
Preferably, the value is μm.

なお、ムライト系焼結体中のムライトはその組成が理論
組成のAf!ン03 / S i O2=3/2(量ル
L1;)  即ち71.8/28.2(重量%)である
こヒが好ま1・い。ムライト・組成のA、f220−1
が理論組成9):りも多過ぎるンーAu20i中にムラ
、71−結晶が分散しt::形ヒなり」−分な強度が得
られない。逆に、ムライト組成の5iOzが工里論組成
よりも多過ぎると、ムライト中に遊離シリカ相がガラス
相となって4゛成し、1−・分な高温強度が得られない
。従っ千、ムライト系焼結体中のムライトは、理論組成
Aj220s /5iO2=3/2(モル比)にできる
だ番ツ近い組成であるごヒが好ましい。
The composition of mullite in the mullite-based sintered body is the theoretical composition Af! It is preferable that the ratio is 71.8/28.2 (weight %). Mullite/composition A, f220-1
However, the theoretical composition 9): There are too many crystals, and the 71-crystals are dispersed in the Au20i, making it impossible to obtain sufficient strength. On the other hand, if 5 iOz of the mullite composition is too much than the engineering composition, the free silica phase in the mullite becomes a glass phase and forms 4 iOz, making it impossible to obtain a high temperature strength of 1-min. Therefore, it is preferable that the mullite in the mullite-based sintered body has a composition that is close to the theoretical composition Aj220s/5iO2=3/2 (molar ratio).

このような請求項(1)のムライト系焼結体は請求項(
2)の方法により容易か・つ効率的に低−Tストにて製
造することができる。
The mullite-based sintered body of claim (1) is
By the method 2), it can be easily and efficiently manufactured at a low T-strength.

以下に請求項(2)のムライト系焼結体の製造方法につ
いて説明する。
The method for producing a mullite-based sintered body according to claim (2) will be explained below.

請求項(2)の方法に゛おいては、j、ず、原料りし°
τ:精製粘」−鉱物、バイヤ・−アルミナ、又は珪石(
シリカ)を用い、A fl、 20 :3 / S i
 O21ifl成比がムライト生成範開、好ましくはA
A203 /5i02=−3/2 (fl−ル比))二
なるように調合する。この場合、特に原料りしては精製
カオリンとバイヤーアル泉す、或いは、バイヤーアルミ
ナL珪石を用いるのが好;it、い。これらの原料はそ
の所要型をボー・−ルミル、又はアトライター等により
アル′2−・ル等を用いr90%以上が粒径5μm以下
となるように湿式粉砕する。次に、得られた粉砕物V粒
径50μm以下、好ま1、・くは10μm以下、特l5
3=10μmのWCを骸粉砕物に対して3〜40重量%
、好まll、りは5−20重皿%添加L、更にボール稟
ル等で混合する。
In the method of claim (2), the raw materials are
τ: Refined clay - mineral, Bayer - alumina, or silica (
silica) using Afl, 20:3/Si
O21ifl composition ratio is within the mullite production range, preferably A
Blend so that A203/5i02=-3/2 (fl-le ratio). In this case, it is particularly preferable to use purified kaolin and Bayer Al spring or Bayer alumina L silica as raw materials. These raw materials are wet-pulverized in a ball mill or an attritor using aluminum or the like so that 90% or more of the raw materials have a particle size of 5 μm or less. Next, the obtained pulverized product V particle size is 50 μm or less, preferably 1, or 10 μm or less, especially 15
3 = 3 to 40% by weight of 10 μm WC based on the crushed remains
Preferably, add 5-20% in a heavy plate, and then mix in a bowl or the like.

得られた混合物は乾燥、解砕した後、ポリビニルアルコ
ール(P V A )等の有機質バインダーを用いて成
形する。成形は300 k g、 f / c m”以
」二での加圧成形後、1000 k g f / c 
n′1″以十での静水圧プレス成形「よる2段成形で行
なうのが好ましい。
The resulting mixture is dried, crushed, and then molded using an organic binder such as polyvinyl alcohol (PVA). Molding is 300 kg, f/cm. After pressure molding at 2", 1000 kg f/c.
It is preferable to carry out two-step molding using isostatic press molding at n'1" or higher.

得られた成形体はホットプレス又は常用焼結Eより焼成
1ノ、ムライト系焼結体を得る66rの場合、昇温速度
は50〜・200℃/11rとするのが好ましく、焼成
温度は1600℃以上、好jニジ<は1600 ” 1
650℃ヒし、焼成時間は1時間以上、好ましくは1〜
3時間とするのが好ましい。なお、ホットプレスを採用
する場合、圧力は300−600 k g / c m
”程度ヒするのが好ましい。
The obtained molded body is fired by hot pressing or conventional sintering E, and in the case of 66r to obtain a mullite-based sintered body, the heating rate is preferably 50 to 200°C/11r, and the firing temperature is 1600°C. ℃ or above, 1600 ” 1
Heat at 650°C and bake for at least 1 hour, preferably from 1 hour to
It is preferable to set it as 3 hours. In addition, when using hot press, the pressure is 300-600 kg/cm
``It is preferable to have a moderate amount of heat.

