JPS59162173A - Zirconia sintered body - Google Patents

Zirconia sintered body

Info

Publication number
JPS59162173A
JPS59162173A JP58035990A JP3599083A JPS59162173A JP S59162173 A JPS59162173 A JP S59162173A JP 58035990 A JP58035990 A JP 58035990A JP 3599083 A JP3599083 A JP 3599083A JP S59162173 A JPS59162173 A JP S59162173A
Authority
JP
Japan
Prior art keywords
sintered body
zirconia sintered
tetragonal
present
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58035990A
Other languages
Japanese (ja)
Other versions
JPH0352425B2 (en
Inventor
孝次 津久間
月舘 隆明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Toyo Soda Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Soda Manufacturing Co Ltd filed Critical Toyo Soda Manufacturing Co Ltd
Priority to JP58035990A priority Critical patent/JPS59162173A/en
Priority to DE19843408096 priority patent/DE3408096A1/en
Priority to AU25314/84A priority patent/AU567328B2/en
Publication of JPS59162173A publication Critical patent/JPS59162173A/en
Publication of JPH0352425B2 publication Critical patent/JPH0352425B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、高い機械的強度と破壊靭性を有するZr02
−0θO1系のジルコニア焼結体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides Zr02 with high mechanical strength and fracture toughness.
The present invention relates to a -0θO1-based zirconia sintered body.

本発明による焼結体は、切削又は切断用工具類。The sintered body according to the present invention can be used for cutting or cutting tools.

各棟ダイス、ノズル、摺動部品などの構成材料としての
用途に好適である。
It is suitable for use as a constituent material for individual dies, nozzles, sliding parts, etc.

純粋なジルコニアに900〜1200℃に可逆的な相転
移を有し、この際、大きな体積変化を生じる。このよう
な異常体積変化は焼結体の割れの原因となり、焼結体の
作製を田難なものとしてきた。従って、焼結体を作成す
る場合には、種々の安定化剤、例えば、Mc70.  
OaO,’ Y2O3などを固溶させて、相転移をおこ
さない立方晶系の結晶構造を有する、いわゆゐ、安定化
ジルコニア(以下、FSZと記す)を使用することが通
常行われている。しかし、このようなFSZ焼結体は、
抗折強度、熱衝撃強度などの機械的強度においては劣り
、このような性質が要求される用途には適さないという
欠点があった。
Pure zirconia has a reversible phase transition between 900 and 1200°C, which causes a large volume change. Such abnormal volume changes cause cracks in the sintered body, making the production of the sintered body difficult. Therefore, when making a sintered body, various stabilizers such as Mc70.
It is common practice to use so-called stabilized zirconia (hereinafter referred to as FSZ), which has a cubic crystal structure that does not cause phase transition by dissolving OaO, 'Y2O3, etc. as a solid solution. However, such a FSZ sintered body
It has a disadvantage in that it is inferior in mechanical strength such as bending strength and thermal shock strength, and is not suitable for applications requiring such properties.

最近、この欠点を根本的に改良した、高強度。Recently, this drawback has been fundamentally improved with high strength.

高靭性を有するジルコニア焼結体の研究が行われている
。この焼結体がFSZ焼結体と異なる点は組成と結晶構
造にある。すなわち、組成としては安定化剤の添加量が
FSZよりも少なくなっているということである。
Research is being conducted on zirconia sintered bodies with high toughness. This sintered body differs from the FSZ sintered body in its composition and crystal structure. That is, in terms of composition, the amount of stabilizer added is smaller than that of FSZ.

一方、結晶構造においては、FSZが立方晶系であるの
に対して、正方晶系または正方晶系と立方晶系の混合相
からなっているということである。
On the other hand, in terms of crystal structure, while FSZ has a cubic system, it consists of a tetragonal system or a mixed phase of a tetragonal system and a cubic system.

このような焼結体を部分安定化ジルコニア(以下、ps
zと記す)焼結体と称している。このpsz焼結体は、
高強度、高靭性を有しているが、その理由については以
下の説明がなされている。
Such a sintered body is made of partially stabilized zirconia (hereinafter referred to as ps
(denoted as z) is called a sintered body. This psz sintered body is
It has high strength and high toughness, and the reason for this is explained below.

