JPH03153569A - Alumina-silica-based sintered body and its production - Google Patents

Alumina-silica-based sintered body and its production

Info

Publication number
JPH03153569A
JPH03153569A JP1291597A JP29159789A JPH03153569A JP H03153569 A JPH03153569 A JP H03153569A JP 1291597 A JP1291597 A JP 1291597A JP 29159789 A JP29159789 A JP 29159789A JP H03153569 A JPH03153569 A JP H03153569A
Authority
JP
Japan
Prior art keywords
mullite
sintered body
alumina
silica
cao
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1291597A
Other languages
Japanese (ja)
Inventor
Hitoshi Oomisono
近江園 仁
Yoshihiro Ohinata
大日向 義宏
Hiroshi Sasaki
博 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP1291597A priority Critical patent/JPH03153569A/en
Publication of JPH03153569A publication Critical patent/JPH03153569A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To obtain the inexpensive sintered body excellent in high-temp. strength by forming the sintered body consisting of WC, CaO and mullite and in which the contents of WC and CaO are specified with respect to the mullite content and the grain diameter of the mullite is specified. CONSTITUTION:The sintered body consists of WC, CaO and mullite, the content of WC is controlled to 3-40wt.% and that of CaO to 0.1-1wt.% based on the mullite, and the grain diameter of the mullite is controlled to 10-100mum. Such a sintered body is produced by the following method. Namely, at least two kinds selected from a group consisting of a refined clay mineral, Bayer's alumina, aluminum hydroxide and quartzite are used as the main raw materials, the materials are mixed so that the composition ratio of Al2O3/SiO2 is controlled in a mullite forming range. The mixed raw material is wet-crushed so that the grain diameter of >=90% of the material is controlled to <=5mum, the WC having <=50mum grain diameter is added by 3-40wt.% based on the mixture, the CaCO3 having <=0.1mum grain diameter is added by 0.1-1wt.% expressed in terms of CaO, the obtained mixture is dried, disintegrated and then formed using an org. binder, and the formed body is sintered at >=1600 deg.C for >=1hr.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はアルミナ・シリカ系焼結体及びその製造方法に
係り、特に高温強度等の特性に優れ、しかも安価に提供
されるアルミナ・シリカ系焼結体及びその製造方法に関
する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an alumina-silica-based sintered body and a method for producing the same, and particularly relates to an alumina-silica-based sintered body that has excellent properties such as high-temperature strength and is inexpensively provided. The present invention relates to a sintered body and a method for manufacturing the same.

[従来の技術] ムライトはAu203と5i02からなり、化学組成は
理論的には3AA203−2SiO2であり、その特性
としては、耐熱性に優れ、特にクリープ特性が良好であ
る。また、熱衝撃特性は良好であるが電気的特性はあま
り良くない。
[Prior Art] Mullite is composed of Au203 and 5i02, and its chemical composition is theoretically 3AA203-2SiO2, and its properties include excellent heat resistance and particularly good creep properties. Also, although the thermal shock properties are good, the electrical properties are not so good.

ムライトセラミックスはオールドセラミックスに属し、
その研究の歴史は永く、原料としては、アルミナ源とし
てカオリン、バイヤ−アルミナ、シリカ源として珪石が
主に用いられている。最近では、天然ムライトを改質す
ることにより、合成ムライト並の物性を出すことができ
るようになったが、この研究の主体はムライト組成中の
シリカ相の析出及びガラス化の防止であり、原料の調製
や焼結条件などを検討したものである。
Mullite ceramics belong to old ceramics.
This research has a long history, and the main raw materials used are kaolin and Bayer alumina as an alumina source, and silica as a silica source. Recently, it has become possible to achieve physical properties comparable to synthetic mullite by modifying natural mullite, but the focus of this research is on preventing the precipitation and vitrification of the silica phase in the mullite composition, and The preparation and sintering conditions were investigated.

