JPH01212273A - Alumina ceramic reinforced with zirconia - Google Patents

Alumina ceramic reinforced with zirconia

Info

Publication number
JPH01212273A
JPH01212273A JP63034749A JP3474988A JPH01212273A JP H01212273 A JPH01212273 A JP H01212273A JP 63034749 A JP63034749 A JP 63034749A JP 3474988 A JP3474988 A JP 3474988A JP H01212273 A JPH01212273 A JP H01212273A
Authority
JP
Japan
Prior art keywords
zirconia
alumina ceramic
alumina
rare earth
magnesia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63034749A
Other languages
Japanese (ja)
Inventor
Akihito Iwai
明仁 岩井
Shuichiro Shimoda
下田 修一郎
Kiyoshi Kawai
潔 川合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP63034749A priority Critical patent/JPH01212273A/en
Publication of JPH01212273A publication Critical patent/JPH01212273A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate color uneveness of a zirconia-reinforced alumina ceramic and to reduce dispersion of characteristics of a sintered product thereof by adding an appropriate amt. of magnesia to zirconia-reinforced alumina ceramic wherein tetragonal zirconia stabilized with a rare earth oxide is used for the reinforcing zirconia. CONSTITUTION:The title zirconia-reinforced alumina ceramic contains 10-40wt.% zirconia component contg. 1.5-15mol.% rare earth oxide (e.g., CeO2, Y2O3), 0.2-5wt.% magnesia, and 55-89.8wt.% alumina. Further, a crystalline phase in a sintered body contains primarily tetragonal zirconia crystals and alpha-alumina crystals. Since the zirconia-reinforced alumina ceramic contains tetragonal zirconia stabilized with a rare earth oxide, the ceramic has high mechanical strength and toughness, etc. Since it contains also magnesia, it is used preferably for a material for abrasion resistant member due to its small dispersion of characteristics of sintered products and eliminated color unevenness.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は機械的強度、破壊靭性等に優れたジルコニア強
化アルミナセラミックスに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a zirconia-reinforced alumina ceramic having excellent mechanical strength, fracture toughness, and the like.

(従来の技術) アルミナセラミックスは、−船釣なセラミックスより機
械的強度、耐薬品性、耐摩耗性等に優れ。
(Prior art) Alumina ceramics are superior in mechanical strength, chemical resistance, abrasion resistance, etc. than boat-grade ceramics.

比較的安価なため1機械部材として広く使用されている
。しかし近年用途が拡大するとともに、より過酷な条件
で使用されるようになり、より高性能のアルミナセラミ
ックスが必要になってきた。
Because it is relatively inexpensive, it is widely used as a mechanical component. However, as its applications have expanded in recent years, it has come to be used under harsher conditions, and higher performance alumina ceramics have become necessary.

アルミナセラミックスの高性能化法の一つにアルミナセ
ラミックス中にジルコニアを分散して機械的強度、破壊
靭性等を向上させる方法がある(ジルコニア強化アルミ
ナセラミックス)。
One method for improving the performance of alumina ceramics is to disperse zirconia in alumina ceramics to improve mechanical strength, fracture toughness, etc. (zirconia-reinforced alumina ceramics).

このようなジルコニア強化アルミナセラミックスはよく
知られており、以下の2種類に大別できる。
Such zirconia-reinforced alumina ceramics are well known and can be broadly classified into the following two types.

(1)特公昭59−25748号公報に示されるように
焼結温度域から室温に冷却する過程でジルコニアを正方
晶から単斜晶に相転移させ、その際発生す゛るマイクロ
クラックにより靭性を向上させたもの。
(1) As shown in Japanese Patent Publication No. 59-25748, zirconia undergoes a phase transition from tetragonal to monoclinic in the process of cooling from the sintering temperature range to room temperature, and the toughness is improved by the microcracks generated at this time. Something.

(2)米国特許第4316964号明細書に示されるよ
うに室温においては準安定相である正方晶ジルコニアを
、結晶粒径を約0.5μm以下にしたリ、安定化剤を用
いるなどの方法で焼結体中に安定して存在させることに
よ抄靭性を向上させたもの。
(2) As shown in U.S. Pat. No. 4,316,964, tetragonal zirconia, which is a metastable phase at room temperature, has a crystal grain size of about 0.5 μm or less, and is produced by using a stabilizing agent. Improved paper toughness by stably existing in the sintered body.