すなわち、機械的応力集中が焼結体中の亀裂先端にかか
った場合、その周辺の正方晶系の粒子が単斜晶系に応力
誘記変態し、その際伴なう体積膨張が、亀裂の進展を妨
げることによって破壊靭性並びに破壊強度の増大がもた
らされるというものである。従って、PSz焼結体が高
強度、高靭性であるためには、正方晶系の結晶相からな
る粒子を含有しているということが極めて重要となる。
In other words, when mechanical stress concentration is applied to the tip of a crack in a sintered body, the surrounding tetragonal particles undergo stress-induced transformation to monoclinic, and the volume expansion that accompanies this causes the crack to open. By inhibiting the progress, fracture toughness and fracture strength are increased. Therefore, in order for the PSz sintered body to have high strength and high toughness, it is extremely important that it contains particles having a tetragonal crystal phase.

しかし、この正方晶系の結晶相は、はとんどのジルコニ
ア−安定化成分系において高温相であり、室温では安定
相として存在しない。従って、室温では準安定相として
存在させるわけであるが、この場合、焼結体の製造法並
びに安定化剤の種類と添加量の選択が重要と々る。
However, this tetragonal crystal phase is the high temperature phase in most zirconia-stabilizing component systems and does not exist as a stable phase at room temperature. Therefore, it is allowed to exist as a metastable phase at room temperature, but in this case, the method of manufacturing the sintered body and the selection of the type and amount of stabilizer added are important.

現在、高強度、高靭性psz焼結体として、Mg0−Z
rO,系、 0aO−ZrO,系、 Y、03−ZrO
2系の焼結体がすでに仰られている。
Currently, Mg0-Z is used as a high-strength, high-toughness psz sintered body.
rO, system, 0aO-ZrO, system, Y, 03-ZrO
Two types of sintered bodies have already been mentioned.

本発明者らは、上記安定化剤であるMgO,Oak。The present inventors have developed the above-mentioned stabilizer MgO, Oak.

Y、 O,以外の安定化剤を用いて機緘的性質の優れた
焼結体を得ようとする目的で鋭意研究した結果、ZrO
2−0eO,系が極めて有効であることを見い出し本発
明をなすに至った。これまでの調査によれば、ZrO2
J3e02系暁結体はZrO,−Y2O2系で知られて
いるような高強度、高靭性を発現しないといわれていた
。本発明は、焼結体の製造技術、特に独自の原料粉末調
製技術を基礎として緻密な焼結体を得ることに成功し、
さらに組成に詳細な検討を加えることによって、従来の
説とは異なる結果を導き出すに至ったため成し遂げられ
たものである。
As a result of intensive research aimed at obtaining a sintered body with excellent mechanical properties using stabilizers other than Y and O, we found that ZrO
The present inventors have discovered that the 2-0eO system is extremely effective and have accomplished the present invention. According to previous research, ZrO2
It was said that the J3e02 type Akatsuki compact does not exhibit the high strength and toughness known from the ZrO, -Y2O2 type. The present invention has succeeded in obtaining a dense sintered body based on a sintered body manufacturing technology, especially a unique raw material powder preparation technology,
This was achieved because by further examining the composition in detail, they were able to derive a result that differs from the conventional theory.

すなわち、本発明は主としてZr01  とCoo、と
からなり、結晶相が主として正方晶系または正方晶系と
立方晶系の混合相からなるジルコニア焼結体を提供する
ものである。
That is, the present invention provides a zirconia sintered body mainly composed of Zr01 and Coo, and whose crystal phase is mainly a tetragonal system or a mixed phase of a tetragonal system and a cubic system.

本発明の焼結体を製造するには、Zr0t−CeO。In order to manufacture the sintered body of the present invention, ZrOt-CeO is used.

系原料粉末tラバープレス法等によって所望の形状に成
形したのち、1300〜1600℃の温度で数時間焼成
して焼結すればよい。
After molding the raw material powder into a desired shape by a rubber press method or the like, it may be sintered by firing at a temperature of 1300 to 1600° C. for several hours.

ZrO,−CeO,系原料粉末の調製は、ジルコニア粉
末とセリャ粉末とを混合し、仮焼、粉砕を繰り返えし行
う、いわゆる乾式合成法によって行うことも可能である
が、緻密な機械的強度の高い焼結体を得るためには、以
下に説明する湿式合成法によって行うことが望ましい。
ZrO, -CeO, raw material powder can be prepared by the so-called dry synthesis method, in which zirconia powder and Ceria powder are mixed, calcined, and pulverized repeatedly. In order to obtain a sintered body with high strength, it is preferable to use the wet synthesis method described below.

