KR100428563B1 - ZIRCONIUM OXIDE-ALUMINUM OXIDE-MAGNESIUM OXIDE-MANGANESE OXIDE(ZrO2-Al2O3-MgO-MnO) COMPOSITE SINTERED BODY IMPROVING STRENGTH AND FRACTURE TOUGHNESS - Google Patents

ZIRCONIUM OXIDE-ALUMINUM OXIDE-MAGNESIUM OXIDE-MANGANESE OXIDE(ZrO2-Al2O3-MgO-MnO) COMPOSITE SINTERED BODY IMPROVING STRENGTH AND FRACTURE TOUGHNESS Download PDF

Info

Publication number
KR100428563B1
KR100428563B1 KR1019960045035A KR19960045035A KR100428563B1 KR 100428563 B1 KR100428563 B1 KR 100428563B1 KR 1019960045035 A KR1019960045035 A KR 1019960045035A KR 19960045035 A KR19960045035 A KR 19960045035A KR 100428563 B1 KR100428563 B1 KR 100428563B1
Authority
KR
South Korea
Prior art keywords
mno
mgo
oxide
zro
sintered body
Prior art date
Application number
KR1019960045035A
Other languages
Korean (ko)
Other versions
KR19980026556A (en
Inventor
전웅
Original Assignee
주식회사 포스코
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코, 재단법인 포항산업과학연구원 filed Critical 주식회사 포스코
Priority to KR1019960045035A priority Critical patent/KR100428563B1/en
Publication of KR19980026556A publication Critical patent/KR19980026556A/en
Application granted granted Critical
Publication of KR100428563B1 publication Critical patent/KR100428563B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE: A zirconium oxide-aluminum oxide-magnesium oxide-manganese oxide(ZrO2-Al2O3-MgO-MnO) composite sintered body is provided, which improves strength and fracture toughness and is used as high strength and high toughness abrasion-resistant material and engineering ceramics. CONSTITUTION: The ZrO2-Al2O3-MgO-MnO composite sintered body contains 77.4-93.5wt% of tetragonal ZrO2 containing 11-13mol% of CeO2, 5-20wt% of Al2O3, 0.5-1wt% of MgO, and 1-1.6wt% of MnO, wherein the last tetragonal ZrO2 has an average crystal gain size of less than 1 micrometer and Al2O3-CeO2-MnO as a secondary phase is aciform. The ZrO2-Al2O3-MgO-MnO composite sintered body has 4 point modulus of rupture(MOR) of 652-715MPa and fracture toughness of 12.5-16.2MPa¡îm.

Description

고인성 산화지르코늄-산화알루미늄-산화마그네슘-산화망간 ( ZrO2-Al2O3-MgO-MnO )계 복합 소결체Highly tough zirconium oxide-aluminum oxide-magnesium oxide-manganese oxide (ZrO2-Al2O3-MgO-MnO) composite sintered body

본 발명은 고강도 고인성의 내마모재료 및 엔지니어링 세라믹스로 사용되는 고인성 ZrO2-Al2O3-MgO-MnO계 복합소결체에 관한 것이다.The present invention relates to a high-strength high-strength anti-wear material and a high-tough ZrO 2 -Al 2 O 3 -MgO-MnO composite sintered body used as engineering ceramics.

