JP2774782B2 - Optical connector parts - Google Patents

Optical connector parts

Info

Publication number
JP2774782B2
JP2774782B2 JP7242984A JP24298495A JP2774782B2 JP 2774782 B2 JP2774782 B2 JP 2774782B2 JP 7242984 A JP7242984 A JP 7242984A JP 24298495 A JP24298495 A JP 24298495A JP 2774782 B2 JP2774782 B2 JP 2774782B2
Authority
JP
Japan
Prior art keywords
optical connector
capillary
toughness
optical
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7242984A
Other languages
Japanese (ja)
Other versions
JPH0868918A (en
Inventor
顕生 佐谷野
武 塩田
常治 亀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7242984A priority Critical patent/JP2774782B2/en
Publication of JPH0868918A publication Critical patent/JPH0868918A/en
Application granted granted Critical
Publication of JP2774782B2 publication Critical patent/JP2774782B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/7825Means for applying energy, e.g. heating means
    • H01L2224/783Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/78301Capillary
    • H01L2224/78302Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0104Zirconium [Zr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01058Cerium [Ce]

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は光ファイバを接続す
る光コネクタ用部品に係り、特に高靭性で過酷な使用環
境にも充分耐え、寿命の長い光コネクタ用部品に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a component for an optical connector for connecting an optical fiber, and more particularly to a component for an optical connector having a high toughness and a sufficient durability in a severe use environment and a long life.

【0002】[0002]

【従来の技術】半導体製造装置のボンディングキャピラ
リや光ファイバを接続する光コネクタ用部品など、繰り
返して荷重を受ける精密部品には、特に機械的強度が優
れた材料が使用されている。以下半導体製造装置のボン
ディングキャピラリおよび光コネクタ用部品を例にとっ
て説明する。
2. Description of the Related Art Materials having excellent mechanical strength are used for precision parts which are repeatedly subjected to a load, such as bonding capillaries of semiconductor manufacturing equipment and parts for optical connectors for connecting optical fibers. Hereinafter, a description will be given of a bonding capillary and an optical connector part of a semiconductor manufacturing apparatus as an example.

【0003】電子部品として多用されているICは、通
常、リードフレーム、ICチップ、パッケージから構成
されており、ICチップとリードフレームとは直径が
0.015mm〜0.1mm程度の細い金(Au)ワイヤに
よってボンディングされている。このワイヤボンディン
グ工程は、Auワイヤをキャピラリ(細管)の先端から
送出しながら、キャピラリをリードフレームとICの所
定位置に交互に圧着させ、ワイヤをリードフレームやI
Cチップ上に融着させることにより行なわれる。このキ
ャピラリの圧着は機械的かつ高速に行なわれるため、キ
ャピラリはリードフレーム等に強く打ちつけられる。ま
たキャピラリは、リードフレームに打ちつけられて瞬間
的に約1000℃の高温度に達することがある。したが
って、キャピラリの所要特性として耐衝撃性および耐熱
性が要求される。
[0003] An IC frequently used as an electronic component is usually composed of a lead frame, an IC chip, and a package. The IC chip and the lead frame have a diameter of about 0.015 mm to 0.1 mm. ) Bonded by wire. In this wire bonding step, the capillary is alternately crimped to a predetermined position of the lead frame and the IC while sending the Au wire from the tip of the capillary (small tube), and the wire is connected to the lead frame or the IC.
This is performed by fusing on a C chip. Since the pressure bonding of the capillary is performed mechanically and at a high speed, the capillary is strongly hit against a lead frame or the like. Also, the capillaries may reach a high temperature of about 1000 ° C. instantaneously after being hit against the lead frame. Therefore, impact resistance and heat resistance are required as required characteristics of the capillary.

【0004】このキャピラリの材質としては、当初ガラ
スや超硬質材を用いていたが、耐摩耗性等の点から、最
近はアルミナ(Al2 3 )多結晶セラミック製のもの
や、アルミナを原料にし、単結晶としたルビー、サファ
イアなどで形成したものが広く用いられてきた。
As a material of the capillary, glass or a super-hard material was initially used, but recently, from the viewpoint of abrasion resistance and the like, a material made of alumina (Al 2 O 3 ) polycrystalline ceramic or a material made of alumina is used. In addition, those formed of single crystal ruby, sapphire, and the like have been widely used.