一方、ファインセラミックス技術を用いた高純度合成ム
ライトという理論組成の素材もあり、これは金属アルコ
キシド等の方法で理論組成となるように共沈法で製造し
たものが主である。
On the other hand, there is also a material with a theoretical composition called high-purity synthetic mullite using fine ceramics technology, and this is mainly produced by a coprecipitation method using methods such as metal alkoxides to achieve the theoretical composition.

しかして、これらの原料を目的に合わせて混合し、焼結
したものかムライト系セラミックス材料といわれ、ムラ
イト系セラミックスはアルミナセラミックスと同様、高
温強度が比較的大きく、天然原料を用いたものは安価な
素材であることから、炉材、サヤ、セッター材、耐熱材
、構造材等、主に耐火材料として用いられてきた。
Mullite ceramics are made by mixing and sintering these raw materials according to the purpose, and like alumina ceramics, mullite ceramics have relatively high high-temperature strength, and those made from natural raw materials are inexpensive. Because it is a durable material, it has been mainly used as a refractory material, such as furnace materials, sheaths, setter materials, heat-resistant materials, and structural materials.

[発明が解決しようとする課題] 従来のムライト系セラミックスのうち、天然ムライトを
改質したものでは、長期間の使用や高温使用時に、AJ
2203−3 i 02ボンデイングが分解し、シリカ
がムライトの結晶粒界にガラス相として析出する。この
ため、強度が著しく低下し、連続的な使用や繰り返しの
使用に難があった。
[Problem to be solved by the invention] Among conventional mullite-based ceramics, those made by modifying natural mullite do not exhibit AJ during long-term use or high-temperature use.
2203-3 i 02 bonding decomposes and silica precipitates as a glass phase at the grain boundaries of mullite. For this reason, the strength was significantly reduced, making it difficult to use continuously or repeatedly.

アルコシキト法による高純度合成ムライトは、上記欠点
を解決するために開発されたものであるが、高純度ムラ
イトは高温強度、耐久性等に大きな改善効果を有するも
のの、価格が高いために従来より用いられている耐熱材
料等の工業材料の分野で使用するにはコスト的に不利で
ありた。
High-purity synthetic mullite using the alkoxyquito method was developed to solve the above-mentioned drawbacks. Although high-purity mullite has the effect of greatly improving high-temperature strength and durability, it is expensive and has not been used in the past. It is disadvantageous in terms of cost for use in the field of industrial materials such as heat-resistant materials.

本発明は上記従来の問題点を解決し、高温強度等の特性
に優れ、かつ安価に提供されるムライト組成のアルミナ
・シリカ系焼結体及びその製造方法を提供することを目
的とする。
It is an object of the present invention to solve the above-mentioned conventional problems and to provide an alumina-silica-based sintered body having a mullite composition that has excellent properties such as high-temperature strength and can be provided at low cost, and a method for producing the same.

[課題を解決するための手段] 請求項(1)のアルミナ・シリカ系焼結体は、WC(炭
化タングステン)、CaO(酸化カルシウム)及びムラ
イトよりなり、WC,CaO含有量がムライトに対して
各々3〜40重量%、0.1〜1f[量%であって、ム
ライト粒径が10〜1100A1であることを特徴とす
る請求項(2)のアルミナ・シリカ系焼結体の製造方法
は、精製粘土鉱物、バイヤ−アルミナ、水酸化アルミニ
ウム及び珪石よりなる群から選ばれる少なくとも2種を
主原料として、Al1203/SiO2の組成比がムラ
イト生成範囲となるように調合し、該調合原料を90%
以上が粒径5μm以下となるように湿式粉砕した後、粒
径50μm以下のWCを前記調合原料に対して3〜40
重量%、粒径0,1μm以下のCaCO2(炭酸カルシ
ウム)をCa Oli算で前記調合原料に対して0.1
〜10重量%添加混合し、次いで、得られた混合物を乾
燥、解砕し、その後、有機質バインダーを用いて成形し
、成形体を1600℃以上の温度で1時間以上焼成する
ことを特徴とする。
[Means for solving the problem] The alumina-silica-based sintered body of claim (1) is made of WC (tungsten carbide), CaO (calcium oxide), and mullite, and the WC and CaO contents are lower than that of mullite. The method for producing an alumina-silica-based sintered body according to claim (2), wherein the mullite grain size is 3 to 40% by weight and 0.1 to 1f[% by weight], and the mullite particle size is 10 to 1100A1. , refined clay mineral, Bayer alumina, aluminum hydroxide, and silica stone are used as main raw materials, and the composition ratio of Al1203/SiO2 is in the mullite production range. %
After wet-pulverizing the above particles to a particle size of 5 μm or less, WC with a particle size of 50 μm or less is added at 3 to 40%
Weight%, CaCO2 (calcium carbonate) with a particle size of 0.1 μm or less is added to the above-mentioned blended raw material by CaOli calculation of 0.1
It is characterized by adding and mixing ~10% by weight, then drying and crushing the resulting mixture, then molding using an organic binder, and baking the molded product at a temperature of 1600°C or higher for 1 hour or more. .