일반적으로 ZrO2세라믹스는 상변태시 수반되는 부피팽창 때문에 이를 억제하기 위하여 안정화제로서 Y2O3나 CeO2와 혼합하여 사용된다. Y2O3나 CeO2에 의하여정방정으로 안정화된 단일상 정방정 ZrO2다결정(TZP)은 비교적 제조가 간편하고 양호한 기계적 성질을 나타내므로 내마모재료 및 엔지니어링 세라믹스로 사용되어 왔다. 특히, Y2O3에 의해 안정화된 TZP(Y-TZP)의 경우 상온에서 600MPa-1000MPa의 높은 강도 및 파괴인성을 나타낸다(K.Tsukuma, K.Ueda, and M. Shimada. "Strength and Fracture Toughness of Isostatically Hot-Pressed Composites of and Y2O3-Partially-StabiliZed ZrO2,J.Am. Ceram. Soc., 68(1)C4-C5(1985)).In general, ZrO 2 ceramics are mixed with Y 2 O 3 or CeO 2 as a stabilizer in order to inhibit ZrO 2 ceramics because of volume expansion accompanying phase transformation. Single phase tetragonal ZrO 2 polycrystals (TZP) stabilized tetragonically by Y 2 O 3 or CeO 2 have been used as wear resistant materials and engineering ceramics since they are relatively easy to manufacture and exhibit good mechanical properties. In particular, TZP (Y-TZP) stabilized by Y 2 O 3 exhibits high strength and fracture toughness of 600 MPa-1000 MPa at room temperature (K. Tsukuma, K. Ueda, and M. Shimada. "Strength and Fracture Toughness of Isostatically. Hot-Pressed Composites of and Y 2 O 3 -Partially-StabiliZed ZrO 2, J.Am. Ceram. Soc, 68 (1) C4-C5 (1985)).

이러한 우수한 물성을 가지는 Y-TZP의 특성을 더욱더 향상시키기 위하여 Tsukuma등은 Al2O3를 첨가해 Y-TZP와 Al2O3로 구성되는 복합소결체를 제조하였고 이 복합소결체는 기계적 특성에 있어 상온강도 2400MPa 고온강도 1000MPa까지 향상시켰으나 상온파괴인성에 있어서는 약로 일반적인 수준에 머물렀다(K. Tsukuma, k. Ueda, K. Matsushita, and M. Shimada, "High-Temperature Strength and Fracture Toughness of Y2O3- Partially - Stabilized ZrO2/Al2O3Composites, "J.Am. Ceram. Soc., 68(2) C56-C58(1985)).In order to further improve the properties of Y-TZP with a such excellent physical properties Tsukuma the like was prepared a composite sintered body constituted by the addition of Al 2 O 3 with Y-TZP and Al 2 O 3 is a composite sintered body at room temperature in the mechanical properties Strength 2400 MPa High temperature strength was improved to 1000 MPa, but at room temperature fracture toughness, (K. Tsukuma, K. Ueda, K. Matsushita, and M. Shimada, "High-Temperature Strength and Fracture Toughness of Y 2 O 3 - Partially-Stabilized ZrO 2 / Al 2 O 3 Composites, J. Am. Ceram. Soc., 68 (2) C56-C58 (1985)).

또한, Y2O3에 의해 안정화된 정방정 ZrO2를 매트릭스(MatriX)로 하는 세라믹스에 있어, 안정화제인 Y2O3가 고가일 뿐만 아니라 200-300℃ 근방에서 유지되면 크랙킹(Cracking)을 수반하는 급격한 강도저하를 나타내어 사용이 제한되고 있다(T. Masaki, "Mechanical Properties of Y-PSZ After Ageing At Low Temperature, "IntJ. High Technol. Ceram., 2, 85-98(1986)).After addition, Y 2 in the ceramic to the tetragonal ZrO 2 stabilized by O 3 in a matrix (MatriX), stabilizing agent Y 2 O 3 as well as an expensive one held in the vicinity of 200-300 ℃ entail cracking (Cracking) (T. Masaki, " Mechanical Properties of Y-PSZ After Aging At Low Temperature, "Int. High Technol. Ceram., 2, 85-98 (1986)).

따라서, 이러한 단점들을 해결하기 위하여 Y2O3대비 가격이 낮은 CeO2에 의해 정방정으로 안정화된 TZP(Ce-TZP)가 개발되었으나 Y-TZP에 비해 상온에서 다소 낮은 강도값(약 600-800MPa)을 나타내어 Y-TZP의 대체사용이 제한되고 있다(K.Tsukuma and M. Shimada, "Strength, Fracture Toughness and Vickers Hardness of CeO2-Stabilized Tetragonal ZrO2Polycrystals(Ce-TZP)" 20, 1178-1184(1985)).To solve these drawbacks, TZP (Ce-TZP) stabilized tetragonically by CeO 2 with a lower price than Y 2 O 3 has been developed. However, it has a somewhat lower intensity value (about 600-800 MPa ), And the substitution of Y-TZP is limited (K. Tsukuma and M. Shimada, "Strength, Fracture Toughness and Vickers Hardness of CeO 2 -Stabilized Tetragonal ZrO 2 Polycrystalles (Ce-TZP)" 20, 1178-1184 (1985)).