【0005】特に低コストで経済的なアルミナ多結晶セ
ラミック製キャピラリが最も多く使用されていた。その
キャピラリ1の先端部付近の外形は、図2に示す如く、
先端1aに向って漸次先細りするような形状をなし、A
u線2を先端に送出する直径0.025mm〜0.1mm程
度の細孔3を備えている。
[0005] In particular, low cost and economical alumina polycrystalline ceramic capillaries have been most frequently used. The outer shape of the vicinity of the tip of the capillary 1 is as shown in FIG.
A shape that gradually tapers toward the tip 1a.
It has a pore 3 having a diameter of about 0.025 mm to 0.1 mm for sending the u-line 2 to the tip.

【0006】一方、光コネクタ部品を有する製品例とし
ては、図3および図4に示す光コネクタ10a,10b
がある。図3に示す光コネクタ10aは、軸方向に内径
0.1〜0.15mm程度の細孔11aを穿設した光コネ
クタ用部品(フェルール)12aを、例えばステンレス
鋼から成る筒状の支持体13a内に嵌挿し、さらに上記
細孔11aに直径0.1〜0.15mm程度の光ファイバ
14を挿通せしめて構成されている。また図4に示す光
コネクタ10bは、軸方向に細孔11bを穿設した光コ
ネクタ用部品(フェルール)12bの一端部のみを支持
体13b内に嵌挿し、さらに上記細孔11bに光ファイ
バ14を挿通せしめて構成される。上記光コネクタ用部
品(フェルール)12a,12bの構成材料としては、
超硬材料やアルミナセラミックス等が使用されていた。
On the other hand, examples of products having optical connector parts include optical connectors 10a and 10b shown in FIGS.
There is. The optical connector 10a shown in FIG. 3 includes an optical connector component (ferrule) 12a having a hole 11a having an inner diameter of about 0.1 to 0.15 mm in the axial direction, and a cylindrical support 13a made of, for example, stainless steel. The optical fiber 14 having a diameter of about 0.1 to 0.15 mm is inserted through the small hole 11a. In the optical connector 10b shown in FIG. 4, only one end of an optical connector component (ferrule) 12b having a hole 11b formed in the axial direction is inserted into the support 13b, and the optical fiber 14 is inserted into the hole 11b. Is inserted. The constituent materials of the optical connector parts (ferrules) 12a and 12b include:
Super hard materials and alumina ceramics were used.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、前記ワ
イヤボンディング工程においては、近年、ICチップの
高集積化および小型化に伴い、ワイヤ自体も細くして高
密度でワイヤボンディングすることが求められている。
したがって、キャピラリそのものも先端部付近の外径お
よび孔径の小さなものが必要とされている。従来、キャ
ピラリの先端外径は200μm位であったが、現在では
50μm程度の微細なキャピラリが求められている。
However, in the wire bonding step, in recent years, with the high integration and miniaturization of IC chips, it has been required to make the wires themselves thin and to perform high-density wire bonding. .
Therefore, the capillary itself is required to have a small outer diameter and a smaller hole diameter near the tip. Conventionally, the outer diameter of the tip of the capillary was about 200 μm, but at present, a fine capillary of about 50 μm is required.

【0008】この要求に応えるため、従来キャピラリ材
として用いられていたAl2 3 系やセラミックスを用
いて、形状は従来と同様の形状にし、キャピラリ先端外
径を50μmとしたキャピラリを製造した場合、次のよ
うな問題点が生ずる。つまり、たしかに従来より外径の
小さなキャピラリが得られるものの、Al2 3 の強度
不足に基づきキャピラリにクラックが発生したりして短
期間内に使用に耐え得なくなり、寿命が短いという問題
点がある。
In order to meet this demand, when a capillary having a shape similar to the conventional one and an outer diameter of the capillary tip of 50 μm is manufactured using Al 2 O 3 or ceramics which has been conventionally used as a capillary material. The following problems arise. In other words, although a capillary with a smaller outer diameter can be obtained than in the past, cracks may occur in the capillary due to insufficient strength of Al 2 O 3 , and the capillary cannot be used within a short period of time, and the life is short. is there.

