JPH03164465A - Sintered body of alumina silica system and production thereof - Google Patents

Sintered body of alumina silica system and production thereof

Info

Publication number
JPH03164465A
JPH03164465A JP1304064A JP30406489A JPH03164465A JP H03164465 A JPH03164465 A JP H03164465A JP 1304064 A JP1304064 A JP 1304064A JP 30406489 A JP30406489 A JP 30406489A JP H03164465 A JPH03164465 A JP H03164465A
Authority
JP
Japan
Prior art keywords
mullite
sintered body
cao
silica
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1304064A
Other languages
Japanese (ja)
Inventor
Masaharu Yamada
雅治 山田
Yoshihiro Ohinata
大日向 義宏
Hiroshi Sasaki
博 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP1304064A priority Critical patent/JPH03164465A/en
Publication of JPH03164465A publication Critical patent/JPH03164465A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the sintered body which has excellent characteristics, such as high-temp. strength, and is inexpensive by constituting the sintered body of B4C, CaO and mullite and specifying the ratio of the mullite to the B4C, CaO and the grain size of the mullite. CONSTITUTION:This sintered body of the alumina silica system consists of the mullite having 10 to 100mu grain size, the B4C of 5 to 30% by the weight of the mullite and the CaO of 0.1 to 1% by the same weight. The production of the sintered body is executed by using >=2 kinds of refined clay ore, Bayer alumina, aluminum hydroxide, and silica stone and admixing these materials in such a manner that the compsn. ratio of Al2O3/SiO2 attains a mullite forming range. After the admixed raw materials are ground by a wet process until >=90% attains <=5mu, the B4C of <=30mu grain size is added and mixed to and with the admixed raw materials mentioned above at 5 to 30% and the CaCO3 of <=0.1mu grain size likewise at 0.1 to 1% in terms of CaO. After the mixture is dried and crushed, the mixture is molded by using an org. binder and is calcined for >=1 hours at >=1600 deg.C.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はアルくナ・シリカ系焼結体及びその製造方法に
係り、特に高温強度等の特性に優れ、しかも安価に提供
されるアルミナ・シリカ系焼結体及びその製造方法に関
する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an alumina-silica sintered body and a method for producing the same, and particularly relates to an alumina-silica sintered body that has excellent properties such as high-temperature strength and is inexpensively provided. The present invention relates to a silica-based sintered body and a method for manufacturing the same.

[従来の技術] ムライトはAJ!203とSiO2からなり、化学組成
は理論的には3AJ2203−2Si02であり、その
特性としては、耐熱性に優れ、特にクリープ特性が良好
である。また、熱衝撃特性は良好であるが電気的Is 
陛はあまり良くない。
[Conventional technology] Mullite is AJ! The chemical composition is theoretically 3AJ2203-2Si02, and its properties include excellent heat resistance and particularly good creep properties. In addition, although the thermal shock characteristics are good, the electrical Is
Majesty is not very good.

ムライトセラミックスはオールドセラミックスに属し、
その研究の歴史は永く、原料としては、アル主ナ源とし
てカオリン、バイヤ−アルミナ、シリカ源として珪石が
主に用いられている。最近では、天然ムライ1−を改質
することにより、合成ムライト並の物性を出すことがで
きるようになったが、この研究の主体はムライト組成中
のシリカ相の析出及びガラス化の防止であり、原料の調
製や焼結条件などを検討したものである。
Mullite ceramics belong to old ceramics.
This research has a long history, and the main raw materials used are kaolin and Bayer alumina as an alumina source, and silica as a silica source. Recently, it has become possible to achieve physical properties comparable to synthetic mullite by modifying natural mullite, but the focus of this research is to prevent the precipitation and vitrification of the silica phase in the mullite composition. , the preparation of raw materials and sintering conditions were studied.

一方、ファインセラミックス技術を用いた高純度合成ム
ライトという理論組成の素材もあり、これは金属アルコ
キシド等の方法で理論組成となるように共沈法で製造し
たものが主である。
On the other hand, there is also a material with a theoretical composition called high-purity synthetic mullite using fine ceramics technology, and this is mainly produced by a coprecipitation method using methods such as metal alkoxides to achieve the theoretical composition.