이 때문에, Ce-TZP의 강도 및 경도를 향상 시키기 위하여 Ce-TZP에 Al2O3를 첨가하여 Ce-TZP와 Al2O3의 복합체(Ce-TZP/Al2O3)가 개발되었다. 그 결과 Ce-TZP의 강도는 900MPa 까지 향상되었으나 인성이 낮아 충격에 약한 단점을 보였다(K. Tsukuma, T. Takahata, in Advanced Structural Ceramics, edited by P.F. Becher, M.V.Swain, and S. Somiya(materials Research Society, Pittsburgh, PA, 1987), Vol 78, pp 123-135).For this reason, a composite of Ce-TZP and Al 2 O 3 (Ce-TZP / Al 2 O 3 ) was developed by adding Al 2 O 3 to Ce-TZP to improve the strength and hardness of Ce-TZP. As a result, the strength of Ce-TZP was improved up to 900 MPa, but it was weak in impact due to low toughness (K. Tsukuma, T. Takahata, in Advanced Structural Ceramics, edited by PF Becher, MVSwain, and S. Somiya , Pittsburgh, PA, 1987), Vol 78, pp 123-135).

본 발명은 652-715MPa정도의 4점 곡강도 및 파괴인성이 12.5-16.2정도로 높은 충격저항성(고인성)을 갖는 고기능성 Ce-TZP 재료를 얻고자 하는데 그 목적이 있다.The present invention has four-point bending strength of about 652-715 MPa and fracture toughness of 12.5-16.2 TZP material having high impact resistance (high toughness) as high as that of the Ce-TZP material.

도 1은 12mol%의 CeO2를 함유한 정방정 ZrO290중량%와 Al2O310중량%로 구성되는 소결복합체의 주사현미경 사진Figure 1 is a scanning electron micrograph of a sintered composite consisting of 90 wt% of tetragonal ZrO 2 containing 12 mol% CeO 2 and 10 wt% of Al 2 O 3

도 2는 12mol%의 CeO2를 함유한 정방정 ZrO288.5중량%와 10중량%의 Al2O3및 1.5중량%의 MnO로 구성되는 소결복합체의 주사현미경 사진Figure 2 is a scanning electron micrograph of a sintered composite consisting of 88.5 wt% tetragonal ZrO 2 containing 12 mol% CeO 2 , 10 wt% Al 2 O 3 and 1.5 wt% MnO 2

도 3은 12mol%의 CeO2를 함유한 정방정 ZrO287.8중량%와 10중량%의 Al2O3와 0.9중량%의 MgO 및 1.3중량%의 MnO로 구성되는 소결복합체의 주사현미경 사진3 is an SEM photograph of a sintered composite composed of 87.8% by weight tetragonal ZrO 2 containing 12 mol% CeO 2 , 10% Al 2 O 3 , 0.9% MgO and 1.3% MnO 2

본 발명은 ZrO2-Al2O3-MgO-MnO 계 복합소결체에 있어서, 11-13mol%의 CeO2를 함유한 정방정 ZrO2:77.4-93.5중량%(이하 "%"라 한다), Al2O3:5-20%, MgO:0.5-1% 및 MnO:1-1.6%를 포함하고, 최종 정방정 ZrO2결정립의 평균크기가 1μm이하이고, 그리고 2차상인 Al2O3-CeO2-MnO이 침상인 ZrO2-Al2O3-MgO-MnO계 복합소결체에 관한 것이다.The present invention relates to a ZrO 2 -Al 2 O 3 -MgO-MnO composite sintered body, comprising tetragonal ZrO 2 : 77.4-93.5 wt% (hereinafter referred to as "%") containing 11-13 mol% CeO 2 , Al 2 O 3 : 5-20%, MgO: 0.5-1% and MnO: 1-1.6%, the average size of the final tetragonal ZrO 2 crystal grains is 1 μm or less, and the secondary phase Al 2 O 3 -CeO 2 -MnO 2 -based ZrO 2 -Al 2 O 3 -MgO-MnO complex sintered body.