[作用] 一般に、精製カオリン、バイヤーアル泉す又は珪石等の
原料を用い”C1これをボール主ル等で微粉砕して混合
しても、原子レベルで理論組成に混合することは不可能
であり、焼結により拡散させるためには長時間を必要ヒ
する。
[Function] In general, even if raw materials such as refined kaolin, Bayer mineral springs, or silica stone are used and mixed by pulverizing them with a ball or the like, it is impossible to mix them to the theoretical composition at the atomic level. However, it takes a long time to diffuse by sintering.

これに対して、ムライト・組成中に第2相と1・てWC
粒子を3〜40重量%添加すると、ボ・−ルミル等によ
る粉砕混合でも、通常の成形、焼成に゛より高温強度に
優れたムライト系焼結体が得られる。
On the other hand, in the mullite composition, the second phase and 1.WC
When particles are added in an amount of 3 to 40% by weight, a mullite-based sintered body having better high-temperature strength than ordinary molding and firing can be obtained even by pulverizing and mixing using a ball mill or the like.

このWC添加による高温強度改善の機構の詳細は明らか
ではな(ハが、ムライト結晶内又は粒界面に取り込まれ
かW C粒子がムライト中の5i02のガラス相への移
動をブロックしているため、更には、WC粒子がムライ
ト結晶粒内や結晶粒界へ分散し、ムライト結晶の成長を
抑制しているためと老犬られる。
The details of the mechanism of this improvement in high-temperature strength due to the addition of WC are not clear (because the WC particles are incorporated into the mullite crystals or at the grain boundaries and block the movement of 5i02 into the glass phase in the mullite). Furthermore, it is said that the WC particles are dispersed within the mullite crystal grains and at the grain boundaries, suppressing the growth of the mullite crystals.

[実施例] 以下に実施例及び比較例を挙げて本発明をより具体的に
説明する。
[Example] The present invention will be described in more detail with reference to Examples and Comparative Examples below.

実施例1゜2.1.1;較例1 精製しかカオリナイトは組成がAj2203 /SiO
2τ3/2(モル比)となるようにアル宍3″を添加1
ノ、ボ・−・ルミル(ZrOzボール)によりアルコー
ルを用いて48時時間式粉砕した。なお、ごの場合、メ
ディア攪拌型粉砕機(アトライター)を用いると1=2
時間で処理することが可能である。原料を90%以上が
粒径5μm以下七なるように粉砕した後、こ第1にWC
粉末(日本新金属社製:平均粒径5μm)を第1表に示
す量添加しく比較例1は添加せず)、更にボールミルで
5時間混合した。これを乾燥、解砕した後、有機質バイ
ンダー(PVA)を5重量%添加して十分に混練した。
Example 1゜2.1.1; Comparative Example 1 Purified kaolinite has a composition of Aj2203/SiO
Add 3″ of aluminum so that the ratio is 2τ3/2 (molar ratio)1
The material was milled using alcohol for 48 hours using a Bo-Rumill (ZrOz ball). In addition, if you use a media agitation type pulverizer (Attritor), 1=2
It is possible to process in hours. After pulverizing the raw material so that 90% or more has a particle size of 5 μm or less, first
Powder (manufactured by Nihon Shinkinzoku Co., Ltd., average particle diameter 5 μm) was added in the amount shown in Table 1 (no addition was made in Comparative Example 1), and the mixture was further mixed in a ball mill for 5 hours. After drying and crushing this, 5% by weight of an organic binder (PVA) was added and thoroughly kneaded.

混練物をプレス成形により50mmφX5mmに500
 k g / c rdで成形した後、ラバープレスに
より1500kg/crn’で更に加圧して生形体を得
た。この生形体を焼結してムライト系焼結体を得た。な
お、焼結はホットプレスを用い、昇温速度は150℃/
hrとし、300 k g / c rr?にて160
0℃で1時間行なった。
The kneaded material was press-molded into a size of 50 mmφ x 5 mm.
After molding at kg/crd, it was further pressurized at 1500 kg/crn' using a rubber press to obtain a green body. This green body was sintered to obtain a mullite-based sintered body. Note that sintering uses a hot press, and the temperature increase rate is 150℃/
hr and 300 kg/c rr? At 160
The test was carried out at 0°C for 1 hour.

得られたムライト系焼結体の緒特性を第1表じ示す。The properties of the obtained mullite-based sintered body are shown in Table 1.

第  1  表 第1表より所定量のWCを添加したムライト系焼結体に
より、常温から1300℃といった高温まで安定して著
しく高い強度が得られることが明らかである。
Table 1 It is clear from Table 1 that the mullite-based sintered body to which a predetermined amount of WC has been added can stably provide significantly high strength from room temperature to high temperatures such as 1300°C.

[発明の効果コ 以上詳述した通り、本発明のムライト系焼結体は、安価
な原料を用いて低コストに提供されるものであり、しか
も、高温強度、耐久性等の特性に著しく優れる。従って
、本発明のムライト系焼結体は、工業用耐火材料等とし
て、長期にわたり極めて有効に使用することができる。
[Effects of the Invention] As detailed above, the mullite-based sintered body of the present invention is provided at low cost using inexpensive raw materials, and moreover, it has outstanding properties such as high-temperature strength and durability. . Therefore, the mullite-based sintered body of the present invention can be used extremely effectively for a long period of time as an industrial refractory material.