例えば、オキシ塩化ジルコニウム、硝酸ジルコニウム等
のジルコニウム塩水溶液と硝酸セリウム等のセリウム塩
水溶液を所望の組成になるように混合し、それにアンモ
ニア水を添加することによって生成した沈殿を口割した
後、乾燥、仮焼して目的とする粉末を得うという方法で
ある。
For example, an aqueous solution of a zirconium salt such as zirconium oxychloride or zirconium nitrate and an aqueous solution of a cerium salt such as cerium nitrate are mixed to a desired composition, and aqueous ammonia is added to the resulting precipitate, which is then split and dried. This method involves calcining to obtain the desired powder.

また、上記ジルコニウム塩とセリウム塩の混合溶液を数
10時間加熱することによって、加水分解反応を起こし
、生成したゾルを乾燥、仮焼して目的とする粉末を得る
という方法でもよい。さらに、また−上記ジルコニウム
塩とセリウム塩の混合溶液を常圧おるいは減圧下で蒸発
乾固し、それを粉砕し、500℃〜900℃の温度で仮
焼することによって目的とする粉末を得る方法もよい。
Alternatively, a method may be used in which a mixed solution of the zirconium salt and cerium salt is heated for several tens of hours to cause a hydrolysis reaction, and the resulting sol is dried and calcined to obtain the desired powder. Furthermore, the mixed solution of the zirconium salt and cerium salt is evaporated to dryness under normal pressure or reduced pressure, pulverized, and calcined at a temperature of 500°C to 900°C to obtain the desired powder. Good way to get it too.

これらいわゆる湿式合成法によって得られる粉末は、焼
結性に優れ本発明の焼結体を作成する原料として好適で
ある。 □ また、セリャ原料としては必ずしも高純度のセリウム酸
化物やセリウム塩を用いる必要はなく、セリウムが80
チ以上あれば1、残部、サマリウムやう/タンなど軽希
土類金属からなる酸化物や塩を用いてもよい。このよう
な原料は安価であり、工業製品のための原料として好適
である。
Powders obtained by these so-called wet synthesis methods have excellent sinterability and are suitable as raw materials for producing the sintered body of the present invention. □ In addition, it is not necessary to use high-purity cerium oxide or cerium salt as the ceria raw material;
If the amount is 1 or more, the remainder may be an oxide or salt made of a light rare earth metal such as samarium or tan. Such raw materials are inexpensive and suitable as raw materials for industrial products.

従って、本発明において主としてZrO2と0e02か
らなるジルコニア焼結体というのは、zrO,の安定化
剤としてCeO,を主体として用いた焼結体を意味し、
Coo1に加えて他の希土類酸化物、例えば、y、 o
、 、  Yb203 、  La、O,、am、O@
  など、あるいはアルカリ土類金属酸化物MgO,c
aOなどさらに周期律表第3族、第4族金属酸化物sc
、o3゜TiO2,HfO,などを含有していてもよい
Therefore, in the present invention, a zirconia sintered body mainly composed of ZrO2 and Oe02 means a sintered body mainly using CeO as a stabilizer of zrO,
In addition to Coo1, other rare earth oxides, such as y, o
, , Yb203 , La, O,, am, O@
etc., or alkaline earth metal oxide MgO, c
Furthermore, metal oxides of Group 3 and Group 4 of the periodic table, such as aO, sc
, o3°TiO2, HfO, and the like.

例えば、ZrO2−Coo、−Y、01系の焼結体では
、Y、0.添加量が2モルチ以下で部分安定化されてい
る場合には、添加したCoo、が部分安定化に重要な寄
与をしているとみなし得るので、本発明の焼結体の範囲
に入る。
For example, in a ZrO2-Coo, -Y, 01-based sintered body, Y, 0. If the added amount is 2 molt or less and partial stabilization is achieved, the added Coo can be considered to be making an important contribution to the partial stabilization, and therefore falls within the scope of the sintered body of the present invention.

本発明のZr02−C!so、系焼結体における(!e
o2/ZrO,のモル比は8/92〜3o/7oの範囲
テある必要がある。このCeO2/ZrO,モル比が8
/92よシ少ない場合には、正方晶系の結晶相からなる
焼結体を得ることは極めて困難である。この場合には、
焼結体を焼成後、室温まで冷却する過程で正方晶系から
単斜晶系への相転移が起こり、その除虫じる体積膨張に
よってクラックが入ることさえある。また、モル比が5
0770をこえる場合には、正方晶系と立方晶系の共存
結晶相からなる目的とする結晶相の焼結体は得られるけ
れども、正方晶系の割合が減少しているために、期待さ
れるほどの高い破壊靭性と破壊強度は得られない。
Zr02-C of the present invention! so, in the system sintered body (!e
The molar ratio of o2/ZrO must be in the range of 8/92 to 3o/7o. This CeO2/ZrO, molar ratio is 8
When the amount is less than /92, it is extremely difficult to obtain a sintered body having a tetragonal crystal phase. In this case,
After the sintered body is fired, a phase transition from a tetragonal system to a monoclinic system occurs during the cooling process to room temperature, and cracks may even occur due to the volumetric expansion. Also, the molar ratio is 5
If it exceeds 0770, a sintered body with the desired crystalline phase consisting of coexisting tetragonal and cubic crystal phases can be obtained, but the proportion of the tetragonal system is decreasing, which is expected. It is not possible to obtain such high fracture toughness and fracture strength.