이하, 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명에서의 ZrO2-Al2O3-MgO-MnO계 복합소결체에 함유된 CeO2성분은 ZrO2정방정 결정립의 상안정도 및 미세구조를 제어하는 성분이다. 상기 ZrO2에 대한 CeO2의 존재비가 mol%로 11-13% 범위로 구성되어야 하며, 보다 바람직하게는 12%로 구성되는 것이다. 상기 CeO2의 존재비가 11% 미만일 경우 상안정도가 저하되고, 13%를 초과하면 ZrO2결정립이 정방정보다 입방정으로 존재하는 경향이 있어 강도 저하를 유발할 수 있다.The CeO 2 component contained in the ZrO 2 -Al 2 O 3 -MgO-MnO complex sintered body in the present invention is a component for controlling the degree of topography and microstructure of the ZrO 2 tetragon crystal grains. To be composed of 11-13% of the ratio in mol% of CeO 2 present on the ZrO 2, it is more preferably composed of 12%. If the abundance ratio of CeO 2 is less than 11%, the degree of appearance decreases. If it exceeds 13%, the ZrO 2 crystal grains tend to exist in cubic cubic crystal units, which may cause a decrease in strength.

본 발명에서는 상기 존재비로 CeO2를 함유한 정방정 ZrO2을 77.4-93.5%범위로 포함하여 매트릭스로 한다.In the present invention, tetragonal ZrO 2 containing CeO 2 as the abundance ratio is contained in the range of 77.4-93.5% to obtain a matrix.

본 발명에서는 상기 매트릭스에 Al2O3가 5-20% 범위로 첨가되어야 한다.In the present invention, Al 2 O 3 should be added in the range of 5-20% in the matrix.

상기 Al2O3는 매트릭스의 견고성을 향상시켜 강도 및 경도를 증가시키기 위해 첨가시킨다. 그러나, 그 함유량이 5% 미만에서는 강도향상효과가 적고, 20% 초과시에는 ZrO2대비 Al2O3의 낮은 소결성 및 높은 경도 때문에 소결성 저하 및 파괴인성 감소현상이 발생한다.The Al 2 O 3 is added to increase the strength and hardness of the matrix by improving the firmness of the matrix. However, when the content is less than 5%, the effect of improving the strength is small. When the content is more than 20%, the sinterability and the fracture toughness decrease due to the low sinterability and high hardness of Al 2 O 3 compared to ZrO 2 .

상기 MgO는 정방정 ZrO2의 결정성장 억제를 위해 0.5-1% 범위로 첨가되어야 한다.The MgO should be added in the range of 0.5-1% in order to suppress crystal growth of tetragonal ZrO 2 .

상기 복합소결체의 강도를 더욱 향상시키기 위해서는 정방정 ZrO2결정립의 크기를 1 μm이하로 억제하여야 하는데원자가 +4인 Zr lon 대비 +2로 낮은 원자가를 가지는 Mg lon을 첨가시 정방정 ZrO2의 결정크기를 효과적으로 낮출 수 있는 것이다. 그러나, 상기 MgO의 첨가량이 0.5% 미만에서는 첨가량이 작아 정방정 ZrO2의 결정성장억제효과가 미미하고 1% 초과시에는 Al2O3와 반응하여 스피넬(Spinel)상을 형성하므로 역시 결정성장억제효과가 반감된다.In order to further improve the strength of the composite sintered body, the size of the tetragonal ZrO 2 crystal grains should be suppressed to 1 μm or less. When Mg lon having a valence as low as +2 with respect to Zr lon having a valence of +4 is added, crystals of tetragonal ZrO 2 The size can be effectively lowered. However, when the addition amount of MgO is less than 0.5%, the effect of inhibiting the crystal growth of tetragonal ZrO 2 is small due to the small addition amount, and when it exceeds 1%, it reacts with Al 2 O 3 to form a spinel phase, .