【0009】一方、ルビーやサファイアはアルミナ多結
晶セラミックに比べて製造コストが高くなるという欠点
がある。
On the other hand, ruby and sapphire have the disadvantage that the production cost is higher than that of alumina polycrystalline ceramic.

【0010】さらにより高い精度でのワイヤボンディン
グを行なうためにキャピラリの先端部の形状について
は、図2に示す円錐台形状のものから図1に示すような
ボトルネック形状のものが採用されつつある。すなわ
ち、図1に示すキャピラリ4の先端部は加工歪を低減
し、クラックの発生を防止するために外表面を内側に湾
曲させて形成される。そのため先端部の外径は従来より
大幅に小さくなり、従来と同一の強度を確保するために
は、より靭性の高い材料で構成する必要がある。その要
請に対応するものとして、部分安定化ジルコニア(Zr
2 )で形成したキャピラリも試用されている。しかし
ながら部分安定化ジルコニアでボトルネック状に形成し
たものは成形加工時または使用時にその先端部に欠けを
生じ易く、寿命が短いという欠点がある。
In order to perform wire bonding with even higher precision, the shape of the tip of the capillary is being adopted from a truncated cone shape as shown in FIG. 2 to a bottle neck shape as shown in FIG. . That is, the tip of the capillary 4 shown in FIG. 1 is formed by curving the outer surface inward in order to reduce processing distortion and prevent cracks from occurring. For this reason, the outer diameter of the distal end portion is much smaller than in the past, and in order to secure the same strength as in the past, it is necessary to use a material having higher toughness. In response to the demand, partially stabilized zirconia (Zr
Capillaries formed from O 2 ) have also been used. However, a bottle formed of partially stabilized zirconia in the form of a bottleneck tends to be chipped at the time of molding or use, and has a drawback that its life is short.

【0011】一方、超硬材料やアルミナセラミックスで
形成した光コネクタ用部品を使用した従来の光コネクタ
においては、耐摩耗性や靭性が低いため、光コネクタを
着脱する際に作用する衝撃力や摺動作用によって摩耗が
急激に進行したり、割れやかけが発生し易い難点があっ
た。上記のような摩耗や割れの発生により、光コネクタ
部品の接続端面15a,15bにおいて、光ファイバ1
4の中心軸が所定位置からずれてしまうため、接続部に
おいて光伝送量が低下する等の問題も生じていた。
On the other hand, a conventional optical connector using an optical connector component formed of a super hard material or alumina ceramic has low abrasion resistance and toughness. There was a problem that abrasion progressed rapidly, and cracking and spalling were apt to occur depending on the operation. Due to the occurrence of the abrasion and cracks as described above, the optical fibers 1 are not connected to the connection end surfaces 15a and 15b of the optical connector component.
Since the center axis of No. 4 is deviated from a predetermined position, problems such as a reduction in the amount of optical transmission at the connection portion have occurred.

【0012】本発明は上記の問題点を解決するためにな
されたものであり、機械的強度および靭性が大きく、割
れや欠けの発生が少なく光伝送量の低下が少ない光コネ
クタ用部品を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and provides an optical connector component having high mechanical strength and toughness, less occurrence of cracks and chips, and less decrease in optical transmission amount. The purpose is to:

【0013】[0013]

【課題を解決するための手段】本願発明者等は上記目的
を達成するため、種々のセラミックス材に関し、調査研
究を重ねた結果、重量%で酸化セリウム(CeO2 )を
3.0〜20%含有し、残部が実質的に酸化ジルコニウ
ムから成る部品を形成したときに、高い靭性を有し、細
径形状に形成した場合においても優れた強度を有するボ
ンディングキャピラリや光コネクタ用部品などの精密部
品が得られた知見に基づいて本発明を完成するに至っ
た。
In order to achieve the above object, the inventors of the present invention have conducted various studies on various ceramic materials, and found that cerium oxide (CeO 2 ) was 3.0 to 20% by weight. Precise parts such as bonding capillaries and optical connector parts that have high toughness when formed into a part substantially made of zirconium oxide and have excellent strength even when formed into a small diameter shape. The present invention has been completed based on the findings obtained.