しかして、このような本発明のムライト系焼結体は、本
発明の方法により容易かつ効率的に低コストにて製造す
ることが可能とされる。
Therefore, such a mullite-based sintered body of the present invention can be easily and efficiently manufactured at low cost by the method of the present invention.

Claims (2)

【特許請求の範囲】[Claims] (1)WC及びムライトよりなり、WC含有量がムライ
トに対して3〜40重量%であって、ムライト粒径が1
0〜100μmであることを特徴とするムライト系焼結
体。
(1) Consisting of WC and mullite, the WC content is 3 to 40% by weight based on mullite, and the mullite particle size is 1
A mullite-based sintered body having a diameter of 0 to 100 μm.
(2)精製粘土鉱物、バイヤーアルミナ及び珪石よりな
る群から選ばれる少なくとも2種を主原料として、Al
_2O_3/SiO_2の組成比がムライト生成範囲と
なるように調合し、該調合原料を90%以上が粒径5μ
m以下となるように湿式粉砕した後、粒径50μm以下
のWCを前記調合原料に対して3〜40重量%添加混合
し、次いで、得られた混合物を乾燥、解砕し、その後、
有機質バインダーを用いて成形し、成形体を1600℃
以上の温度で1時間以上焼成することを特徴とするムラ
イト系焼結体の製造方法。
(2) Al
_2O_3/SiO_2 is blended so that the composition ratio falls within the mullite production range, and more than 90% of the blended raw materials have a particle size of 5μ.
After wet pulverization to a particle size of 50 μm or less, 3 to 40% by weight of WC with a particle size of 50 μm or less is added and mixed to the raw material, and the resulting mixture is dried and crushed.
Molded using an organic binder and heated to 1600℃
A method for producing a mullite-based sintered body, which comprises firing at a temperature above 1 hour or more.
JP1202036A 1989-08-03 1989-08-03 Mullite-based sintered material and production thereof Pending JPH0365554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1202036A JPH0365554A (en) 1989-08-03 1989-08-03 Mullite-based sintered material and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1202036A JPH0365554A (en) 1989-08-03 1989-08-03 Mullite-based sintered material and production thereof

Publications (1)

Publication Number Publication Date
JPH0365554A true JPH0365554A (en) 1991-03-20

Family

ID=16450872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1202036A Pending JPH0365554A (en) 1989-08-03 1989-08-03 Mullite-based sintered material and production thereof

Country Status (1)

Country Link
JP (1) JPH0365554A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111122377A (en) * 2019-12-10 2020-05-08 中国科学院武汉岩土力学研究所 Rock disintegration testing device and testing method under dry-wet alternating environment
CN113184865A (en) * 2021-05-26 2021-07-30 贵州华鑫新材料有限公司 Sintered mullite production process

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111122377A (en) * 2019-12-10 2020-05-08 中国科学院武汉岩土力学研究所 Rock disintegration testing device and testing method under dry-wet alternating environment
CN113184865A (en) * 2021-05-26 2021-07-30 贵州华鑫新材料有限公司 Sintered mullite production process
CN113184865B (en) * 2021-05-26 2022-11-15 贵州华鑫新材料有限公司 Sintered mullite production process

Similar Documents

Publication Publication Date Title
US3758318A (en) Production of mullite refractory
JPH0656516A (en) Vitreous body and its production, sanitary pottery formed by using this body and blaze for vitreous body
JPH0388765A (en) Dimension-controlled ceramics
US3652307A (en) Alumina refractories
CN110894162A (en) Ultrahigh-temperature high-strength ceramic roller and preparation method thereof
CN106083017B (en) A kind of high-performance low bulk crucible and preparation method thereof
JPH0288452A (en) Heat-resistant inorganic compact
JPS6156184B2 (en)
JPH0365554A (en) Mullite-based sintered material and production thereof
US3979214A (en) Sintered alumina body
JPH0383851A (en) Mullite-based sintered compact and production thereof
JP3034808B2 (en) Thermal shock resistant ceramics and manufacturing method thereof
JPH03131566A (en) Sintered mullite and production thereof
JPH03131565A (en) Sintered mullite and production thereof
US3342615A (en) Manufacture of kiln furniture
JP2586153B2 (en) Alumina-silica based sintered body and method for producing the same
JPH0383852A (en) Mullite-based sintered compact and its production
JPH03131564A (en) Sintered mullite and production thereof
JP2586151B2 (en) Alumina-silica based sintered body and method for producing the same
JPH0446058A (en) Alumina-silica-based sintered body and production thereof
JPH03131567A (en) Sintered mullite and production thereof
JPH0323255A (en) Mullite-type sintered compact and its production
JPH0365555A (en) Mullite-based sintered material and production thereof
JPH0383853A (en) Mullite-based sintered compact and its production
JPH03146464A (en) Mullite-based sintered body and its production