상기 MnO은 1-1.6%범위로 첨가되어야 한다.The MnO should be added in the range of 1-1.6%.

복합체에 MnO를 첨가시 MnO는 CeO2및 Al2O3와 반응하여 2차상으로 존재하는 Al2O3의 조성을 Al2O3-CeO2-MnO계의 복합조성으로 바꿀 뿐 아니라, 상기 Al2O3-CeO2-MnO계의 복합조성이 침상으로 존재하여 정방정 ZrO2의 상안정도를 낮추어 응력이 부여될 때 정방정 ZrO2의 용이한 변이를 유발시킴으로써 인성을 향상 시키는 경향이 있다. 한편 상기 MnO의 첨가량이 1중량% 미만에서는 2차상 생성이 저조하여 인성증가효과가 미약하고, 1.6% 초과시에는 인성증가효과가 나타나나 2차상 생성이 과다하여 정방정 ZrO2결정립으로 부터 CeO2가 과량 유출되므로 정방정 ZrO2결정립의 상안정도가 저하되어 소성 시 크랙(Crack) 발생이나 강도저하현상등이 발생한다.MnO MnO upon addition of the complex as well as the change in the composition of the composite type CeO 2 and Al 2 O 3 reacts with a composition of Al 2 O 3 present in the second phase Al 2 O 3 -CeO 2 -MnO, the Al 2 O 3 -CeO tends to composite compositions of -MnO 2 based improve the toughness caused by the easy transition of tetragonal ZrO 2 and when present in the bed by lowering the sangan amount of tetragonal ZrO 2 is a stress is given. Meanwhile, if the addition amount of the MnO is less than 1% by weight from the second phase generation is low and the excess of the increase in toughness effect weak, and 1.6%, the excess appears to increase toughness effects or secondary phase generated tetragonal ZrO 2 grains CeO 2 is The amount of the tetragonal ZrO 2 crystal grains is reduced, and cracking or strength deterioration occurs during firing.

상기와 같이 조성되는 ZrO2-Al2O3-MgO-MnO 복합소결체 결과물중의 정방정 ZrO2결정립의 평균크기가 1μm이하이어야 한다.The average size of the tetragonal ZrO 2 grains in the resulting ZrO 2 -Al 2 O 3 -MgO-MnO composite sintered product should be 1 μm or less.

그 이유는 상기 결정립의 평균크기가 1㎛를 초과하면 본 발명에서 목적하는 강도를 얻지못하기 때문이다. 상기 ZrO2결정립의 크기는 통상적으로 정규분포를 따르며, 이에 결정립의 크기는 평균크기를 제한하는 것이 바람직하다. 본 발명에서는 정방정 ZrO2결정립의 평균크기를 억제하기 위하여 상기한 바와 같이, 원자가 +4인 Zr lon 대비 +2로 낮은 원자가를 가지는 mg lon을 첨가하여 정방정 ZrO2의 결정크기를 낮춘다.The reason for this is that when the average size of the crystal grains exceeds 1 탆, the desired strength is not obtained in the present invention. The size of the ZrO 2 crystal grains usually follows a normal distribution, and the size of the crystal grains preferably limits the average size. In order to suppress the average size of the tetragonal ZrO 2 crystal grains, the crystal size of the tetragonal ZrO 2 is decreased by adding mg lon having a valence as low as +2 to Zr lon having a valence of +4 as described above.

또한, 본 발명의 복합소결체에는 2차상인 Al2O3-CeO2-MnO이 침상으로 존재한다.In the composite sintered body of the present invention, the secondary phase Al 2 O 3 -CeO 2 -MnO exists in the form of a needle.