このうち(1)のものは、靭性は向上するが9強度はさ
ほど改善されず、ジルコニアの添加量が多すぎると逆に
靭性及び強度が低下するという欠点が生じる。
Among these, (1) improves toughness but does not significantly improve strength, and has the disadvantage that if too much zirconia is added, toughness and strength decrease.

これに対しく2)のものは、靭性が向上すると共だ。In contrast, 2) improves toughness.

強度も向上するという優れたものである。(2)の方法
において、ジルコニアの結晶粒径を0.5μm以下に制
御して正方品ジルコニアを安定に存在させることの困難
さから安定化剤を添加して正方晶ジルコニアを安定化さ
せることが多く行なわれている。この安定化剤としては
MgO,Cab、 YsOs 。
This is an excellent product that also improves strength. In method (2), it is difficult to stabilize the tetragonal zirconia by controlling the crystal grain size of the zirconia to 0.5 μm or less, so it is necessary to add a stabilizer to stabilize the tetragonal zirconia. It is done a lot. The stabilizers include MgO, Cab, and YsOs.

Ce02tLa*ose ErzOsなどが公知である
Ce02tLa*ose ErzOs and the like are known.

Centを安定化剤として用い九正方晶ジルコニアセラ
ミックスは、特開昭60−108367号公報などに示
され、化学的耐食性、高温耐久性に優れることが知られ
ており、また正方晶ジルコニアセラミックスを用いたジ
ルコニア強化アルミナセラミックスは、米国特許第43
1694号明細書に示される。
Nine-tetagonal zirconia ceramics using Cent as a stabilizer are disclosed in JP-A-60-108367, etc., and are known to have excellent chemical corrosion resistance and high-temperature durability. The zirconia-reinforced alumina ceramics were disclosed in U.S. Patent No. 43.
No. 1694.

(発明が解決しようとするl1題) Centを安定化剤とした正方晶ジルコニアセラミック
スを用いて得られたジルコニア強化アルミナセラミック
スは、  Y鵞Osを安定化剤としたジルコニア強化ア
ルミナセラミックスに比較して、化学的耐食性、高温耐
久性に優れるが9反面機械的強度などの特性はばらつき
が大きく、平均値も低いという欠点があった。
(11 Problems to be Solved by the Invention) Zirconia-reinforced alumina ceramics obtained using tetragonal zirconia ceramics using Cent as a stabilizer are as follows: Although it has excellent chemical corrosion resistance and high-temperature durability, it has the disadvantage that properties such as mechanical strength vary widely and the average value is low.

また焼成して得られた焼結体は1表面と内部とでは色調
が異なり、研削加工等によって焼結体内部が露出する場
合には、著しく外観を害し、商品価値を大きく低下させ
るものであった。この傾向は、安定化剤としてYt O
s 、 Gdz Os 、 Ybz Osの一種以上と
Centを用いたジルコニア強化アルミナセラミックス
においても同様であった。
In addition, the sintered body obtained by firing has a different color tone between the surface and the inside, and if the inside of the sintered body is exposed by grinding, etc., the appearance will be significantly impaired and the product value will be greatly reduced. Ta. This tendency is explained by the use of YtO as a stabilizer.
The same was true for zirconia-reinforced alumina ceramics using Cent and one or more of YbzOs, GdzOs, and YbzOs.

本発明は焼結体の機械的強度などの特性を高め。The present invention improves the mechanical strength and other properties of the sintered body.

ばらつきを小さくシ、さらに焼結体の着色や色むらをな
くしたジルコニア強化アルミナセラミックスを提供する
ことを目的とするものである。
The object of the present invention is to provide zirconia-reinforced alumina ceramics with reduced variation and also with no coloring or uneven coloring of the sintered body.