即ち、本発明は、原料として従来より用いられている安
価な原料を用い、物性改良の手段として、特定のセラミ
ックス粒子を第2相としてムライト結晶内又は粒界面に
分散させることにより高強度化を図り、更に、CaOの
添加により遊離したガラス状シリカを固溶体として固定
し、高純度合成ムライト並の特性を有する材料を提供す
るものである。
That is, the present invention uses inexpensive raw materials that have been conventionally used as raw materials, and as a means of improving physical properties, high strength is achieved by dispersing specific ceramic particles as a second phase within mullite crystals or at grain boundaries. Furthermore, the glassy silica liberated by the addition of CaO is fixed as a solid solution, thereby providing a material having properties comparable to high-purity synthetic mullite.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

請求項(1)のアルミナ・シリカ系焼結体は、ムライト
に対して3〜40!!量%のWCと0.1〜1重量%の
CaOを含有するものである。WCの含有量がムライト
に対して3重量%未満では本発明による強度の改善効果
が得られず、401量%を超えるとWCO量が多くなり
過ぎて、アルミナ・シリカ系焼結体としての特性が損な
われる。
The alumina-silica-based sintered body of claim (1) has a ratio of 3 to 40 compared to mullite! ! % by weight of WC and 0.1 to 1% by weight of CaO. If the WC content is less than 3% by weight based on mullite, the strength improvement effect of the present invention cannot be obtained, and if it exceeds 401% by weight, the WCO content becomes too large and the characteristics as an alumina-silica sintered body are deteriorated. is damaged.

従って、本発明においては、WC含有量はムライトに対
して3〜40Ii量%とする。特に、WC含有量がムラ
イトに対して5〜20重量%であると、とりわけ高強度
なアルミナ・シリカ系焼結体を得ることができる。
Therefore, in the present invention, the WC content is 3 to 40Ii% based on mullite. In particular, when the WC content is 5 to 20% by weight based on mullite, an alumina-silica sintered body with particularly high strength can be obtained.

一方、CaOの含有量がムライトに対して0.1重量%
未満では後述のムライト生成時に遊離するガラス相を十
分に固定することができず、強度改善効果が十分ではな
く、1重量%を超えるとCaO相が大きくなり好ましく
ない。従って、本発明においては、CaO含有量はムラ
イトに対して0.1〜1重二%とする。特に、CaO含
有量がムライトに対して0.5〜1重量%であると、と
りわけ高強度なアルミナ・シリカ系焼結体を得ることが
できる。従来、ムライトの焼結において、焼結時の添加
剤としてCaOを用いている報告もあり、この場合には
5〜15ffi量%を添加している。これは通常のCa
O原料であるCaC0zやCa (OH)2  (水酸
化カルシウム)はその粒子が数μmであり、均一に分散
させるためには多量添加する必要があるためである。
On the other hand, the content of CaO is 0.1% by weight based on mullite.
If it is less than 1% by weight, the glass phase liberated during the formation of mullite, which will be described later, cannot be sufficiently fixed, and the strength improvement effect will not be sufficient, and if it exceeds 1% by weight, the CaO phase will become large, which is not preferable. Therefore, in the present invention, the CaO content is 0.1 to 1% by weight based on mullite. In particular, when the CaO content is 0.5 to 1% by weight based on mullite, an alumina-silica sintered body with particularly high strength can be obtained. Conventionally, in the sintering of mullite, there are reports of using CaO as an additive during sintering, and in this case, 5 to 15 ffi amount % is added. This is normal Ca
This is because the particles of CaC0z and Ca(OH)2 (calcium hydroxide), which are O raw materials, are several μm in size, and it is necessary to add a large amount in order to uniformly disperse them.