CeO2를 함유하는 2차상이 존재하므로서, 정방정 ZrO2의 상안정도가 낮추어져 응력이 부여될 때 정방정 ZrO2이 용이하게 변이하여 인성을 향상 시키기 때문이다. 따라서 본 발명에서는 MnO를 첨가시켜 침상형태를 가지는 2차상이 Al2O3-CeO2-MnO계 복합조성으로 생성되도록 한다.The presence of the secondary phase containing CeO 2 lowers the degree of topography of tetragonal ZrO 2 , and when the stress is applied, tetragonal ZrO 2 easily changes to improve toughness. Therefore, in the present invention, MnO is added so that a secondary phase having an acicular shape is produced in a complex composition of Al 2 O 3 -CeO 2 -MnO system.

이하, 실시예를 통하여 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail by way of examples.

실시예 1Example 1

순도 99.9%를 가지는 CeO2및 순도 99.6%를 가지는 ZrO2분체들을 12mol:88mol의 비율로 각각 칭량한 후 볼밀(Ball Mill)을 이용하여 24시간 혼합, 분쇄하고, 건조, 하소하여 12mol%의 CeO2로 안정화된 정방정 ZrO2분체를 제작하였다. 이렇게 얻어진 분체에 하기표 1과 같은 첨가량으로 순도 99.9%의 Al2O3분체를 첨가하여 다시 상기와 동일한 방식으로 처리하여 정방정 ZrO2및 Al2O3의 혼합분체를 얻었다. 상기 혼합분체를 일축 및 정수압 성형하여 1550℃에서 2시간 동안 소결한 CeO2-ZrO2-Al2O3복합소결체에 대하여 4점곡강도와 파괴인성을 측정하고 그 측정결과들을 하기표 1에 나타내었다. 도 1은 하기표 1에서의 발명에 2의 주사현미경 사진이다.CeO 2 having a purity of 99.9% and ZrO 2 powder having a purity of 99.6% were respectively weighed in a ratio of 12 mol: 88 mol, and then mixed and pulverized using a ball mill for 24 hours, followed by drying and calcination to obtain 12 mol% of CeO 2 2 the tetragonal ZrO 2 powder was produced by stable. An Al 2 O 3 powder having a purity of 99.9% was added to the powder thus obtained in the same amount as shown in Table 1 below and then treated in the same manner as above to obtain a mixed powder of tetragonal ZrO 2 and Al 2 O 3 . The four-point bending strength and fracture toughness of the composite sintered body of CeO 2 -ZrO 2 -Al 2 O 3 sintered at 1,550 ° C. for 2 hours were measured in uniaxial and hydrostatic pressures, and the results are shown in Table 1 . Fig. 1 is a scanning electron micrograph of the invention 2 in Table 1 below. Fig.

상기표 1에 나타낸 바와 같이, 발명예(1-4)는 Al2O3첨가에 의해 Ce-7ZP의 매트릭스가 강화되어 Al2O3첨가되지 않은 비교예(1) 대비 높은 강도 및 인성을 나타내었다. Al2O3소량 첨가된 비교예(2-3)는 다소의 강도증가현상을 보이나 충분치 못했으며, Al2O3가 과량 첨가된 비교예(4-5)에서는 강도증가현상을 보이나 매트릭스 과다 보강에 의한 파괴인성감소현상이 발생했다.As shown in Table 1, Inventive Example (1-4) Al 2 O 3 is the strengthening of the matrix-Ce 7ZP by addition to show high strength and toughness compared to Comparative Example 1 not added, Al 2 O 3 . Comparative Example (2-3) in which Al 2 O 3 was added in a small amount showed a slight increase in strength but was not satisfactory. In Comparative Example (4-5) in which Al 2 O 3 was added excessively, the strength was increased, The fracture toughness was reduced.