(課題を解決する丸めの手段) 本発明者らは、上記の欠点九ついて添加物等を変えたり
して焼結体の性能にりいて調査研究を進めた結果、  
Centを安定化剤とした正方晶ジルコる程度Ce”+
とじて存在するが、冷却過程でCe”が室温で安定なC
e  に変わるとき、焼結体の内部まで酸素が十分に拡
散せず、  Ce”+が残存するためと考え、まなこの
正方晶ジルコニアラ用IAfF−ジルコニア強化アルミ
ナセラオックスにおける色むらの原因も同様であるもの
と考えた。ここでCe  とCe  はZr(hを安定
化させる能力が異なり、その結果強度などの焼結体特性
も異なったものとなるため色むらが発生した場合、焼結
体特性がばらつき易くなるということをつきとめ念。
(Means of rounding to solve the problem) As a result of the inventors' investigation and research on the performance of the sintered body by changing the additives etc. in view of the above-mentioned drawbacks,
Tetragonal zirco-like Ce”+ with Cent as a stabilizer
However, during the cooling process, Ce” becomes C which is stable at room temperature.
When changing to e, oxygen is not sufficiently diffused into the interior of the sintered body and Ce"+ remains, and the cause of color unevenness in Manako's IAfF-zirconia-reinforced alumina Ceraox for tetragonal zirconia is also thought to be the same. Here, Ce and Ce have different abilities to stabilize Zr (h), and as a result, the properties of the sintered body such as strength are also different, so if color unevenness occurs, the sintered body Please note that the characteristics tend to vary.

そこで本発明者らは、さらに研究を進めた結果主として
Ce0tなどの希土類酸化物を安定化剤とする正方晶ジ
ルコニアを用いたジルコニア強化アルミナにマグネシア
を適量添加すると色むらをなくすことができ、その結果
焼結体特性のばらつきを小さくすることができることを
確認した。
As a result of further research, the present inventors found that adding an appropriate amount of magnesia to zirconia-reinforced alumina, which uses tetragonal zirconia stabilized with rare earth oxides such as Ce0t, can eliminate color unevenness. As a result, it was confirmed that variations in the properties of sintered bodies could be reduced.

本発明は希土類酸化物を1.5〜15モルチ含むジルコ
ニア成分10〜40重量チ、マグネシア0.2〜5重量
%、及びアルミナ55〜89.8重量%を含有し、かつ
焼結体中の結晶相が主として正方晶ジルコニア結晶及び
α−アルミナ結晶を含むジルコニア強化アルミナセラミ
ックスに関する。
The present invention contains a zirconia component containing 1.5 to 15 mol of rare earth oxide, 10 to 40 mol of zirconia, 0.2 to 5 mol of magnesia, and 55 to 89.8 mol of alumina, and The present invention relates to zirconia-reinforced alumina ceramics whose crystal phases mainly include tetragonal zirconia crystals and α-alumina crystals.

本発明においてジルコニアに含まれる希土類酸化物の含
有量はL5〜15モル−の範囲とされ。
In the present invention, the content of rare earth oxide contained in zirconia is in the range of L5 to 15 mol.

この範囲から外れると焼結体の機械的強度が低くなる。Outside this range, the mechanical strength of the sintered body decreases.

本発明における希土類酸化物を含有するジルコニア成分
の量は10〜40重量−の範囲、アルミナの量は55〜
89.8tt%の範囲とされ、ジルコニア成分の量が1
0重量−未満で、アルミナの量が89.8重量%を越え
るとジルコニア添加による強度、靭性の改善効果は小さ
く、ジルコニア成分が40重量%を越え、アルミナの量
が50重量チ未満であると1価格が高くなりアルミナセ
ラミックスの長所が失われる。
In the present invention, the amount of zirconia component containing rare earth oxide is in the range of 10 to 40% by weight, and the amount of alumina is in the range of 55 to 40% by weight.
The range is 89.8tt%, and the amount of zirconia component is 1
If the amount of alumina exceeds 89.8% by weight, the strength and toughness improvement effect due to the addition of zirconia will be small; if the zirconia component exceeds 40% by weight and the amount of alumina is less than 50% by weight, 1. The price increases and the advantages of alumina ceramics are lost.

またマグネシアの量は0.2〜5[[量チの範囲とされ
、0.2重量%未満であると色むらの発生及び特性のば
らつきを抑制する効果が劣り、5重量%を越えると機械
的強度及び破壊靭性が低下する。
In addition, the amount of magnesia is within the range of 0.2 to 5%. If it is less than 0.2% by weight, the effect of suppressing the occurrence of color unevenness and variation in properties will be poor, and if it exceeds 5% by weight, the The mechanical strength and fracture toughness decrease.