【0014】すなわち本発明に係る光コネクタ用部品
は、光ファイバを接続する光コネクタ用部品において、
平均粒径が20〜200オングストロームの酸化セリウ
ムおよび酸化ジルコニウムの原料粉を焼結して成る焼結
体であり、かつ重量パーセントで酸化セリウムを3.0
%以上20%以下含有し、残部が実質的に酸化ジルコニ
ウムから成ることを特徴とする。
That is, an optical connector component according to the present invention is an optical connector component for connecting an optical fiber,
A sintered body obtained by sintering raw material powders of cerium oxide and zirconium oxide having an average particle diameter of 20 to 200 angstroms, and cerium oxide of 3.0 weight percent.
% To 20%, with the balance substantially consisting of zirconium oxide.

【0015】本発明の対象となる光コネクタ用部品など
の高靭性精密部品の原材料として使用する酸化セリウム
および酸化ジルコニウムは粉末として一般に市販されて
いるものを利用することができる。また酸化セリウムは
3.0〜20重量%含有される。この酸化セリウムは、
酸化ジルコニウムを部分的に安定化させる安定化剤とし
て機能し、精密部品の靭性および強度を高める作用を有
する。しかし酸化セリウムの含有量が3.0%未満では
靭性および強度が不充分となる一方、含有量が20%を
超えると焼結が困難となるため、含有量は3.0〜20
%の範囲内に設定される。
As cerium oxide and zirconium oxide used as raw materials for high-toughness precision parts such as optical connector parts which are the object of the present invention, commercially available powders can be used. Cerium oxide is contained in an amount of 3.0 to 20% by weight. This cerium oxide
It functions as a stabilizer to partially stabilize zirconium oxide and has the effect of increasing the toughness and strength of precision parts. However, if the content of cerium oxide is less than 3.0%, the toughness and strength become insufficient, while if the content exceeds 20%, sintering becomes difficult, so the content is 3.0 to 20.
It is set within the range of%.

【0016】次に本発明の目的とする特性を有するボン
ディングキャピラリや光コネクタ用部品などの精密部品
の製造工程について、前記のボンディングキャピラリを
例にとり説明する。なお、光コネクタ用部品の製造工程
もボンディングキャピラリの製造工程とほぼ同様であ
る。
Next, the manufacturing process of a precision component such as a bonding capillary or a component for an optical connector having the characteristics aimed at by the present invention will be described with reference to the aforementioned bonding capillary as an example. The manufacturing process of the optical connector component is almost the same as the manufacturing process of the bonding capillary.

【0017】すなわち、まず酸化セリウムおよび酸化ジ
ルコニウムの各原料粉を上記組成となるように秤量しボ
ールミル等で混合する。原料粉は、いずれもその平均粒
径が20〜200オングストロームのものを用いると焼
結後に得られるセラミックスは緻密で高硬度となるので
好ましい。
That is, first, the respective raw material powders of cerium oxide and zirconium oxide are weighed so as to have the above-mentioned composition and mixed by a ball mill or the like. It is preferable that the raw material powder has an average particle diameter of 20 to 200 angstroms, because the ceramic obtained after sintering is dense and has high hardness.

【0018】得られた混合粉は室温下でプレス成形して
グリーン成形体に加工する。このグリーン成形体にとっ
て加工上重要なことは、この成形体には図1に示すよう
にストレートな細孔5およびテーパ孔6や、図3および
図4に示すような細孔11a,11bを形成する粗加工
を施すので、この穿孔加工時にキャピラリ成形体や光コ
ネクタ部品成形体を研削盤等にチャッキングできる程度
の強度を備えていることである。通常、この強度を確保
するためには成形体の嵩密度を2.8〜4g/cm3 に設
定すればよい。このためには加圧成形時のプレス圧を7
00〜1000kg/cm2 の範囲に設定することが好まし
い。
The obtained mixed powder is press-molded at room temperature and processed into a green compact. What is important in processing for the green molded body is that the molded body has straight pores 5 and tapered holes 6 as shown in FIG. 1 and pores 11a and 11b as shown in FIGS. Since the rough processing is performed, the material has such a strength as to be able to chuck the capillary molded body or the optical connector component molded body to a grinding machine or the like at the time of the perforation processing. Usually, in order to secure this strength, the bulk density of the molded body may be set to 2.8 to 4 g / cm 3 . For this purpose, the press pressure at the time of pressure molding is 7
It is preferable to set in the range of 00 to 1000 kg / cm 2 .