これに対し、本発明ではサブミクロン以下の超微粒子の
CaC0zを用いることにより、0.1〜1重量%の夕
景添加で十分効果を得ることができた。
On the other hand, in the present invention, by using ultrafine particles of submicron or less CaC0z, a sufficient effect could be obtained with addition of 0.1 to 1% by weight of evening scenery.

請求項(1)のアルミナ・シリカ系焼結体中のムライト
結晶は、粒径が100μmの範囲のものである。ムライ
ト結晶の粒径が100μmよりも大きいと得られるアル
ミナ・シリカ系焼結体の曲げ強度が低下し、また10μ
mよりも小さいとWC粒子やCaO粒子をムライト結晶
内又は粒界面に取り込み難くなる。従って、ムライト結
晶の粒径は10〜100μm、好ましくは10〜50μ
mとする。
The mullite crystals in the alumina-silica sintered body according to claim (1) have a grain size in the range of 100 μm. If the grain size of the mullite crystal is larger than 100 μm, the bending strength of the alumina-silica sintered body obtained will decrease;
When it is smaller than m, it becomes difficult to incorporate WC particles and CaO particles into mullite crystals or grain boundaries. Therefore, the grain size of mullite crystals is 10 to 100 μm, preferably 10 to 50 μm.
Let it be m.

一方、ムライト結晶又は粒界面に取り込まれてアルミナ
・シリカ系焼結体内に含有されているWC粒子の粒径が
微細過ぎると表面活性が生じ、WC自身の表面酸化が起
きる。逆にWC粒子の粒径が大き過ぎるとムライト結晶
粒界にのみWCが存在するようになり、粒界クラック発
生の原因となる。従フて、本発明において、WC粒子の
粒径は50μm以下、特に10μm以下、とりわけ3〜
10μmであることが好ましい。
On the other hand, if the particle size of the WC particles incorporated into the mullite crystals or grain boundaries and contained in the alumina-silica sintered body is too fine, surface activity occurs and the surface oxidation of the WC itself occurs. On the other hand, if the grain size of the WC grains is too large, the WC will exist only at the mullite grain boundaries, causing grain boundary cracks to occur. Therefore, in the present invention, the particle size of the WC particles is 50 μm or less, particularly 10 μm or less, especially 3 to 3 μm.
Preferably, the thickness is 10 μm.

また、CaCo3粒子の粒径は、大きいと多量に添加し
ないと効果が得られず、又、反応性も悪いことから、0
.1μm以下、好ましくは0.05μm以下とするのが
好ましい。
In addition, if the particle size of CaCo3 particles is large, the effect cannot be obtained unless a large amount is added, and the reactivity is also poor.
.. The thickness is preferably 1 μm or less, preferably 0.05 μm or less.