本発明の焼結体は、その結晶相が主として正方晶系また
は正方晶系と立方晶系の混合相からなるものである。し
かしながら、これらの結晶相に加えて少量の単斜晶系の
相が共存していてもよい。
The crystalline phase of the sintered body of the present invention is mainly composed of a tetragonal system or a mixed phase of a tetragonal system and a cubic system. However, in addition to these crystal phases, a small amount of monoclinic phase may coexist.

許される単斜晶系の割合は、30wt%以下である。The permissible monoclinic proportion is 30 wt% or less.

その測定は、X線回折法によって行い、単斜晶の(11
1)面、 (111)面、正方晶の(200)面、立方
晶の(200)面のX線回折強度をそれぞれM(111
)、M(11了)、 T(200,>。
The measurement was carried out by X-ray diffraction method, and monoclinic crystal (11
1) plane, the (111) plane, the (200) plane of the tetragonal crystal, and the (200) plane of the cubic crystal, respectively, as M(111).
), M(11 completed), T(200,>.

0(2U O)としたとき (M<111>+M<111>)/(T<200.>+
c(200)+M(111〉+M(1tr>) の強度比を単斜晶系の重量パーセントとする。
When 0 (2U O), (M<111>+M<111>)/(T<200.>+
Let the intensity ratio of c(200)+M(111>+M(1tr>) be the weight percent of the monoclinic system.

本発明の焼結体の粒子径は2μm以下が好ましく、焼成
温度1400℃では1llL2〜05μm、温度160
0℃では1〜2μmとなる。従来、Ps2焼結体は高温
に長時間さらされると経時劣化を起こし、焼結体が破壊
するという現象が知られていた。例えば、2μm以上の
粒径を有するY、O,−P8Z焼結体では200℃〜3
00℃の温度に長時間放置すると正方晶が単斜晶へ転移
し、焼結体にひび割れが認められるに至る。すなわち、
粒子径が細かいほど熱的経時劣化が生じない。本発明の
焼結体は粒子径を2μm以下に容易に制御することが可
能であり、そのような焼結体は熱的安定性が優れている
という点で好ましい。
The particle size of the sintered body of the present invention is preferably 2 μm or less, and at a firing temperature of 1400°C, the particle size is 111L2 to 05 μm, and at a temperature of 160°C.
At 0°C, it is 1 to 2 μm. Conventionally, it has been known that when a Ps2 sintered body is exposed to high temperatures for a long time, it deteriorates over time and the sintered body breaks. For example, a Y, O, -P8Z sintered body with a particle size of 2 μm or more is heated at 200°C to 3
When left at a temperature of 00° C. for a long time, the tetragonal crystal transforms to monoclinic crystal, and cracks are observed in the sintered body. That is,
The finer the particle size, the less thermal deterioration occurs over time. The particle size of the sintered body of the present invention can be easily controlled to 2 μm or less, and such a sintered body is preferable because it has excellent thermal stability.

さらに、本発明の焼結体は、機械的強度として3点曲げ
強度が50kg/m”以上、破壊靭性が4MN*m″″
t、s以上の特性を有するものである。これらの特性値
以下では本発明の焼結体として有用な産業用部材として
の使用に耐えられないものとなるので好ましくない。
Furthermore, the sintered body of the present invention has a mechanical strength of 3-point bending strength of 50 kg/m" or more and a fracture toughness of 4 MN*m"".
It has characteristics greater than or equal to t and s. If the characteristic values are below these values, the sintered body of the present invention cannot withstand use as a useful industrial member, which is not preferable.

次に、本発明の焼結体を実施例に基づいて詳細に説明す
る。
Next, the sintered body of the present invention will be described in detail based on Examples.

実施例中における3点曲げ強度と破壊靭性の測定は以下
の方法による。
Three-point bending strength and fracture toughness in Examples were measured by the following methods.