【0019】穿孔加工を終了した後、この成形体を所定
条件下で焼結する。このときの焼結条件によって、得ら
れた焼結体の機械的強度、硬度などの特性は大きく左右
される。前述した特性範囲を発現せしめるためには、例
えば焼結温度1400〜1600℃、焼結時間0.5〜
4時間であればよい。
After the piercing operation is completed, the formed body is sintered under predetermined conditions. Characteristics such as mechanical strength and hardness of the obtained sintered body largely depend on sintering conditions at this time. In order to express the above-mentioned characteristic range, for example, the sintering temperature is 1400 to 1600 ° C., and the sintering time is 0.5 to
Four hours is sufficient.

【0020】また焼結して形成されたキャピラリは、図
2に示す如き従来のキャピラリ1のように先端に向って
外径が漸次縮径するような形状ではなく、図1に示すよ
うにキャピラリ4の外径が所定位置から急激に小さくな
るような形状、いわゆるボトルネック形状を有してい
る。そのため、先端部の加工歪の発生が少なく、Au線
などのボンディングワイヤの高精度な圧着が可能とな
る。
The capillary formed by sintering does not have a shape such that the outer diameter gradually decreases toward the tip as in the conventional capillary 1 as shown in FIG. 2, but the capillary as shown in FIG. 4 has a shape in which the outer diameter suddenly decreases from a predetermined position, that is, a so-called bottleneck shape. For this reason, there is little processing distortion at the tip, and high-precision crimping of a bonding wire such as an Au wire becomes possible.

【0021】また酸化セリウムの添加により、高靭性を
有するセラミックス材が形成されるため、先端部をボト
ルネック形状に微細に形成した場合においても、キャピ
ラリにクラックが発生することは少なく、長期間にわた
って安定した性能を保持することができる。
In addition, since a ceramic material having high toughness is formed by the addition of cerium oxide, even when the tip portion is finely formed into a bottleneck shape, cracks are less likely to occur in the capillary, and the capillaries can be formed for a long time. Stable performance can be maintained.

【0022】また、このキャピラリ4が高強度のセラミ
ックスで構成されるため、同一強度を得る場合には相対
的に先端4aの孔径および外径をさらに小さくすること
が可能であり、最終製品のより高密度化、小型化に充分
対応することができる。
Further, since the capillary 4 is made of a high-strength ceramic, the hole diameter and the outer diameter of the tip 4a can be made relatively smaller in order to obtain the same strength. It is possible to sufficiently cope with high density and miniaturization.

【0023】また上記CeO2 およびZrO2 から成る
二元系セラミックス材で形成した光コネクタ部品を備え
る光コネクタによれば、特に高靭性のZrO2 にCeO
2 を添加して靭性および強度をさらに改善し耐摩耗性を
向上せしめているため、光コネクタの着脱時に作用する
衝撃力や摺動作用によって、摩耗が急速に進行したり、
割れや欠けが発生することが少ない。特に加工時の変形
が少なく、加工精度を大幅に高めることができる。した
がって、光ファイバの中心軸が接続部においてずれるお
それも少なく、接続部における光伝送量の損失が効果的
に低減できる。
According to the optical connector provided with the optical connector component formed of the binary ceramic material composed of CeO 2 and ZrO 2 , particularly, the high toughness of ZrO 2 is changed to CeO 2 .
Addition of 2 further improves toughness and strength and improves wear resistance, so wear can progress rapidly due to impact force and sliding action that occurs when attaching and detaching optical connectors,
Cracks and chips are less likely to occur. In particular, deformation during processing is small, and processing accuracy can be greatly increased. Therefore, the center axis of the optical fiber is less likely to be shifted at the connection portion, and the loss of the light transmission amount at the connection portion can be effectively reduced.