しかして、これらの原料を目的に合わせて混合し、焼結
したものがムライト系セラよツクス材料といわれ、ムラ
イト系セラよツクスはアルよナセラミックスと同様、高
温強度が比較的大きく、天然原料を用いたものは安価な
素材であることから、炉材、サヤ、セッター材、耐熱材
、構造材等、主に耐火材料として用いられてきた。
The mixture of these raw materials according to the purpose and sintering is called mullite-based ceramic material.Mullite-based ceramic material has relatively high high-temperature strength like aluminum ceramics, and is made from natural raw materials. Because it is an inexpensive material, it has been used mainly as a fireproof material, such as furnace materials, sheaths, setter materials, heat-resistant materials, and structural materials.

[発明が解決しようとする課B] 従来のムライト系セラミックスのうち、天然ムライトを
改質したものでは、長期間の使用や高温使用時に、Af
l20z −S i 02ボンデイングが分解し、シリ
カがムライトの結晶粒界にガラス相として析出する。こ
のため、強度が著しく低下し、連続的な使用や繰り返し
の使用に難があった. アルコシキド法による高純度合戒ムライトは、上記欠点
を解゛決するために開発されたものであるが、高純度ム
ライトは高温強度、耐久性等に大きな改善効果を有する
ものの、価格が高いために従来より用いられている耐熱
材料等の工業材料の分野で使用するにはコスト的に不利
であった。
[Problem B to be solved by the invention] Among conventional mullite-based ceramics, those made by modifying natural mullite have problems with Af during long-term use or high-temperature use.
The l20z-S i 02 bonding decomposes and silica precipitates as a glass phase at the grain boundaries of mullite. As a result, the strength decreased significantly, making it difficult to use continuously or repeatedly. High-purity mullite produced by the alkoxide process was developed to solve the above-mentioned drawbacks, but although high-purity mullite has a significant improvement effect on high-temperature strength and durability, it is expensive and cannot be used with conventional methods. It is disadvantageous in terms of cost for use in the field of industrial materials such as heat-resistant materials, which are more commonly used.

本発明は上記従来の問題点を解決し、高温強度等の特性
に優れ、かつ安価に堤供されるムライト組成のアルミナ
・シリカ系焼結体及びその製造方法を提供することを目
的とする。
It is an object of the present invention to solve the above-mentioned conventional problems and to provide an alumina-silica-based sintered body having a mullite composition that has excellent properties such as high-temperature strength and can be provided at low cost, and a method for producing the same.

[課題を解決するための手段] 請求項(1)のアルミナ・シリカ系焼結体は、84 C
 (炭化硼素)、CaO (酸化カルシウム)及びムラ
イトよりなり、84 C,CaO含有量がムライトに対
して各々5〜30重量%、0.1〜1重量%であって、
ムライト粒径が10〜100μmであることを4、1徴
とする。
[Means for solving the problem] The alumina-silica-based sintered body of claim (1) has 84C
(Boron carbide), CaO (calcium oxide) and mullite, and the 84C and CaO contents are 5 to 30% by weight and 0.1 to 1% by weight, respectively, relative to mullite,
The 4.1 characteristic is that the mullite particle size is 10 to 100 μm.

請求項(2)のアルミナ・シリカ系焼結体の製造方法は
、精製粘土鉱物、バイヤ−アルミナ、水酸化アルミニウ
ム及び珪石よりなる群から選ばれる少なくとも2種を主
原料として、A 11 2 0 3 /SiO2の組成
比がムライト生成範囲となるように調合し、該調合原料
を90%以上が粒径5μm以下となるように湿式粉砕し
た後、粒径30tim以下の84Cを前記調合原料に対
して5〜30重量%、粒径0.1μm以下のCaCO3
 (炭酸カルシウム)をC a O j灸算で前記調合
原料に対して0.1〜1重量%添加混合し、次いで、得
られた混合物を乾燥、解砕し、その後、有機買バインダ
ーを用いて成形し、戒形体を1600℃以上の温度で1
時間以上焼成することを特徴とする。
The method for producing an alumina-silica-based sintered body according to claim (2) uses A 11 2 0 3 as main raw materials at least two selected from the group consisting of purified clay mineral, Bayer alumina, aluminum hydroxide, and silica stone. /SiO2 composition ratio is within the mullite production range, and after wet-pulverizing the blended raw material so that 90% or more has a particle size of 5 μm or less, 84C with a particle size of 30tim or less is added to the blended raw material. 5-30% by weight, CaCO3 with a particle size of 0.1 μm or less
Calcium carbonate (calcium carbonate) is added and mixed in an amount of 0.1 to 1% by weight with respect to the above-mentioned raw materials, and then the resulting mixture is dried and crushed, and then an organic binder is used. Molded and molded at a temperature of 1600℃ or higher.
It is characterized by being fired for more than an hour.