3点曲げ強度測定は、板状焼結体を切断、研削して3s
as+X 4snX 40mの角棒状試験片とし、J工
S R1601に定められたスパン長さ50龍、荷重印
加速度α5鴎/分の条件によって行う。
Three-point bending strength measurement is performed by cutting and grinding a plate-shaped sintered body for 3 seconds.
A rectangular bar-shaped test piece of as+X 4 sn

破壊靭性の測定は、鏡面研磨した焼結体試料面にビッカ
ース圧子を打ち込み、圧痕長さと圧痕から発生した亀裂
長さとの比から値を算出するインデンテーション法によ
って行う。圧子の打ち込み荷重は20kgとする。算出
に用いる計算式は、D、 B、 Marshall a
ndA+G、 Evans、 Oomm、 Am。
Fracture toughness is measured by the indentation method, in which a Vickers indenter is driven into the mirror-polished sintered sample surface and the value is calculated from the ratio of the indentation length to the crack length generated from the indentation. The driving load of the indenter is 20 kg. The formula used for calculation is D, B, Marshall a
ndA+G, Evans, Oomm, Am.

Oeram、 Soc、 0−182 (1981)に
記載されている以下の式とする。
The following formula described in Oeram, Soc, 0-182 (1981) is used.

Kxo= 0.036 K” P”’ a−’・’(O
/a)−’・5KXO;破壊靭性(N−re’−” )
E;弾性率(Nsm−” ) P;荷重 (Nsm−” ) a;圧痕の対角線長さくm) C;圧痕から発生した亀裂長さくm) 実施例1〜6.比較例1 オキシ塩化ジルコニウムの水溶液とセリウム80チ、残
部、ランタン、サマリウム、ネオジウムなど軽希土類金
属からなる硝塩酸の水溶液を所望の組成となるように混
合し100℃で60時間。
Kxo= 0.036 K"P"'a-'・'(O
/a)-'・5KXO; Fracture toughness (N-re'-")
E: Modulus of elasticity (Nsm-") P: Load (Nsm-") a: Diagonal length of indentation (m) C: Length of crack generated from indentation (m) Examples 1 to 6. Comparative Example 1 An aqueous solution of zirconium oxychloride and an aqueous solution of nitric acid consisting of 80% cerium, the balance, and a light rare earth metal such as lanthanum, samarium, and neodymium were mixed to a desired composition and heated at 100° C. for 60 hours.

加熱を続けて加水分解生成ゾルを得た。これを蒸発乾固
して得た粉末を900℃で仮焼し、さらにボールミルで
48時間粉砕し、ZrO,−0θO7系の原料粉末を調
製した。次いで、上記原料粉末をラバープレス法によっ
て、厚さ9幅、長さがそれぞれ43111.40朋、5
6tuである板状成形体とした。
Heating was continued to obtain a hydrolyzed sol. The powder obtained by evaporating to dryness was calcined at 900° C. and further ground in a ball mill for 48 hours to prepare a ZrO, -0θO7-based raw material powder. Next, the raw material powder was processed by a rubber press method to a thickness of 9 width and a length of 43111.40 mm and 5 mm, respectively.
A plate-shaped molded product having a size of 6 tu was obtained.

この成形体を1400〜1500℃の温度で2時間焼成
し、本発明の7.rof −c8o、系焼結体を得た。
This molded body was fired at a temperature of 1,400 to 1,500°C for 2 hours, and 7. A rof-c8o-based sintered body was obtained.

このようKして作成した7組の焼結体について、結晶相
含有率、結晶粒子径1曲げ強度、破壊靭性の測定を行っ
た。これらの結果を表1に示した。
The crystal phase content, crystal grain size 1 bending strength, and fracture toughness were measured for the seven sets of sintered bodies prepared in this way. These results are shown in Table 1.

実施例7,8.比較例2 オキシ塩化ジルコニウムの水溶液と純度99チ以上の硝
酸セリウムの水溶液を所望の組成となるように混合し、
実施例1に記載した方法に従ってZrO2−0eO,系
原料粉末を調製した。この粉末を用いてラバープレス法
によって成形した後、温度1400℃で2時間保持し目
的とする焼結体を得た。このようにして作成した3組の
焼結体について実施例1に記載したのと同様の測定を行
った。
Examples 7 and 8. Comparative Example 2 An aqueous solution of zirconium oxychloride and an aqueous solution of cerium nitrate with a purity of 99% or more were mixed to a desired composition,
According to the method described in Example 1, a ZrO2-0eO raw material powder was prepared. This powder was molded by a rubber press method and held at a temperature of 1400° C. for 2 hours to obtain the desired sintered body. Measurements similar to those described in Example 1 were performed on the three sets of sintered bodies thus produced.