なお、アルミナ・シリカ系焼結体中のムライトはその組
成が理論組成のAl10 s / S i O2−3/
2(モル比)、即ち71.8/2B、2(重量%)であ
ることが好ましい、ムライト組成のAl2O5が理論組
成よりも多過ぎるとAf120z中にムライト結晶が分
散した形となり十分な強度が得られない。逆に、ムライ
ト組成のSiO2が理論組成よりも多過ぎると、ムライ
ト中に遊離シリカ相がガラス相となって生成し、十分な
高温強度が得られない。従フて、アルミナ・シリカ系焼
結体中のムライトは、理論組成Aj2203 /S i
 02 =3/2 (モル比)にできるだけ近い組成で
あることが好ましい。
In addition, the composition of mullite in the alumina-silica-based sintered body is the theoretical composition Al10s/SiO2-3/
2 (molar ratio), i.e. 71.8/2B, 2 (wt%) is preferable. If the Al2O5 of the mullite composition is too much than the theoretical composition, mullite crystals will be dispersed in Af120z and sufficient strength will not be achieved. I can't get it. On the other hand, if SiO2 in the mullite composition is too much than the theoretical composition, a free silica phase will form in the mullite as a glass phase, making it impossible to obtain sufficient high-temperature strength. Therefore, the mullite in the alumina-silica sintered body has the theoretical composition Aj2203 /S i
It is preferable that the composition be as close as possible to 02 = 3/2 (molar ratio).

以上のように、可能な限りシリカガラス相が析出しない
ようにしても、若干の析出があり、このため十分に強度
を上げることはで籾ない、ここにCaCO3を添加した
場合、ムライト生成時に遊離する若干のシリカガラスが
、このCaCO5の分解により生じたCaOと反応して
固定されるため、ムライト粒界にガラス相として析出し
なくなり、高強度なものとなる。CaC0aの添加量を
CaO換算で0.1〜1重量%、より好ましくは0.5
〜1重量%とすると、高強度なものとなった。なお、前
述の如く、CaCO5の添加量が多すぎるとCaO相が
大きくなり好ましくない、また、少なすぎると遊離ガラ
ス相を十分固定できなくなり効果がない。
As mentioned above, even if we try to prevent the silica glass phase from precipitating as much as possible, there will be some precipitation, and for this reason it will not be possible to sufficiently increase the strength. Since some of the silica glass reacts with CaO produced by the decomposition of CaCO5 and is fixed, it is no longer precipitated as a glass phase at the mullite grain boundaries, resulting in high strength. The amount of CaC0a added is 0.1 to 1% by weight in terms of CaO, more preferably 0.5%.
When the content was 1% by weight, high strength was obtained. As mentioned above, if the amount of CaCO5 added is too large, the CaO phase will become large, which is undesirable. If the amount is too small, the free glass phase cannot be fixed sufficiently, so there is no effect.

このような請求項(1)のアルミナ・シリカ系焼結体は
請求項(2)の方法により容易かつ効率的に低コストに
て製造することができる。
The alumina-silica-based sintered body of claim (1) can be easily and efficiently produced at low cost by the method of claim (2).

以下に請求項(2)のアルミナ・シリカ系焼結体の製造
方法について説明する。
The method for producing an alumina-silica-based sintered body according to claim (2) will be explained below.

請求項(2)の方法においては、まず、原料として精製
粘土鉱物、バイヤ−アルミナ、水酸化アルミニウム又は
珪石(シリカ)を用い、A IL20 s / S i
 O2組成比がムライト生成範囲、好ましくはA 11
20 x / S i O2−3/ 2(モル比)とな
るように調合する。この場合、特に原料としては精製カ
オリンとバイヤ−アルミナ又は水酸化アルミニウム、或
いは、バイヤ−アルミナ又は水酸化アルミニウムと珪石
を用いるのが好ましい、これらの原料はその所要量をポ
ールミル、又はアトライター等によりアルコール等を用
いて90%以上が粒径5μm以下となるように湿式粉砕
する。次に、得られた粉砕物に粒径50μm以下、好ま
しくは10μm以下、特に3〜10μmのWCをハ粉砕
物に対して3〜40重量%、好ましくは5〜20重量%
添加し、更に0.1μm以下のCaCO3をCa0li
算で081〜1重量%、好ましくは0.5〜1重量%添
加しボールミル等で混合する。
In the method of claim (2), first, refined clay minerals, Bayer alumina, aluminum hydroxide, or silica are used as raw materials, and AIL20s/Si
O2 composition ratio is in the mullite production range, preferably A 11
20 x / S i O2-3/2 (molar ratio). In this case, it is particularly preferable to use purified kaolin and Bayer alumina or aluminum hydroxide, or Bayer alumina or aluminum hydroxide and silica stone as raw materials. Wet pulverize using alcohol or the like so that 90% or more of the particles have a particle size of 5 μm or less. Next, WC with a particle size of 50 μm or less, preferably 10 μm or less, particularly 3 to 10 μm is added to the obtained pulverized material in an amount of 3 to 40% by weight, preferably 5 to 20% by weight based on the pulverized material.
Add CaCO3 of 0.1 μm or less to Ca0li
A total of 0.81 to 1% by weight, preferably 0.5 to 1% by weight is added and mixed using a ball mill or the like.