即ち、本発明は、原料として従来より用いられている安
価な原料を用い、物性改良の手段として、特定のセラミ
ックス粒子を第2相としてムライト結晶内又は粒界面に
分散させることにより高強度化を図り、更に、CaOの
添加により遊離したガラス状シリカを固溶体として固定
し、高純度合成ムライト並の#h注を有する材料を提供
するものである. 以下に本発明を訂細に説明する. 請求項(1)のアルミナ・シリカ系焼結体は、ムライト
に対して5〜30]i量%のB4Cと0,1〜1重量%
のCaOを含有するものである。84Cの含有量がムラ
イトに対して5重量%未満では本発明による強度の改善
効果が得られず、30重量%を仙えると84Cの量が多
くなり過ぎて、アル主ナ・シリカ系焼結体としての特性
が損なわれる.従って、本発明においては、84C含有
量はムライトに対して5〜30重量%とする.特に、8
4C含有量がムライトに対して7〜20重量%であると
、とりわけ高強度なアル主ナ・シリカ系焼粘体を得るこ
とができる。
That is, the present invention uses inexpensive raw materials that have been conventionally used as raw materials, and as a means of improving physical properties, high strength is achieved by dispersing specific ceramic particles as a second phase within mullite crystals or at grain boundaries. In addition, the glassy silica liberated by the addition of CaO is fixed as a solid solution, thereby providing a material with #h content comparable to that of high-purity synthetic mullite. The present invention will be explained in detail below. The alumina-silica-based sintered body of claim (1) contains B4C in an amount of 5 to 30% by weight and 0.1 to 1% by weight based on mullite.
of CaO. If the content of 84C is less than 5% by weight based on mullite, the strength improvement effect according to the present invention cannot be obtained, and if it exceeds 30% by weight, the amount of 84C becomes too large, resulting in Al-based silica-based sintering. The characteristics of the body are lost. Therefore, in the present invention, the 84C content is set to 5 to 30% by weight based on mullite. In particular, 8
When the 4C content is 7 to 20% by weight based on mullite, an alumina-silica-based baked viscous material having particularly high strength can be obtained.

一方、CaOの含有量がムライトに対して0.1重量%
未満では後述のムライト生成時に遊離するガラス相を十
分に固定することができず、強度改善効果が十分ではな
く、1重量%を超えるとCaO相が大きくなり好ましく
ない。従って、本発明においては、CaO含有量はムラ
イトに対して0.1〜1重量%とする。特に、CaO含
有量がムライトに対して0.5〜1重量%であると、と
りわけ高強度なアルミナ・シリカ系焼結体を得ることが
できる。従来、ムライトの焼結において、焼結時の添加
剤としてCaOを用いている報告もあり、この場合には
5〜15重量%を添加している.これは通常のCaO原
料であるCaCO3やCa (OH)2  (水酸化カ
ルシウム)はその粒子が数μmであり、均一に分散させ
るためには多量添加する必要があるためである。
On the other hand, the content of CaO is 0.1% by weight based on mullite.
If it is less than 1% by weight, the glass phase liberated during the formation of mullite, which will be described later, cannot be sufficiently fixed, and the strength improvement effect will not be sufficient, and if it exceeds 1% by weight, the CaO phase will become large, which is not preferable. Therefore, in the present invention, the CaO content is set to 0.1 to 1% by weight based on mullite. In particular, when the CaO content is 0.5 to 1% by weight based on mullite, an alumina-silica sintered body with particularly high strength can be obtained. Conventionally, there have been reports of using CaO as an additive during sintering of mullite, and in this case, 5 to 15% by weight is added. This is because the particles of CaCO3 and Ca(OH)2 (calcium hydroxide), which are common CaO raw materials, are several micrometers in size, and it is necessary to add a large amount in order to uniformly disperse them.