それらの測定結果を表1に示しだ。The measurement results are shown in Table 1.

実施例9.10 オキシ塩化ジルコニウム、硝酸セリウム、硝酸イツトリ
ウムの各水浴液を所望の組成となるように混合し、そこ
にアンモニア水を加えて溶液のpHを8とすることによ
って沈殿を得、次いでこれを口割し、乾燥し800℃で
仮焼し、さらにボールミルで24時間粉砕してZr02
−0θ02−Y、03系の原料粉末を得だ。上記原料粉
末を実施例1に記載した方法と同じ方法で成形、焼成し
本発明の焼結体を得た。このようにして作成した2組の
焼結体について結晶相含有率、結晶粒子径9曲げ強度、
破壊靭性を測定した。
Example 9.10 Water bath solutions of zirconium oxychloride, cerium nitrate, and yttrium nitrate were mixed to give the desired composition, and aqueous ammonia was added thereto to adjust the pH of the solution to 8 to obtain a precipitate. This was cut into pieces, dried, calcined at 800℃, and further ground in a ball mill for 24 hours to form Zr02.
-0θ02-Y, 03 series raw material powder was obtained. The above raw material powder was molded and fired in the same manner as described in Example 1 to obtain a sintered body of the present invention. Regarding the two sets of sintered bodies created in this way, the crystal phase content, crystal grain size 9, bending strength,
Fracture toughness was measured.

それらの測定結果を表2に示した。The measurement results are shown in Table 2.

以上の結果から明らかなとおシ、本発明のジルコニア焼
結体は、安定化剤としてOeO,を主体としており、か
つ結晶相として正方晶または正方晶と立方晶から主とし
てなっており、高強度、高靭性を有するものである。
It is clear from the above results that the zirconia sintered body of the present invention mainly contains OeO as a stabilizer and mainly consists of tetragonal crystals or tetragonal crystals and cubic crystals as a crystal phase, and has high strength, It has high toughness.

機械的強度と熱的・機械的耐久性が要求される用途、例
えば、切削バイト、押出しあるいは線引ダイス、カッタ
ー、スプレーノズル、粉砕用ボール、ボールベアリング
、メカニカルシール、水圧機器構造部品、内燃機関構造
部品などの工業材料として好適であり、産業上極めて有
用なものである。
Applications that require mechanical strength and thermal/mechanical durability, such as cutting tools, extrusion or wire drawing dies, cutters, spray nozzles, grinding balls, ball bearings, mechanical seals, hydraulic equipment structural parts, and internal combustion engines. It is suitable as an industrial material for structural parts, etc., and is extremely useful industrially.

特許出願人 東洋曹達工業株式会社 446一Patent applicant: Toyo Soda Kogyo Co., Ltd. 446-1

Claims (1)

【特許請求の範囲】 (1)主としてZ r02  とCoo、  とからな
シ、結晶相が主として正方晶系または正方晶系と立方晶
系の混合相からなるジルコニア焼結体。 (210e 02 /Z r 02 のモル比が、8/
92〜30/70の範囲である特許請求の範囲第(1)
項記載のジルコニア焼結体。 (3)  ジルコニア焼結体の6点曲げ強度が50 k
p)m”以上で、かつ、破壊靭性が4 M N m m
−”以上である特許請求の範囲第+11または(2)項
記載のジルコニア焼結体。
[Scope of Claims] (1) A zirconia sintered body mainly consisting of Z r02 and Coo, and a crystal phase mainly consisting of a tetragonal system or a mixed phase of a tetragonal system and a cubic system. (The molar ratio of 210e 02 /Z r 02 is 8/
Claim No. (1) which is in the range of 92 to 30/70
The zirconia sintered body described in . (3) The 6-point bending strength of the zirconia sintered body is 50 k
p) m” or more, and the fracture toughness is 4 M N m
-'' or more, the zirconia sintered body according to claim No. +11 or (2).
JP58035990A 1983-03-07 1983-03-07 Zirconia sintered body Granted JPS59162173A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP58035990A JPS59162173A (en) 1983-03-07 1983-03-07 Zirconia sintered body
DE19843408096 DE3408096A1 (en) 1983-03-07 1984-03-05 Zirconium dioxide sintered product, and process for the preparation thereof
AU25314/84A AU567328B2 (en) 1983-03-07 1984-03-06 Zirconia-cerium oxide ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58035990A JPS59162173A (en) 1983-03-07 1983-03-07 Zirconia sintered body