실시예 2Example 2

순도 99.9%를 가지는 CeO2및 순도 99.6%를 가지는 ZrO2분체들을 12mol:88mol의 비율로 각각 칭량한 후 볼밀을 이용하여 24시간 혼합, 분쇄하고, 건조, 하소하여 12mol%의 CeO2로 안정화된 정방정 ZrO2분체를 제작하였다. 이렇게 얻어진 분체에 대하여 10중량%에 해당하는 순도 99.9의 Al2O3분체 및 mgCl2·6H2O를 MgO로 환산하여 하기표 2와 같은 첨가량으로 첨가한후, 다시 상기와 동일한 방식으로 처리하여 정방정 ZrO2, Al2O3, 및 MgO 혼합분체를 얻었다. 상기 혼합분체를 일축 및 정수압 성형하여 1550℃에서 2시간동안 소결한 CeO2-ZrO2-Al2O3-MgO 복합소결체에 대하여 4점강도와 파괴인성을 측정하고 그 측정결과들을 하기 표 2에 나타내었다.A ZrO 2 powder having a CeO 2 and a purity of 99.6% having a purity of 99.9% 12mol: 24 hour while agitating using after each weighed in a ratio of 88mol ball mill, pulverized, dried, calcined and stabilized CeO 2 of 12mol% Tetragonal ZrO 2 powders were prepared. Al 2 O 3 powder having a purity of 99.9 corresponding to 10% by weight and MgCl 2 .6H 2 O were converted into MgO and added in the same amounts as shown in Table 2, and then treated in the same manner as above Tetragonal ZrO 2 , Al 2 O 3 , and MgO mixed powders were obtained. The 4 powder strength and fracture toughness of the sintered CeO 2 -ZrO 2 -Al 2 O 3 -MgO sintered at 1,550 ° C. for 2 hours were measured under uniaxial and hydrostatic pressures, Respectively.

상기 표 2에 나타난 것과 같이, 발명예(A-D)는 MgO첨가에 의해 Ce-TZP-Al2O3복합소결체내에 존재하는 정방정 ZrO2결정립의 결정성장이 억제되어 MgO가 첨가되지 않은 비교예(A)대비 향상된 강도 및 인성을 나타내었다. MgO가 소량 첨가된 비교예(B-C)는 정방정 ZrO2의 결정성장을 억제하기에 충분하지 못한 MgO가 첨가됨에 따라 비교예(A)와 유사한 강도 및 파괴인성을 나타냈다. 또한 MgO가 과량 첨가된 비교예(D-E)에서는 과량의 MgO가 첨가됨에 따라 MgO-Al2O3계 스피넬이 형성되고 소결체 냉각시 정방정 ZrO2매트릭스와의 열팽창계수 차이로 인하여 소결체내에 크랙이 발생했다. 이러한 크랙의 발생은 강도 및 파괴인성의 감소를 유발했다.As shown in the above Table 2, the inventive (AD) suppresses crystal growth of tetragonal ZrO 2 crystal grains present in the Ce-TZP-Al 2 O 3 composite sintered body by addition of MgO, A). Comparative Example (BC) in which MgO was added in a small amount exhibited similar strength and fracture toughness as Comparative Example (A) as MgO added thereto was insufficient for suppressing crystal growth of tetragonal ZrO 2 . In the comparative example (DE) in which MgO was added in an excessive amount, MgO-Al 2 O 3 spinel was formed due to the addition of excessive MgO, and cracks were generated in the sintered body due to the difference in thermal expansion coefficient from the tetragonal ZrO 2 matrix during cooling of the sintered body did. The occurrence of these cracks resulted in a decrease in strength and fracture toughness.