本発明において希土類酸化物としては、正方晶ジルコニ
アを安定化させる働きのある物質を示し。
In the present invention, the rare earth oxide refers to a substance that has a function of stabilizing tetragonal zirconia.

少なくともCentを含み、必要に応じY* Os 。Contains at least Cent, and if necessary Y*Os.

Gctz o3 、 Yb20sの1種以上を含む物質
が用いられる。
A substance containing one or more of Gctz o3 and Yb20s is used.

本発明におけるジルコニア強化アルミナセラミックス(
焼結体)の結晶相は主として正方晶ジルコニア結晶及び
α−アルミナ結晶を含むことが必要とされ、この結晶以
外の結晶又は他の成分が多量含まれると9本発明の目的
を達成することができない。ただし少量であれば単斜晶
ジルコニア結晶。
Zirconia-reinforced alumina ceramics in the present invention (
The crystalline phase of the sintered body must mainly contain tetragonal zirconia crystals and α-alumina crystals, and if a large amount of crystals other than these crystals or other components are included, the objects of the present invention cannot be achieved. Can not. However, in small quantities, monoclinic zirconia crystals are used.

立方晶ジルコニア結晶、スピネルなどのマグネシア化合
物が含まれていても差し支えない。
There is no problem even if a magnesia compound such as cubic zirconia crystal or spinel is included.

なお、正方晶ジルコニア結晶中に#i、ジルコニウムと
性質が類似で分離が困難なノ・フニウムを含有してもよ
い。
Note that the tetragonal zirconia crystal may contain #i, which has similar properties to zirconium and is difficult to separate.

(実施例) 以下本発明の詳細な説明する。(Example) The present invention will be explained in detail below.

実施例l ZrOs粉(第−希元素製、EPグレード、純度99.
5チ)、YmOs粉(信越化学展、純度99.9チ)及
びCent粉(信越化学展99.9チ)を第1表に示す
配合割合に秤量し、ボールミルで平均粒径10μm以下
になるまで湿式粉砕、混合し喪。
Example 1 ZrOs powder (manufactured by Ki-Kigen, EP grade, purity 99.
5), YmOs powder (Shin-Etsu Chemical, purity 99.9), and Cent powder (Shin-Etsu Chemical, purity 99.9) were weighed in the proportions shown in Table 1, and milled using a ball mill to reduce the average particle size to 10 μm or less. Until wet grinding, mixing and mourning.

次に乾燥した後大気中1400℃で1時間熱処理した。Next, after drying, it was heat-treated at 1400° C. for 1 hour in the air.

これをボールミルで平均粒径01.7μm以下になるま
で湿式粉砕し、乾燥して中間原料粉を得た。
This was wet-pulverized in a ball mill until the average particle size became 01.7 μm or less, and dried to obtain an intermediate raw material powder.

この中間原料粉にアルミナ粉(住友化学製、商品名AE
S−12.純度99.9 % )、 及ヒ塩fi性炭酸
マグネシウム(和光純薬工業製、試薬特級)を酸化物換
算で第1表に示す配合割合に秤量し。
Alumina powder (manufactured by Sumitomo Chemical, product name: AE) is added to this intermediate raw material powder.
S-12. (purity 99.9%) and arsenic acid magnesium carbonate (manufactured by Wako Pure Chemical Industries, Ltd., reagent special grade) were weighed to the proportions shown in Table 1 in terms of oxides.

ボールミルで平均粒径0.7μm以下になるまで湿式粉
砕、混合した。得られた泥漿にポリビニルアルコール(
PVA)及びワックス(中東油脂製。
The mixture was wet-pulverized and mixed using a ball mill until the average particle size became 0.7 μm or less. Polyvinyl alcohol (
PVA) and wax (manufactured by Middle East Oil and Fat).

商品名マクセロンM)を添加し、噴霧乾燥法で造粒して
成形粉を得た。さらKこの成形粉を1.2トン/a11
!の圧力で加圧成形後、電気炉を用いI大気中で第1表
に示す温度で2時間焼成して焼結体を得た。
Maxelon M) (trade name) was added and granulated by a spray drying method to obtain a molded powder. This molding powder is 1.2 tons/a11
! After pressure molding at a pressure of 1,000 ml, the sintered body was fired for 2 hours at the temperature shown in Table 1 in an electric furnace in the atmosphere.