Publications (2)

Publication Number Publication Date
JPS59162173A true JPS59162173A (en) 1984-09-13
JPH0352425B2 JPH0352425B2 (en) 1991-08-09

Family

ID=12457279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58035990A Granted JPS59162173A (en) 1983-03-07 1983-03-07 Zirconia sintered body

Country Status (3)

Country Link
JP (1) JPS59162173A (en)
AU (1) AU567328B2 (en)
DE (1) DE3408096A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60108367A (en) * 1983-11-16 1985-06-13 日立化成工業株式会社 Zirconia sintered body
JPS60137870A (en) * 1983-12-26 1985-07-22 日立化成工業株式会社 Zirconia sintered body
JPS60141671A (en) * 1983-12-27 1985-07-26 日立化成工業株式会社 Manufacture of zirconia sintered body
JPS6177665A (en) * 1984-09-22 1986-04-21 株式会社ノリタケカンパニーリミテド High tenacity zirconia sintered body
JPS61219756A (en) * 1985-03-22 1986-09-30 株式会社ノリタケカンパニーリミテド Heat-resistant water-stable and high-toughness zirconia sintered body
JPS61291458A (en) * 1985-06-20 1986-12-22 東ソー株式会社 Zirconia sintered body and manufacture
JPS6212662A (en) * 1985-07-08 1987-01-21 株式会社ノリタケカンパニーリミテド High toughness zirconia base sintered body
WO1987001980A1 (en) * 1985-09-27 1987-04-09 Nippon Steel Corporation Finish cutting tool and finish cutting method for steel
US4851293A (en) * 1987-04-22 1989-07-25 Tioxide Group Plc Stabilized metallic oxides
JPH04144962A (en) * 1990-10-05 1992-05-19 Toshiba Corp High-toughness precision part
JPH06219831A (en) * 1993-04-05 1994-08-09 Noritake Co Ltd High toughness zirconia-based sintered compact
US5336521A (en) * 1991-11-02 1994-08-09 Tioxide Group Services Limited Metallic oxides
JPH0868918A (en) * 1995-09-21 1996-03-12 Toshiba Corp Optical connector parts
JP2008531455A (en) * 2005-03-01 2008-08-14 サン−ゴベン・セントル・ドゥ・レシェルシェ・エ・デチュード・ユーロペアン Sintered beads based on zirconia and cerium oxide

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8524140D0 (en) * 1985-10-01 1985-11-06 Tioxide Group Plc Stabilised metallic oxides
DE3608854A1 (en) * 1986-03-17 1987-09-24 Leitz Ernst Gmbh USE OF AN OXIDE CERAMIC MATERIAL FOR PRESSING TOOLS FOR MOLDING COMPONENTS FROM GLASS OR A GLASS-CONTAINING CERAMIC HIGH SURFACE QUALITY AND MEASUREMENT ACCURACY
JPS63139050A (en) * 1986-11-28 1988-06-10 住友化学工業株式会社 Zirconia base ceramics
GB2206111B (en) * 1987-06-24 1991-08-14 Council Scient Ind Res Sintered ceramic product
DE68917947T2 (en) * 1988-02-08 1995-03-16 Mitsubishi Chem Ind Ceramic implant and method for its manufacture.
DE4237272A1 (en) * 1992-11-04 1994-05-05 Nukem Gmbh Process for the preparation of stabilized hafnium oxide powder or powder containing hafnium oxide
FR2699524B1 (en) * 1992-12-21 1995-02-10 Rhone Poulenc Chimie Composition based on a mixed oxide of cerium and zirconium, preparation and use.
FR2701471B1 (en) * 1993-02-10 1995-05-24 Rhone Poulenc Chimie Process for the synthesis of compositions based on mixed oxides of zirconium and cerium, compositions thus obtained and uses of the latter.
FR2701472B1 (en) * 1993-02-10 1995-05-24 Rhone Poulenc Chimie Process for the preparation of compositions based on mixed oxides of zirconium and cerium.
FR2714370B1 (en) * 1993-12-24 1996-03-08 Rhone Poulenc Chimie Precursor of a composition and composition based on a mixed oxide of cerium and zirconium, method of preparation and use.