これに対し、本発明ではサブミクロン以下の超徴粒子の
CaCOzを用いることにより、0.1〜1重量%の少
量添加で十分効果を得ることができた。
On the other hand, in the present invention, by using CaCOz, which is a submicron or smaller particle, a sufficient effect could be obtained with addition of a small amount of 0.1 to 1% by weight.

請求項(1)のアルミナ・シリカ系焼結体中のムライト
結晶は、粒径が100μmの範囲のものである。ムライ
ト結晶の粒径が100μmよりも大きいと得られるアル
よナ・シリカ系焼結体の曲げ強度が低下し、また10μ
mよりも小さいと84C粒子やCaO粒子をムライト結
晶内又は粒界面に取り込み難くなる。従って、ムライト
結晶の粒径は10〜100μm1好ましくは10〜50
μmとする. 一方、ムライト払晶又は粒界面に取り込まれてアルミナ
・シリカ系焼結体内に含有されている84C粒子の粒径
が微細過ぎると表面活性が生じ、84C自身の表面酸化
が起きる.逆に84C粒子の粒径が大き過ぎるとムライ
ト結晶粒界にのみ84Cが存在するようになり、粒界ク
ラック発生の原因となる.従って、本発明において、8
4C粒子の粒径は30μm以下、特に10μm以下、と
りわけ3〜10μmであることが好ましい。
The mullite crystals in the alumina-silica sintered body according to claim (1) have a grain size in the range of 100 μm. If the grain size of the mullite crystal is larger than 100 μm, the bending strength of the resulting Alyona-silica sintered body will decrease;
When it is smaller than m, it becomes difficult to incorporate 84C particles and CaO particles into mullite crystals or grain boundaries. Therefore, the grain size of mullite crystals is 10 to 100 μm, preferably 10 to 50 μm.
Let it be μm. On the other hand, if the particle size of the 84C particles incorporated into the mullite crystals or grain boundaries and contained in the alumina-silica sintered body is too fine, surface activity occurs and the surface oxidation of the 84C itself occurs. On the other hand, if the grain size of the 84C grains is too large, 84C will exist only at the mullite grain boundaries, causing grain boundary cracks. Therefore, in the present invention, 8
The particle size of the 4C particles is preferably 30 μm or less, particularly 10 μm or less, especially 3 to 10 μm.

また、CaCOa粒子の粒径は、大きいと多量に添加し
ないと効果が得られず、又、反応性も悪いことから、O
.lμm以下、好ましくは0.05μm以下とするのが
好ましい。
In addition, if the particle size of CaCOa particles is large, the effect cannot be obtained unless a large amount is added, and the reactivity is also poor, so O
.. The thickness is preferably 1 μm or less, preferably 0.05 μm or less.

なお、アルよナ・シリカ系焼結体中のムライトはその組
成が理論組成のA It 2 0 z / S i O
 2 =3/2(モル比) 即ち71.8/28.2(
重量%)であることが好ましい.ムライト組成のAIL
203が理論組成よりも多過ぎるとAu203中にムラ
イト結晶が分散した形となり十分な強度が得られない。
In addition, the composition of the mullite in the Alyona silica-based sintered body is the theoretical composition A It 2 O z / S i O
2 = 3/2 (molar ratio), i.e. 71.8/28.2 (
% by weight). AIL with mullite composition
If the amount of 203 is too much than the theoretical composition, mullite crystals will be dispersed in Au203, and sufficient strength will not be obtained.

逆に、ムライト組成のSiO2が理論組成よりも多過ぎ
ると、ムライト中に遊離シリカ相がガラス相となって生
成し、十分な高温強度が得られない。従って、アルミナ
・シリカ系焼結体中のムライトは、理論組成A j2 
2 0 z / S i O 2 = 3 7 2 (
モル比)にできるだけ近い組成であることが好ましい。
On the other hand, if SiO2 in the mullite composition is too much than the theoretical composition, a free silica phase will form in the mullite as a glass phase, making it impossible to obtain sufficient high-temperature strength. Therefore, the mullite in the alumina-silica sintered body has the theoretical composition A j2
2 0 z / S i O 2 = 3 7 2 (
It is preferable that the composition be as close as possible to the molar ratio).