【0024】本発明は、上記のようにワイヤボンディン
グキャピラリや光コネクタ用部品の他に各種ワイヤガイ
ドなど高靭性を必要とする部品材料に適用される。しか
しながらその適用範囲は上記の部品に限らず、複雑な形
状を有し肉薄で欠けやクラックが発生し易い全ての精密
部品に対して同様に応用することができる。
The present invention is applied to a material requiring high toughness, such as various wire guides, in addition to a wire bonding capillary and a component for an optical connector as described above. However, the applicable range is not limited to the above-mentioned parts, but can be similarly applied to all precision parts having a complicated shape, being thin and easily causing chipping or cracking.

【0025】[0025]

【発明の実施の形態】次に本発明の実施例について添付
図面を参照して、より具体的に説明する。実施例1〜5 図4に示すような形状を有し、部品の外径が2.499
mm、細孔の孔径が0.1〜0.15mmのサイズを有する
光コネクタ用部品を、表1左欄に示すセラミックス組成
のように酸化セリウムの含有量を3.5〜20.0%の
範囲で変化させ、残部が酸化ジルコニウム(ZrO2
から成る焼結体で形成し実施例1〜5とした。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described more specifically with reference to the accompanying drawings. Examples 1 to 5 have a shape as shown in FIG.
The optical connector component having a size of 0.1 to 0.15 mm with a cerium oxide content of 3.5 to 20.0% as shown in the left column of Table 1 was prepared. Range, the remainder being zirconium oxide (ZrO 2 )
Examples 1 to 5 were formed from a sintered body composed of

【0026】得られた各光コネクタ用部品の機械的強度
を評価するため、曲げ強さと破壊靭性を測定した。測定
結果を表1に示した。
In order to evaluate the mechanical strength of each of the obtained optical connector parts, the bending strength and the fracture toughness were measured. Table 1 shows the measurement results.

【0027】比較例1〜2 一方、比較例1,2として、酸化セリウム含有量をそれ
ぞれ2.0%、23.0%とし、残部を酸化ジルコニウ
ムで調製した粉末混合体を実施例1〜5と同一形状でか
つ同一条件で光コネクタ用部品焼結体を形成し、同様に
機械的特性を測定した。
Comparative Examples 1 and 2 On the other hand, as Comparative Examples 1 and 2, powder mixtures prepared with cerium oxide contents of 2.0% and 23.0%, respectively, and the balance of zirconium oxide were used. An optical connector component sintered body was formed in the same shape and under the same conditions as above, and the mechanical properties were measured in the same manner.

【0028】比較例3 また比較例3として、酸化イットリウム(Y2 3 )3
重量%、残部が酸化ジルコニウム(ZrO3 )から成る
焼結体で実施例1〜5と同一形状および大きさを有する
光コネクタ用部品を製作し、同様に機械的特性を測定し
た。
Comparative Example 3 As Comparative Example 3, yttrium oxide (Y 2 O 3 ) 3
Optical connector parts having the same shape and size as those of Examples 1 to 5 were manufactured from a sintered body composed of zirconium oxide (ZrO 3 ) by weight, and the mechanical properties were measured in the same manner.

【0029】比較例4 さらに比較例4として酸化マグネシウム(MgO)0.
2重量%、酸化珪素(SiO2 )0.2重量%、残部が
酸化アルミニウム(Al2 3 )から成るAl2 3
セラミックスを使用し、実施例1〜5と同一形状および
大きさを有する光コネクタ用部品を製作し、同様に特性
値を測定した。
Comparative Example 4 Further, as Comparative Example 4, magnesium oxide (MgO) 0.1.
2 wt%, silicon oxide (SiO 2) 0.2 wt%, the balance using Al 2 O 3 based ceramic made of aluminum oxide (Al 2 O 3), the same shape and size as Examples 1-5 Optical component parts were manufactured and their characteristic values were measured in the same manner.

【0030】以上実施例1〜5および比較例1〜4の測
定結果を下記表1に示す。
The measurement results of Examples 1 to 5 and Comparative Examples 1 to 4 are shown in Table 1 below.