次に得られた焼結体を切断し、ついで表面を研磨(す8
00ダイヤモンド砥石)して3x4×40+nm寸法の
試料を得た。得られた各試料を用いて、JIS R16
01−1981に基き1曲げ強度を測定し、切断面の色
を観察した。その結果を第1表に示す。なお曲げ強度の
値は試料数10本の値である。
Next, the obtained sintered body is cut, and the surface is polished (
00 diamond grindstone) to obtain a sample with dimensions of 3x4x40+nm. Using each sample obtained, JIS R16
01-1981, the bending strength was measured and the color of the cut surface was observed. The results are shown in Table 1. The bending strength values are based on 10 samples.

一方曲げ強度測定用試料に幅0.1 mm及び深さ0、
7 mmのノツチを入れ、ノツチドビーム法C3ENB
法)Kより破壊靭性(K□。)を測定した。その結果を
第1表に示す。
On the other hand, the sample for bending strength measurement had a width of 0.1 mm and a depth of 0.
Add a 7 mm notch and use the notched beam method C3ENB.
Method) Fracture toughness (K□.) was measured from K. The results are shown in Table 1.

第1表から明らかなように1本発明になるジルコニア強
化アルミナセラミックスは9曲げ強度。
As is clear from Table 1, the zirconia-reinforced alumina ceramic according to the present invention has a bending strength of 9.

破壊靭性に優れ、かつこれらの特性のばらつきが小さく
9色むらのないことがわかる。
It can be seen that the fracture toughness is excellent, and the variations in these properties are small and there is no unevenness in the nine colors.

実施例2 ZrO□粉(第−希元素製、spzグレード)。Example 2 ZrO□ powder (manufactured by Dai-ki Elements, spz grade).

Ce0zC信越化学製、純度99.91)、YzOs粉
(信越化学製、純度99.9% )、  GchOs粉
(信越化学製、純度99.9%)及びYb* Os粉(
信越化学製、純度99.9%)を第2表に示す配合割合
に秤量し、以下実施例1と同様の工程を経て中間原料粉
を得た。
Ce0zC Shin-Etsu Chemical, purity 99.91), YzOs powder (Shin-Etsu Chemical, purity 99.9%), GchOs powder (Shin-Etsu Chemical, purity 99.9%), and Yb*Os powder (
(manufactured by Shin-Etsu Chemical, purity 99.9%) was weighed to the blending ratio shown in Table 2, and the same steps as in Example 1 were carried out to obtain an intermediate raw material powder.

この中間原料粉にアルミナ粉(住友化学製、商品名AE
S−12.純度99.9チ)及び塩基性炭酸マグネシウ
ム(和光純薬工業製、試薬特級)を酸化物換算で第2表
に示す配合割合に秤量し、以下実施例1と同様の工程を
経て焼結体を得た。
Alumina powder (manufactured by Sumitomo Chemical, product name: AE) is added to this intermediate raw material powder.
S-12. Purity 99.9%) and basic magnesium carbonate (manufactured by Wako Pure Chemical Industries, special reagent grade) were weighed in the proportions shown in Table 2 in terms of oxides, and the same steps as in Example 1 were carried out to prepare a sintered body. I got it.

得られた焼結体について実施例1と同様の方法で曲げ強
度、破壊靭性及び切断面の色を観察した。
The bending strength, fracture toughness, and color of the cut surface of the obtained sintered body were observed in the same manner as in Example 1.

その結果を合わせて第2表に示す。The results are shown in Table 2.

第2表から明らかなように9本発明になるジルコニア強
化アルミナセラミックスは9曲げ強度。
As is clear from Table 2, the zirconia-reinforced alumina ceramic according to the present invention has a bending strength of 9.

破壊靭性に優れ、かつこれらの特性のばらつきが小さく
2色むらのないことがわかる。
It can be seen that the fracture toughness is excellent, and the variation in these properties is small and there is no two-color unevenness.

次に本発明になるジルコニア強化アルミナセラミックス
をX線マイクロアナライザー(XMA)で調べたところ
、マグネシアはジルコニアとは独立に存在することが判
明した。
Next, when the zirconia-reinforced alumina ceramic of the present invention was examined using an X-ray microanalyzer (XMA), it was found that magnesia exists independently of zirconia.