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3514252A (en) * 1967-07-07 1970-05-26 Grace W R & Co Process for the preparation of stabilized zirconia powders
US4316969A (en) * 1979-07-02 1982-02-23 Nippon Kynol Incorporated Cured novolak fiber-reinforced, chlorinated rubber molded articles having excellent flame-proofness, and process for the preparation thereof
US4360598A (en) * 1980-03-26 1982-11-23 Ngk Insulators, Ltd. Zirconia ceramics and a method of producing the same
JPS601827B2 (en) * 1980-03-31 1985-01-17 工業技術院長 MHD generator materials

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60108367A (en) * 1983-11-16 1985-06-13 日立化成工業株式会社 Zirconia sintered body
JPS60137870A (en) * 1983-12-26 1985-07-22 日立化成工業株式会社 Zirconia sintered body
JPS60141671A (en) * 1983-12-27 1985-07-26 日立化成工業株式会社 Manufacture of zirconia sintered body
JPH0535103B2 (en) * 1984-09-22 1993-05-25 Noritake Co Ltd
JPS6177665A (en) * 1984-09-22 1986-04-21 株式会社ノリタケカンパニーリミテド High tenacity zirconia sintered body
JPS61219756A (en) * 1985-03-22 1986-09-30 株式会社ノリタケカンパニーリミテド Heat-resistant water-stable and high-toughness zirconia sintered body
JPS61291458A (en) * 1985-06-20 1986-12-22 東ソー株式会社 Zirconia sintered body and manufacture
JPS6212662A (en) * 1985-07-08 1987-01-21 株式会社ノリタケカンパニーリミテド High toughness zirconia base sintered body
WO1987001980A1 (en) * 1985-09-27 1987-04-09 Nippon Steel Corporation Finish cutting tool and finish cutting method for steel
US4851293A (en) * 1987-04-22 1989-07-25 Tioxide Group Plc Stabilized metallic oxides
JPH04144962A (en) * 1990-10-05 1992-05-19 Toshiba Corp High-toughness precision part
US5336521A (en) * 1991-11-02 1994-08-09 Tioxide Group Services Limited Metallic oxides
JPH06219831A (en) * 1993-04-05 1994-08-09 Noritake Co Ltd High toughness zirconia-based sintered compact
JPH0868918A (en) * 1995-09-21 1996-03-12 Toshiba Corp Optical connector parts
JP2774782B2 (en) * 1995-09-21 1998-07-09 株式会社東芝 Optical connector parts
JP2008531455A (en) * 2005-03-01 2008-08-14 サン−ゴベン・セントル・ドゥ・レシェルシェ・エ・デチュード・ユーロペアン Sintered beads based on zirconia and cerium oxide
US8853112B2 (en) 2005-03-01 2014-10-07 Saint-Gobain Centre De Recherches Et D'etudes Europeen Sintered bead based on zirconia and on cerium oxide

Also Published As

Publication number Publication date
AU567328B2 (en) 1987-11-19
AU2531484A (en) 1984-09-13
DE3408096A1 (en) 1984-10-04
JPH0352425B2 (en) 1991-08-09

Similar Documents

Publication Publication Date Title
JPS59162173A (en) Zirconia sintered body
US4977114A (en) Zirconia ceramics and method for producing same
US5017532A (en) Sintered ceramic product
US4891343A (en) Stabilized zirconia
US4690910A (en) Sintered product of zirconia and method of producing the same
JPS6126562A (en) Zirconia sintered body
JPH0553751B2 (en)
JPS6177665A (en) High tenacity zirconia sintered body
JP3736649B2 (en) Zirconia sintered body, method for producing the same, and pulverized component material
JP2002154873A (en) Zirconia sintered compact excellent in durability
JPH0230663A (en) Sintered material of zirconia and production thereof
JPH07187774A (en) High-strength sintered zirconia material, its production, material for crushing part and ceramic die
JP2001302345A (en) Zirconia sintered body excellent in durability and manufacturing method thereof
JP2000095564A (en) Zirconia sintered body, its production and material for pulverizing member
JPS6121185B2 (en)
JPS63162570A (en) Thermal degradation-resistant high strength zirconia-alumina ceramics and manufacture
JPS5855373A (en) Zirconia ceramic and manufacture
JP2517249B2 (en) High-strength zirconia-based HIP sintered body
JPS605067A (en) Manufacture of zirconia sintered body
JPH08109065A (en) High-strength zirconia sintered compact and its production and grinding part material
JPH07215758A (en) Zirconia sintered compact
US20090081101A1 (en) Yttria-stabilized zirconia sintered body and method for producing the same
JPS63144166A (en) Manufacture of high strength zirconia base sintered body
JPS61219757A (en) High toughness zirconia sintered body
JP2002121070A (en) Sintered low temperature thermal deterioration resistant zirconia compact and method of manufacturing for the same