以上のように、可能な限りシリカガラス相が析出しない
ようにしても、若干の析出があり、このため十分に強度
を上げることはできない。ここにCaCO3を添加した
場合、ムライト生成時に遊離する若干のシリカガラスが
、このC a CO3の分解により生じたCaOと反応
して固定されるため、ムライト粒界にガラス相として析
出しなくなり、高強度なものとなる。CaCOaの添加
量をc a o 換算でO.1〜1重量%、より好まし
くは0.5〜1重量%とすると、高強度なものとなった
。なお、前述の如く、CaC03の添加量が多すぎると
CaO相が大きくなり好ましくない。また、少なすぎる
と遊離ガラス相を十分固定できなくなり効果がない。
As described above, even if the silica glass phase is prevented from precipitating as much as possible, some precipitation still occurs, and therefore the strength cannot be sufficiently increased. When CaCO3 is added here, some silica glass liberated during mullite formation reacts with CaO generated by the decomposition of CaCO3 and is fixed, so it no longer precipitates as a glass phase at the mullite grain boundaries, resulting in high It becomes strong. The amount of CaCOa added is O. High strength was obtained when the content was 1 to 1% by weight, more preferably 0.5 to 1% by weight. As mentioned above, if the amount of CaC03 added is too large, the CaO phase will become large, which is not preferable. On the other hand, if the amount is too small, the free glass phase cannot be sufficiently fixed, resulting in no effect.

このような請求項(1)のアルミナ・シリカ系焼結体は
請求項(2)の方法により容易かつ効率的に低コストに
て製造することができる。
The alumina-silica-based sintered body of claim (1) can be easily and efficiently produced at low cost by the method of claim (2).

以下に請求項(2)のアルミナ・シリカ系焼結体の製造
方法について説明する。
The method for producing an alumina-silica-based sintered body according to claim (2) will be explained below.

請求項(2)の方法においては、まず、原料として精製
粘土鉱物、バイヤ−アルミナ、水酸化アルミニウム又は
珪石(シリカ)を用い、A It 2 0 3/ S 
i O 2組成比がムライト生成範囲、好ましくはA 
fl 2 0 3 / S i O 2 = 3 / 
2(モル比)となるように調合する。この場合、特に原
料としては精製カオリンとパイヤーアルくナ又は水酸化
アルミニウム、或いは、バイヤ−アルミナ又は水酸化ア
ルミニウムと珪石を用いるのが好ましい。これらの原料
はその所要量をボールミル、又はアトライター等により
アルコール等を用いて90%以上が粒径5μm以下とな
るように湿式粉砕する。次に、得られた粉砕物に粒径3
0μm以下、好ましくは10μm以下、特に3〜10μ
mの84Cを該粉砕物に対して5〜30重量%、好まし
くは7〜20重量%添加し、更に0.1pm以下のCa
COaをCadi算で0.1〜1重量%、好ましくは0
.5〜1重量%添加しボールミル等で混合する。
In the method of claim (2), first, purified clay mineral, Bayer alumina, aluminum hydroxide, or silica is used as a raw material, and
i O2 composition ratio is within the mullite production range, preferably A
fl 2 0 3 / S i O 2 = 3 /
2 (molar ratio). In this case, it is particularly preferable to use purified kaolin, Peyer alumina or aluminum hydroxide, or Bayer alumina or aluminum hydroxide and silica stone as raw materials. The required amount of these raw materials is wet-milled using alcohol or the like using a ball mill or attritor so that 90% or more of the powder has a particle size of 5 μm or less. Next, the obtained pulverized material was
0 μm or less, preferably 10 μm or less, especially 3 to 10 μm
5 to 30% by weight, preferably 7 to 20% by weight of 84C of
0.1 to 1% by weight of COa calculated by Cadi, preferably 0
.. Add 5 to 1% by weight and mix using a ball mill or the like.