得られた混合物は乾燥、解砕した後、ポリビニルアルコ
ール(PVA)等の有機質バインダーを用いて成形する
。成形は300 k g f / c m’以上での加
圧成形後、1000 k g f / c m″以上の
静水圧プレス成形による2段成形で行なうのが好ましい
The resulting mixture is dried, crushed, and then molded using an organic binder such as polyvinyl alcohol (PVA). It is preferable that the molding is carried out in two stages by pressure molding at 300 kg f/cm' or more and then isostatic press molding at 1000 kg f/cm' or more.

得られた成形体はホットプレス又は常圧焼結により焼成
し、アルミナ・シリカ系焼結体を得る。
The obtained molded body is fired by hot pressing or pressureless sintering to obtain an alumina-silica-based sintered body.

この場合、昇温速度は5゛0〜200℃/hrとするの
が好ましく、焼成温度は1600℃以上、好ましくは1
600〜1650℃とし、焼成時間は1時間以上、好ま
しくは1〜3時間とするのが好ましい。なお、ホットプ
レスを採用する場合、圧力は300〜600kg/Cr
n’程度とするのが好ましい。
In this case, the temperature increase rate is preferably 5° to 200°C/hr, and the firing temperature is 1600°C or higher, preferably 1
It is preferable that the temperature is 600 to 1650°C and the firing time is 1 hour or more, preferably 1 to 3 hours. In addition, when using a hot press, the pressure is 300 to 600 kg/Cr.
It is preferable to set it to about n'.

[作用] 一般に、精製カオリン、バイヤ−アルミナ、水酸化アル
ミニウム又は珪石等の原料を用いて、これをボールミル
等て微粉砕して混合しても、原子レベルで理論組成に混
合することは不可能であり、焼結により拡散させるため
には長時間を必要とする。
[Function] In general, even if raw materials such as refined kaolin, Bayer alumina, aluminum hydroxide, or silica stone are used and mixed by pulverization using a ball mill, etc., it is impossible to mix them to the theoretical composition at the atomic level. Therefore, it takes a long time to diffuse by sintering.

これに対して、ムライト組成中に第2相としてWC粒子
を3〜40重量%、CaCO3粒子をCaO換算で0.
1〜1重量%添加すると、ボールミル等による粉砕混合
でも、通常の成形、焼成により高温強度に借れたアルミ
ナ・シリカ系焼結体が得られる。
On the other hand, in the mullite composition, 3 to 40% by weight of WC particles and 0.0% by weight of CaCO3 particles as the second phase are used as the second phase.
When 1 to 1% by weight is added, an alumina-silica-based sintered body with high high-temperature strength can be obtained by ordinary molding and firing, even by pulverizing and mixing using a ball mill or the like.

本発明において、WC添加による高温強度改善の機構の
詳細は明らかではないが、ムライト結晶内又は粒界面に
取り込まれたWC粒子がムライト中のSiO2のガラス
相への移動をブロックしているため、更には、WC粒子
がムライト結晶粒内や結晶粒界へ分散し、ムライト結晶
の成長を抑制しているためと考えられる。また、CaC
0a!加については、遊離シリカ(ガラス相)がCaO
と反応して固定されるため、ガラス相の析出がなくなり
、高温強度の大きなものとなっているためと考えられる
In the present invention, although the details of the mechanism of high-temperature strength improvement due to the addition of WC are not clear, the WC particles incorporated within the mullite crystals or at the grain interfaces block the movement of SiO2 in the mullite to the glass phase. Furthermore, it is thought that this is because the WC particles are dispersed within the mullite crystal grains and at the grain boundaries, suppressing the growth of the mullite crystals. Also, CaC
0a! For addition, free silica (glass phase) is CaO
This is thought to be due to the fact that the glass phase is not precipitated and the high-temperature strength is high because the glass phase is fixed by reacting with the glass.