【0031】[0031]

【表1】 [Table 1]

【0032】表1に示す結果から明らかなように、本実
施例1〜5に示す酸化セリウム(CeO2 )含有量の範
囲においては、比較例3,4に示すY2 3 を添加した
セラミックスあるいは酸化アルミニウム系のセラミック
スで形成したキャピラリと比べていずれも高い破壊靭性
値が得られた。
As is clear from the results shown in Table 1, in the range of the cerium oxide (CeO 2 ) content shown in Examples 1 to 5, the ceramics containing Y 2 O 3 shown in Comparative Examples 3 and 4 were added. Alternatively, a higher fracture toughness value was obtained in each case than in a capillary formed of an aluminum oxide-based ceramic.

【0033】一方比較例1で示すように酸化セリウムが
過少のものは曲げ強さおよび破壊靭性値が比較的低い一
方、また比較例2で示すように、過多のものは焼結性が
悪いため強度も小さく、加工時および接続時に割れが多
発した。
On the other hand, those having too little cerium oxide as shown in Comparative Example 1 have relatively low flexural strength and fracture toughness, while those having too much cerium oxide have poor sinterability as shown in Comparative Example 2. The strength was low, and cracks occurred frequently during processing and connection.

【0034】[0034]

【発明の効果】以上説明の通り、本発明に係る光コネク
タ用部品等の高靭性精密部品によれば、破壊靭性値が従
来品より大幅に向上するため、微細形状に加工した場合
においても、欠けやクラックを発生せず、高精度な加工
が可能となる。
As described above, according to the high-toughness precision parts such as the optical connector parts according to the present invention, the fracture toughness value is greatly improved as compared with the conventional products, so that even when processed into a fine shape, High-precision processing becomes possible without generating chips or cracks.

【0035】さらに本発明に係る光コネクタ用部品によ
れば、特に高靭性のZrO2 にCeO2 を添加して強度
および靭性を高めた焼結体で形成しているため、摩耗や
割れや欠けなどが発生することが少ない。特に加工時の
変形が少なく、加工精度を大幅に高めることができる。
したがって、光ファイバの中心軸が接続部においてずれ
るおそれも少なく、接続部における光伝送量の損失も効
果的に低減できる。
Further, according to the optical connector component of the present invention, since it is formed of a sintered body having enhanced strength and toughness by adding CeO 2 to ZrO 2 having high toughness, wear, cracks and chipping are caused. Less likely to occur. In particular, deformation during processing is small, and processing accuracy can be greatly increased.
Therefore, the center axis of the optical fiber is less likely to be shifted at the connection portion, and the loss of the light transmission amount at the connection portion can be effectively reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】高靭性精密部品としてのキャピラリの形状例を
示す部分断面図。
FIG. 1 is a partial cross-sectional view showing a shape example of a capillary as a high-toughness precision part.

【図2】従来のキャピラリの形状例を示す部分断面図。FIG. 2 is a partial cross-sectional view showing a shape example of a conventional capillary.

【図3】従来汎用の光コネクタの構造例を示す断面図。FIG. 3 is a cross-sectional view showing a structural example of a conventional general-purpose optical connector.

【図4】従来の光コネクタの他の構造例を示す断面図。FIG. 4 is a sectional view showing another example of the structure of a conventional optical connector.

【符号の説明】[Explanation of symbols]

1 キャピラリ 1a 先端 2 Au線 3 細孔 4 キャピラリ 4a 先端 5 細孔 6 テーパ孔 10a,10b 光コネクタ 11a,11b 細孔 12a,12b 光コネクタ部品(フェルール) 13a,13b 支持体 14 光ファイバ 15a,15b 接続端面 θc テーパ孔の開度DESCRIPTION OF SYMBOLS 1 Capillary 1a Tip 2 Au wire 3 Pores 4 Capillary 4a Tip 5 Pores 6 Tapered hole 10a, 10b Optical connector 11a, 11b Porous 12a, 12b Optical connector parts (ferrule) 13a, 13b Support 14 Optical fiber 15a, 15b Connection end face θc Opening of tapered hole