得られた混合物は乾燥、解砕した後、ポリビニルアルコ
ール(PVA)等の有機買バインダーを用いて成形する
。代形は3 0 0 k gf / c rn’以上で
の加圧成形後、I O O O k g f / c 
rd以上での静水圧プレス成形による2段成形で行なう
のが好ましい。
The resulting mixture is dried, crushed, and then molded using an organic binder such as polyvinyl alcohol (PVA). The substitute model is I O O O kgf / c after pressure molding at 300 kgf / crn' or more.
It is preferable to carry out two-stage molding by isostatic press molding at rd or higher.

得られた成形体はホットプレス又は常圧焼結により焼成
し、アルミナ・シリカ系焼結体を得る。
The obtained molded body is fired by hot pressing or pressureless sintering to obtain an alumina-silica-based sintered body.

この場合、昇温速度は50〜Zoo℃/ h rとする
のが好ましく、焼成温度は1 600℃以上、好ましく
は1600−1650℃とし、焼成時間は1時間以上、
好ましくは1〜3時間とするのが好ましい。なお、ホッ
トプレスを採用する場合、圧力は300〜600kg/
crn”程度とするのが好ましい。
In this case, the temperature increase rate is preferably 50~Zoo℃/hr, the firing temperature is 1600℃ or higher, preferably 1600-1650℃, and the firing time is 1 hour or longer.
Preferably, the time is 1 to 3 hours. In addition, when using a hot press, the pressure is 300 to 600 kg/
It is preferable to set it to about "crn".

[作用] 一般に、精製カオリン、パイヤーアルくナ、水酸化アル
ミニウム又は珪石等の原料を用いて、これをボールミル
等で微粉砕して混合しても、原子レベルで理論組成に混
合することは不可能であり、焼結により拡散させるため
Cは長時間を必要とする。
[Function] In general, even if raw materials such as refined kaolin, Peyer alkuna, aluminum hydroxide, or silica stone are used and mixed by finely pulverizing them with a ball mill, etc., it is impossible to mix them to the theoretical composition at the atomic level. Therefore, C requires a long time to be diffused by sintering.

これに対して、ムライト組成中に第2相として84C粒
子を5〜30重量%、CaCO3粒子をCaO換算でO
.1〜1重量%添加すると、ボールミル等による粉砕混
合でも、通常の成形、焼成により高温強度に1量れたア
ルミナ・シリカ系焼結体が得られる. 本発明において、84C添加による高温強度改善の機構
の詳細は明らかではないが、ムライト結晶内又は粒界面
に取り込まれたB4C粒子がムライト中のSi02のガ
ラス相への移動をブロックしているため、更には、84
C粒子がムライト結晶粒内や結晶粒界へ分敗し、ムライ
ト結晶の戒長を抑制しているためと考えられる。また、
CaCO3添加については、遊離シリカ(ガラス相)が
CaOと反応して固定されるため、ガラス相の析出がな
くなり、高温強度の大きなものとなっているためと考゜
えられる。
On the other hand, 5 to 30% by weight of 84C particles as the second phase in the mullite composition and O
.. When added in an amount of 1 to 1% by weight, an alumina-silica sintered body with excellent high-temperature strength can be obtained by ordinary molding and firing, even by pulverizing and mixing using a ball mill or the like. In the present invention, although the details of the mechanism of high-temperature strength improvement due to the addition of 84C are not clear, the B4C particles incorporated within the mullite crystals or at the grain interfaces block the movement of Si02 in the mullite to the glass phase. Furthermore, 84
This is thought to be because the C particles separate into the mullite crystal grains and grain boundaries, suppressing the length of the mullite crystals. Also,
The reason for the addition of CaCO3 is thought to be that free silica (glass phase) reacts with CaO and is fixed, eliminating precipitation of the glass phase and resulting in high high-temperature strength.