[実施例] 以下に実施例及び比較例を挙げて本発明をより具体的に
説明する。
[Example] The present invention will be described in more detail with reference to Examples and Comparative Examples below.

実施例1.2、比較例1 精製したカオリナイトに組成がAl20z /5iO2
=3/2(モル比)となるようにアルミナを添加し、ボ
ールミル(zr02ボール)によりアルコールを用いて
48時時間式粉砕した。なお、この場合、メディア攪拌
型粉砕機(アトライター)を用いると1〜2時間で処理
することが可能である。原料を90%以上が粒径5μm
以下となるように粉砕した後、これにWC粉末(日本新
金属社製:平均粒径5μm)及びCaCO3粉末(三に
鉱業セメント■製:平均粒径0.5μm)を第1表に示
す量添加しく比較例1は添加せず)、更にボールミルで
5時間混合した。これを乾燥、解砕した後、有機質バイ
ンダー(PVA)を5重量%添加して十分に混練した。
Example 1.2, Comparative Example 1 Purified kaolinite with composition Al20z/5iO2
Alumina was added so that the molar ratio was 3/2, and the mixture was milled using alcohol in a ball mill (ZR02 ball) for 48 hours. In this case, if a media agitation type pulverizer (attritor) is used, the treatment can be completed in 1 to 2 hours. More than 90% of the raw materials have a particle size of 5 μm
After pulverizing to the following amount, add WC powder (manufactured by Japan Shinkinzoku Co., Ltd.: average particle size 5 μm) and CaCO3 powder (manufactured by Sanni Mining Cement ■: average particle size 0.5 μm) in the amounts shown in Table 1. Comparative Example 1 was not added) and further mixed in a ball mill for 5 hours. After drying and crushing this, 5% by weight of an organic binder (PVA) was added and thoroughly kneaded.

混練物をプレス成形により50mmφX5mmに500
 k g / c rn”で成形した後、ラバープレス
により1500kg/crr?で更に加圧して成形体を
得た。この成形体を焼結してムライト組成のアルミナ・
シリカ系焼結体を得た。なお、焼結はホットプレスを用
い、昇温速度は150℃/ h rとし、300 k 
g / c rn’にて1600℃で1時間行なった。
The kneaded material was press-molded into a size of 50 mmφ x 5 mm.
kg/crn” and then further pressurized with a rubber press at 1500 kg/crr to obtain a molded body. This molded body was sintered to form alumina with a mullite composition.
A silica-based sintered body was obtained. Note that sintering was performed using a hot press, with a temperature increase rate of 150°C/hr, and a temperature of 300 k
g/crn' at 1600°C for 1 hour.

得られた焼結体の諸特性を第1表に示す。Table 1 shows various properties of the obtained sintered body.

弔 1 表 に使用することができる。Condolence 1 table It can be used for.

しかして、このような本発明の焼結体は、本発明の方法
により容易かつ効率的に低コストにて製造することが可
能とされる。
Therefore, such a sintered body of the present invention can be manufactured easily, efficiently, and at low cost by the method of the present invention.