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】光ファイバを接続する光コネクタ用部品に
おいて、平均粒径が20〜200オングストロームの酸
化セリウムおよび酸化ジルコニウムの原料粉を焼結して
成る焼結体であり、かつ重量パーセントで酸化セリウム
を3.0%以上20%以下含有し、残部が実質的に酸化
ジルコニウムから成ることを特徴とする光コネクタ用部
品。
1. A component for an optical connector for connecting an optical fiber, which is a sintered body obtained by sintering a raw material powder of cerium oxide and zirconium oxide having an average particle diameter of 20 to 200 angstroms, and oxidized by weight percent. An optical connector component comprising cerium in an amount of 3.0% or more and 20% or less, with the balance substantially consisting of zirconium oxide.
JP7242984A 1995-09-21 1995-09-21 Optical connector parts Expired - Lifetime JP2774782B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7242984A JP2774782B2 (en) 1995-09-21 1995-09-21 Optical connector parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7242984A JP2774782B2 (en) 1995-09-21 1995-09-21 Optical connector parts

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2269223A Division JPH0672049B2 (en) 1990-10-05 1990-10-05 Bonding capillaries and optical connector parts

Publications (2)

Publication Number Publication Date
JPH0868918A JPH0868918A (en) 1996-03-12
JP2774782B2 true JP2774782B2 (en) 1998-07-09

Family

ID=17097173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7242984A Expired - Lifetime JP2774782B2 (en) 1995-09-21 1995-09-21 Optical connector parts

Country Status (1)

Country Link
JP (1) JP2774782B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013189053A1 (en) * 2012-06-20 2013-12-27 潮州三环(集团)股份有限公司 Ceramic ferrule

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59162173A (en) * 1983-03-07 1984-09-13 東ソー株式会社 Zirconia sintered body
JPS61136960A (en) * 1984-12-06 1986-06-24 日立化成工業株式会社 Manufacture of black zirconia ceramics
JPS6323107A (en) * 1986-03-28 1988-01-30 Kyocera Corp Connector for optical fiber
JPH01262507A (en) * 1988-04-14 1989-10-19 Nippon Telegr & Teleph Corp <Ntt> Optical fiber connector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59162173A (en) * 1983-03-07 1984-09-13 東ソー株式会社 Zirconia sintered body
JPS61136960A (en) * 1984-12-06 1986-06-24 日立化成工業株式会社 Manufacture of black zirconia ceramics
JPS6323107A (en) * 1986-03-28 1988-01-30 Kyocera Corp Connector for optical fiber
JPH01262507A (en) * 1988-04-14 1989-10-19 Nippon Telegr & Teleph Corp <Ntt> Optical fiber connector

Also Published As

Publication number Publication date
JPH0868918A (en) 1996-03-12

Similar Documents

Publication Publication Date Title
JPH0672050B2 (en) Bonding capillaries and optical connector parts
JP2774782B2 (en) Optical connector parts
JP3566678B2 (en) Capillary for wire bonding
JP2774783B2 (en) Optical connector parts
JP4269910B2 (en) Bonding capillary
JPH0672049B2 (en) Bonding capillaries and optical connector parts
JP3309004B2 (en) Capillary for wire bonding
JP3210824B2 (en) Optical fiber connector components
JP2003104776A (en) Production method for ceramic sintered compact
KR102573024B1 (en) Capillary for Wire Bonding and Method for Manufacturing the Same
JP2000053463A (en) Jig for can manufacturing
JP2003307647A (en) Optical fiber ferrule, its machining method and pigtail for optical module using the same
JPS6276527A (en) Wire bonding capillary
JP3195858B2 (en) Optical fiber connector parts made of zirconia
JPH11189457A (en) Abrasion resistant alumina sintered compact
JP4693288B2 (en) Ferrule for optical fiber and manufacturing method thereof
JPH0763950A (en) Optical fiber connector parts made of zirconia
JP2001240468A (en) Sintered body of zirconia for light connector and process for producing the same
JP2003195105A (en) Optical fiber ferrule and its manufacturing method
JP2006308736A (en) Ferrule, optical receptacle, and optical module
JP2002169056A (en) Ferrule for optical fiber and its manufacturing method
JPH0247857B2 (en) ATSUCHAKUYOKYAPIRARICHITSUPU
JP2004010419A (en) Zirconia sintered compact and method for producing the same
JP2000219573A (en) Member for optical fiber connector
JPH01157466A (en) Silicon nitride sintered body