[実施例] 以下に実施例及び比較例を挙げて本発明をより具体的に
説明する. 実施例1,2、比較例1 精製したカオリナイトに組成がAd203/S i O
 2 = 3 / 2 (モル比)となるようにアルミ
ナを添加し、ボールミル(z r02ボール)によりア
ルコールを用いて48時間(兄式粉砕した。なお、この
場合、メディア攪拌型粉砕機(アトライター)を用いる
と1〜2時間で処理することが可能である。原料を90
%以上が粒径5μm以下となるように粉砕した後、これ
にB4C粉末(デン力社製:平均粒径5μm)及びCa
CO3粉末(三菱鉱業セメント■製:平均粒径0.5μ
m)を第l表に示す量添加し(比較例lは添加せず)、
更にボールミルで5時間混合した。これを乾燥、解砕し
た後、・有機貿バインダー(PVA)を5重量%添加し
゜C十分に混練した。
[Example] The present invention will be explained in more detail by giving examples and comparative examples below. Examples 1 and 2, Comparative Example 1 Purified kaolinite with a composition of Ad203/S i O
Alumina was added so that the molar ratio of 2 = 3/2 was obtained, and the mixture was ground using alcohol in a ball mill (ZR02 ball) for 48 hours. ), it is possible to process the raw material in 1 to 2 hours.
After grinding so that % or more has a particle size of 5 μm or less, B4C powder (manufactured by Denriki Co., Ltd., average particle size 5 μm) and Ca
CO3 powder (manufactured by Mitsubishi Mining Cement ■: average particle size 0.5μ
m) was added in the amount shown in Table 1 (comparative example 1 was not added),
The mixture was further mixed in a ball mill for 5 hours. After drying and crushing this, 5% by weight of organic trade binder (PVA) was added and thoroughly kneaded at °C.

混練物をプレス成形Cより50mmφX5mmに5 0
 0 k g / c n/で成形した後、ラバープレ
スにより1500kg/cm”で更に加圧して戊形体を
得た。この成形体を焼結してムライト組成のアルミナ・
シリカ系焼結体を得た。なお、焼結はホットプレスを用
い、昇温速度は150℃/ h rとし、300kg/
Ctrl’にて1600℃で1時間行なった. 得られた焼結体の諸特性を第1表に示す。
The kneaded material was press-formed into 50 mmφ x 5 mm by press molding C.
After molding at 0 kg/c n/, the molded body was further pressurized at 1500 kg/cm" using a rubber press to obtain a rod-shaped body. This molded body was sintered to form alumina with a mullite composition.
A silica-based sintered body was obtained. For sintering, a hot press was used, the heating rate was 150℃/hr, and the temperature was 300kg/hr.
The test was carried out at 1600°C for 1 hour at Ctrl'. Table 1 shows various properties of the obtained sintered body.

謁 l 表 第1表より所定iのB4C及びCaCOsを添加したム
ライト組成のアルミナ・シリカ系焼結体により、常温か
ら1300℃といった高温まで安定して著しく高い強度
が得られることが明らかである. [発明の効果] 以上詳述した通り、本発明のアルミナ・シリカ系m結体
は、安価な原料を用いて低コストに堤供されるものであ
り、しかも、高温強度、耐久性等の特性に著しく優れる
.従って、本焼結体は、工業用耐火材料等として、長期
にわたり極めて有効に使用することができる。
Audience Table 1 It is clear from Table 1 that the alumina-silica sintered body of mullite composition to which B4C and CaCOs of the specified i are added can stably provide extremely high strength from room temperature to high temperatures such as 1300°C. [Effects of the Invention] As detailed above, the alumina-silica m-concrete of the present invention can be provided at low cost using inexpensive raw materials, and has excellent properties such as high-temperature strength and durability. Remarkably excellent. Therefore, the present sintered body can be used extremely effectively over a long period of time as an industrial fireproof material.

しかして、このような本発明の焼結体は、本発明の方法
により容挑かつ効率的に低コストにて製造することが可
能とされる。
Therefore, such a sintered body of the present invention can be produced in a challenging and efficient manner at low cost by the method of the present invention.