Claims (2)

【特許請求の範囲】[Claims] (1)WC、CaO及びムライトよりなり、WC含有量
がムライトに対して3〜40重量%、CaO含有量がム
ライトに対して0.1〜1重量%であって、ムライト粒
径が10〜100μmであることを特徴とするアルミナ
・シリカ系焼結体。
(1) Consisting of WC, CaO and mullite, the WC content is 3 to 40% by weight relative to mullite, the CaO content is 0.1 to 1% by weight relative to mullite, and the mullite particle size is 10 to 10% by weight. An alumina-silica sintered body characterized by a thickness of 100 μm.
(2)精製粘土鉱物、バイヤ−アルミナ、水酸化アルミ
ニウム及び珪石よりなる群から選ばれる少なくとも2種
を主原料として、Al_2O_3/SiO_2の組成比
がムライト生成範囲となるように調合し、該調合原料を
90%以上が粒径5μm以下となるように湿式粉砕した
後、粒径50μm以下のWCを前記調合原料に対して3
〜40重量%、粒径0.1μm以下のCaCO_3をC
aO換算で前記調合原料に対して0.1〜1重量%添加
混合し、次いで、得られた混合物を乾燥、解砕し、その
後、有機質バインダーを用いて成形し、成形体を160
0℃以上の温度で1時間以上焼成することを特徴とする
アルミナ・シリカ系焼結体の製造方法。
(2) At least two selected from the group consisting of purified clay minerals, Bayer alumina, aluminum hydroxide, and silica stone are blended as main raw materials so that the composition ratio of Al_2O_3/SiO_2 falls within the mullite production range, and the blended raw materials are After wet grinding so that 90% or more has a particle size of 5 μm or less, WC with a particle size of 50 μm or less is added to the blended raw material by 3%.
~40% by weight of CaCO_3 with a particle size of 0.1 μm or less
Addition and mixing of 0.1 to 1% by weight with respect to the above-mentioned raw materials in terms of aO is carried out, and the resulting mixture is then dried and crushed, and then molded using an organic binder to form a molded product with a temperature of 160%
A method for producing an alumina-silica-based sintered body, characterized by firing at a temperature of 0° C. or higher for 1 hour or more.
JP1291597A 1989-11-09 1989-11-09 Alumina-silica-based sintered body and its production Pending JPH03153569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1291597A JPH03153569A (en) 1989-11-09 1989-11-09 Alumina-silica-based sintered body and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1291597A JPH03153569A (en) 1989-11-09 1989-11-09 Alumina-silica-based sintered body and its production

Publications (1)

Publication Number Publication Date
JPH03153569A true JPH03153569A (en) 1991-07-01

Family

ID=17771002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1291597A Pending JPH03153569A (en) 1989-11-09 1989-11-09 Alumina-silica-based sintered body and its production

Country Status (1)

Country Link
JP (1) JPH03153569A (en)

Similar Documents

Publication Publication Date Title
JPH09268050A (en) Alumina-zirconia sintered material, its production and impact mill using the same
JPH03153569A (en) Alumina-silica-based sintered body and its production
JP2586151B2 (en) Alumina-silica based sintered body and method for producing the same
JP2586153B2 (en) Alumina-silica based sintered body and method for producing the same
JPH0383851A (en) Mullite-based sintered compact and production thereof
JPS6360106A (en) Spinel powder and its production
US3979214A (en) Sintered alumina body
JPH03131565A (en) Sintered mullite and production thereof
JPH03131566A (en) Sintered mullite and production thereof
JPH0544428B2 (en)
JPH03131564A (en) Sintered mullite and production thereof
JPH0365555A (en) Mullite-based sintered material and production thereof
JPH0365554A (en) Mullite-based sintered material and production thereof
WO1995009820A1 (en) Body containing deposited corundum and process for producing the body
JPH03146462A (en) Mullite-based sintered body and its production
JPH03164465A (en) Sintered body of alumina silica system and production thereof
JPH03187972A (en) Alumina-silica-based sintered material and production thereof
JP2582730B2 (en) Manufacturing method of ceramic molded products
JPH0383852A (en) Mullite-based sintered compact and its production
JPH03187971A (en) Alumina-silica-based sintered material and production thereof
JPH04209761A (en) Zirconia porcelain and its production
JPH03187973A (en) Alumina-silica-based sintered material and production thereof
JPH03146464A (en) Mullite-based sintered body and its production
JPH0446058A (en) Alumina-silica-based sintered body and production thereof
JPH03131567A (en) Sintered mullite and production thereof