また本発明になるジルコニア強化アルミナセラミックス
の組織を走査減電子顕微鏡で任意の10ケ所で観察し、
その中から粒径の大きな粒子を10個選び、その平均粒
径を粗大粒子径として。
In addition, the structure of the zirconia-reinforced alumina ceramic according to the present invention was observed at 10 arbitrary locations using a scanning electron microscope.
Select 10 particles with large particle sizes from among them, and use their average particle size as the coarse particle size.

これとマグネシア添加量との関係を求めた。この関係を
第1図に示す。第1図から、マグネシアの添加により粗
大粒子径はさほど変化しないことが明らかである。
The relationship between this and the amount of magnesia added was determined. This relationship is shown in FIG. From FIG. 1, it is clear that the addition of magnesia does not significantly change the coarse particle size.

(発明の効果) 本発明になるジルコニア強化アルミナセラミックスは9
機械的強度、靭性に優れ、ばら、つきが小さく2色むら
がないことから、一般機械部品、耐磨耗部品、大型構造
体など幅広い用途があり、これまでアルミナセラミック
スでは使用できなかった過酷な条件下でも使用に耐える
効果を持つジルコニア強化アルミナセラミックスである
(Effect of the invention) The zirconia-reinforced alumina ceramic of the present invention has 9
It has excellent mechanical strength and toughness, and has small irregularities and stickiness, so it has a wide range of uses such as general machine parts, wear-resistant parts, and large structures. It is a zirconia-reinforced alumina ceramic that can withstand use under various conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は9本発明のジルコニア強化アルミナセラミック
スにおける。マグネシア添加量とアルミナの粗大粒子径
との関係を示すグラフである。 手続補正書(自発) 昭m63年4 月 4a 1、事件の表示 昭和63年特許願第34749号 2発明の名称 ジルコニア強化アルミナセラミックス 3、補正をする者 事件との関係      特許出願人 名 称 +4451日立化成工業株式会社4代 理 人 (1)本願明細書第6頁の末行から第7頁第1行に「ア
ルミナの量が50重量%未未満とあるのを「アルミナの
量が55重量−未満」と訂正します。 以上
FIG. 1 shows 9 zirconia-reinforced alumina ceramics of the present invention. It is a graph showing the relationship between the amount of magnesia added and the coarse particle size of alumina. Procedural amendment (voluntary) April 1983 4a 1. Indication of the case 1988 Patent Application No. 34749 2. Name of the invention Zirconia-reinforced alumina ceramics 3. Person making the amendment Relationship to the case Patent applicant name +4451 Hitachi Chemical 4th Representative of Kogyo Co., Ltd. (1) From the last line of page 6 to the first line of page 7 of the specification, the phrase ``The amount of alumina is less than 50% by weight'' has been changed to ``The amount of alumina is less than 55% by weight.'' ” I am corrected. that's all

Claims (2)

【特許請求の範囲】[Claims] 1.希土類酸化物を1.5〜15モル%含むジルコニア
成分10〜40重量%,マグネシア0.2〜5重量%及
びアルミナ55〜89.8重量%を含有し,かつ焼結体
中の結晶相が主として正方晶ジルコニア結晶及びα−ア
ルミナ結晶を含むジルコニア強化アルミナセラミックス
1. The sintered body contains 10 to 40% by weight of a zirconia component containing 1.5 to 15 mol% of rare earth oxides, 0.2 to 5% by weight of magnesia, and 55 to 89.8% by weight of alumina, and the crystal phase in the sintered body is A zirconia-reinforced alumina ceramic containing primarily tetragonal zirconia crystals and alpha-alumina crystals.
2.希土類酸化物がCeO_2又はY_2O_3,Gd
_2O_3及びYb_2O_3の1種以上とCeO_2
とを含む希土類酸化物である特許請求範囲第1項記載の
ジルコニア強化アルミナセラミックス。
2. Rare earth oxide is CeO_2 or Y_2O_3,Gd
One or more of _2O_3 and Yb_2O_3 and CeO_2
The zirconia-reinforced alumina ceramic according to claim 1, which is a rare earth oxide containing.
JP63034749A 1988-02-17 1988-02-17 Alumina ceramic reinforced with zirconia Pending JPH01212273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63034749A JPH01212273A (en) 1988-02-17 1988-02-17 Alumina ceramic reinforced with zirconia