Claims (2)

【特許請求の範囲】[Claims] (1)B_4C、CaO及びムライトよりなり、B_4
C含有量がムライトに対して5〜30重量%、CaO含
有量がムライトに対して0.1〜1重量%であって、ム
ライト粒径が10〜100μmであることを特徴とする
アルミナ・シリカ系焼結体。
(1) Consisting of B_4C, CaO and mullite, B_4
Alumina/silica having a C content of 5 to 30% by weight based on mullite, a CaO content of 0.1 to 1% by weight based on mullite, and a mullite particle size of 10 to 100 μm. system sintered body.
(2)精製粘土鉱物、バイヤ−アルミナ、水酸化アルミ
ニウム及び珪石よりなる群から選ばれる少なくとも2種
を主原料として、Al_2O_3/SiO_2の組成比
がムライト生成範囲となるように調合し、該調合原料を
90%以上が粒径5μm以下となるように湿式粉砕した
後、粒径30μm以下のB_4Cを前記調合原料に対し
て5〜30重量%、粒径0.1μm以下のCaCO_3
をCaO換算で前記調合原料に対して0.1〜1重量%
添加混合し、次いで、得られた混合物を乾燥、解砕し、
その後、有機質バインダーを用いて成形し、成形体を1
600℃以上の温度で1時間以上焼成することを特徴と
するアルミナ・シリカ系焼結体の製造方法。
(2) At least two selected from the group consisting of purified clay minerals, Bayer alumina, aluminum hydroxide, and silica stone are blended as main raw materials so that the composition ratio of Al_2O_3/SiO_2 falls within the mullite production range, and the blended raw materials are After wet grinding so that 90% or more has a particle size of 5 μm or less, 5 to 30% by weight of B_4C with a particle size of 30 μm or less based on the blended raw material, CaCO_3 with a particle size of 0.1 μm or less
0.1 to 1% by weight of the above-mentioned blended raw materials in terms of CaO
addition and mixing, then drying and crushing the resulting mixture,
After that, it is molded using an organic binder, and the molded product is made into 1
A method for producing an alumina-silica-based sintered body, which comprises firing at a temperature of 600°C or more for 1 hour or more.
JP1304064A 1989-11-22 1989-11-22 Sintered body of alumina silica system and production thereof Pending JPH03164465A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1304064A JPH03164465A (en) 1989-11-22 1989-11-22 Sintered body of alumina silica system and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1304064A JPH03164465A (en) 1989-11-22 1989-11-22 Sintered body of alumina silica system and production thereof

Publications (1)

Publication Number Publication Date
JPH03164465A true JPH03164465A (en) 1991-07-16

Family

ID=17928600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1304064A Pending JPH03164465A (en) 1989-11-22 1989-11-22 Sintered body of alumina silica system and production thereof

Country Status (1)

Country Link
JP (1) JPH03164465A (en)

Similar Documents

Publication Publication Date Title
US3758318A (en) Production of mullite refractory
EP0001327B1 (en) Magnesium aluminate spinel bonded refractory and method of making
CN110894162A (en) Ultrahigh-temperature high-strength ceramic roller and preparation method thereof
JPH03164465A (en) Sintered body of alumina silica system and production thereof
JP2586151B2 (en) Alumina-silica based sintered body and method for producing the same
JP2586153B2 (en) Alumina-silica based sintered body and method for producing the same
JPH0383851A (en) Mullite-based sintered compact and production thereof
US3808014A (en) Refractory magnesia
JPS6360106A (en) Spinel powder and its production
JPH03131566A (en) Sintered mullite and production thereof
JPH03131565A (en) Sintered mullite and production thereof
JPH0383852A (en) Mullite-based sintered compact and its production
JPH0365554A (en) Mullite-based sintered material and production thereof
JPH03187972A (en) Alumina-silica-based sintered material and production thereof
JPH03153569A (en) Alumina-silica-based sintered body and its production
JPH03146462A (en) Mullite-based sintered body and its production
JPH03187971A (en) Alumina-silica-based sintered material and production thereof
JPH03131564A (en) Sintered mullite and production thereof
JPH0365555A (en) Mullite-based sintered material and production thereof
JP2582730B2 (en) Manufacturing method of ceramic molded products
JPS6272556A (en) Manufacture of fine polycrystal mgal2o4 spinel
JPH02500267A (en) ceramic material
JPH0446058A (en) Alumina-silica-based sintered body and production thereof
JPH03187973A (en) Alumina-silica-based sintered material and production thereof
JPH03131567A (en) Sintered mullite and production thereof