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63034749A JPH01212273A (en) 1988-02-17 1988-02-17 Alumina ceramic reinforced with zirconia

Publications (1)

Publication Number Publication Date
JPH01212273A true JPH01212273A (en) 1989-08-25

Family

ID=12422979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63034749A Pending JPH01212273A (en) 1988-02-17 1988-02-17 Alumina ceramic reinforced with zirconia

Country Status (1)

Country Link
JP (1) JPH01212273A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0811586A2 (en) * 1996-06-07 1997-12-10 Toray Industries, Inc. Composite ceramic materials for pulverization media and working parts of a pulverizer
US7399722B2 (en) 2003-09-10 2008-07-15 Kyocera Corporation Alumina/zirconia ceramics and method of producing the same
JP2015034120A (en) * 2013-07-12 2015-02-19 コバレントマテリアル株式会社 Alumina-ceramics member
WO2020115870A1 (en) * 2018-12-06 2020-06-11 日本碍子株式会社 Ceramic sintered body and substrate for semiconductor devices
CN112979286A (en) * 2021-01-18 2021-06-18 成都宏科电子科技有限公司 Alumina ceramic for high-density packaging shell, preparation method thereof and raw porcelain tape

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0811586A2 (en) * 1996-06-07 1997-12-10 Toray Industries, Inc. Composite ceramic materials for pulverization media and working parts of a pulverizer
EP0811586A3 (en) * 1996-06-07 1999-04-21 Toray Industries, Inc. Composite ceramic materials for pulverization media and working parts of a pulverizer
US7399722B2 (en) 2003-09-10 2008-07-15 Kyocera Corporation Alumina/zirconia ceramics and method of producing the same
JP2015034120A (en) * 2013-07-12 2015-02-19 コバレントマテリアル株式会社 Alumina-ceramics member
WO2020115870A1 (en) * 2018-12-06 2020-06-11 日本碍子株式会社 Ceramic sintered body and substrate for semiconductor devices
JPWO2020115870A1 (en) * 2018-12-06 2021-10-14 日本碍子株式会社 Ceramic sintered body and substrate for semiconductor devices
CN112979286A (en) * 2021-01-18 2021-06-18 成都宏科电子科技有限公司 Alumina ceramic for high-density packaging shell, preparation method thereof and raw porcelain tape

Similar Documents

Publication Publication Date Title
US4753902A (en) Transformation toughened zirconia-titania-yttria ceramic alloys
JPS6159265B2 (en)
EP0133864A1 (en) Ceramics for cutting tools
JPH0288423A (en) Stabilized zirconia
US20140011661A1 (en) Method of making high toughness high strength zirconia bodies
US4939107A (en) Transformation toughened ceramic alloys
JPS6159267B2 (en)
JPH01212273A (en) Alumina ceramic reinforced with zirconia
JPS6126562A (en) Zirconia sintered body
JPH0535103B2 (en)
Quénard et al. Zirconia–spinel composites. Part II: mechanical properties
JP2002154873A (en) Zirconia sintered compact excellent in durability
JP2001302345A (en) Zirconia sintered body excellent in durability and manufacturing method thereof
JP3076682B2 (en) Alumina-based sintered body and method for producing the same
JPS61201661A (en) Partially stabilized zirconia sintered body
JPH07215758A (en) Zirconia sintered compact
JP4443806B2 (en) Zirconia sintered body excellent in durability and pulverizer / disperser member using the same
JPS6159266B2 (en)
JP4048017B2 (en) Crushing / dispersing media made of zirconia sintered body with excellent durability and wear resistance
KR100428563B1 (en) ZIRCONIUM OXIDE-ALUMINUM OXIDE-MAGNESIUM OXIDE-MANGANESE OXIDE(ZrO2-Al2O3-MgO-MnO) COMPOSITE SINTERED BODY IMPROVING STRENGTH AND FRACTURE TOUGHNESS
JP2587704B2 (en) Zirconia sintered body and method for producing the same
JPS61242956A (en) High tenacity ceramic alloy
JPH01224264A (en) Production of zirconia-reinforced alumina ceramics
JP2943016B2 (en) Ceria stabilized zirconia / α-alumina / lanthanum-β-alumina composite sintered body
JP3180971B2 (en) Zirconia ceramics and method for producing the same