실시예 3Example 3

순도 99.9%를 가지는 CeO2및 순도 99.6%를 가지는 ZrO2분체들을 12mol:88mol의 비율로 각각 칭량한 후 볼밀을 이용하여 24시간 혼합, 분쇄하고, 건조, 하소하여 l2mol%의 CeO2로 안정화된 정방정 ZrO2분체를 제작하였다. 이렇게 얻어진 정방정 ZrO2분체에 대하여 10중량%에 해당하는 순도 99.9%의 Al2O3분체, mgCl2·6H2O를 MgO로 환산하여 0.9중량% 및 MnO를 하기표 3과 같은 첨가량으로 첨가한 후, 다시 상기와 동일한 방식으로 처리하여 정방정 ZrO2, Al2O3, MgO 및 MnO 혼합분체를 얻었다. 상기 혼합분체를 일축 및 정수압 성형하여 1550℃에서 2시간 동안 소결한 CeO2-ZrO2-Al2O3-MgO-MnO 복합소결체에 대하여 4점곡강도와 파괴인성을 측정하고 그 측정결과들을 하기표 3에 나타내었다. 또한, 도 2는 매트릭스에 10중량%의 Al2O3및 1.5중량%의 MnO이 첨가된 소결복합체의 주사현미경 사진이고, 도 3은 하기표 3의 발명예c에 의한 소결복합체의 주사현미경 사진이다.CeO 2 having a purity of 99.9% and ZrO 2 powder having a purity of 99.6% were weighed in a ratio of 12 mol: 88 mol, respectively, and then mixed and pulverized for 24 hours using a ball mill, followed by drying and calcination to obtain crystals stabilized with l2 mol% CeO 2 Tetragonal ZrO 2 powders were prepared. Al 2 O 3 powder having a purity of 99.9% corresponding to 10% by weight of the tetragonal ZrO 2 powder thus obtained, 0.9% by weight of MgCl 2 .6H 2 O in terms of MgO and MnO were added in the amounts shown in Table 3 below And then treated in the same manner as above to obtain tetragonal ZrO 2 , Al 2 O 3 , MgO and MnO mixed powders. The four-point bending strength and fracture toughness of the composite sintered body of CeO 2 -ZrO 2 -Al 2 O 3 -MgO-MnO sintered at 1550 ° C. for 2 hours were measured in uniaxial and hydrostatic pressures, Respectively. 2 is a scanning electron micrograph of a sintered composite in which 10% by weight of Al 2 O 3 and 1.5% by weight of MnO are added to the matrix, and FIG. 3 is a scanning electron microphotograph of a sintered composite according to Inventive example c of Table 3 to be.

상기표 3에 나타낸것과 같이, 발명예(a-e)는 Ce-TZP-Al2O3소결복합체의 강도 대비 크게 저하되지 않은 강도값을 나타내고 상전이 현상에 기인하는 파괴인성에 있어 향상된 값을 가지는 것을 알 수 있다. MnO가 첨가되지 않은 비교예(a)의 경우 정방형 ZrO2가 매우 안정하여 높은 강도값을 나타내나 낮은 파괴인성값을 가지는 것을 알 수 있다. 한편, MnO의 첨가량이 1중량% 보다 낮은 비교예(b-c)의 경우 Ce-TZP-Al2O3소결복합체의 강도 대비 크게 저하되지 않은 강도값을 나타내나 발명예(a-e)대비 낮은 파괴인성값을 나타낸다. 또한, MnO의 첨가량이 1.6중량% 보다 높은 비교예(d-e)의 경우 Ce-TZP-Al2O3소결복합체의 강도 대비 저하된 강도값을 나타낸다.As shown in Table 3, the inventive (ae) exhibits a strength value not significantly lowered compared to the strength of the Ce-TZP-Al 2 O 3 sintered composite and has an improved value in fracture toughness due to the phase transition phenomenon. . In the case of Comparative Example (a) in which MnO is not added, it is found that the square ZrO 2 is very stable and exhibits a high strength value but a low fracture toughness value. On the other hand, in the case of the comparative example (bc) in which the addition amount of MnO is lower than 1 wt%, the strength value is not significantly lowered compared with the strength of the Ce-TZP-Al 2 O 3 sintered composite, but the fracture toughness . Further, in the case of the comparative example (de) in which the addition amount of MnO is higher than 1.6 wt%, the strength value of the Ce-TZP-Al 2 O 3 sintered composite shows a lowered strength value.

상술한 바와같이, 본 발명은 Ce-TZP-Al2O3복합체에 적정량의 MgO를 첨가함으로써 정방형 ZrO2결정립의 결정성장을 억제시켜 Ce-TZP-Al2O3소결복합체의 강도를 향상시키고 상기 소결복합체에 적정량의 MnO를 첨가함으로서 정방형 ZrO2매트릭스에 CeO2를 함유하는 침상의 2차상을 생성시켜 정방형 ZrO2의 상안정도를 낮춤으로써 재질내에 응력이 가해질 때 상전이를 용이하게 만들어 파괴인성의 향상을 도모함으로서 Ce-TZP-Al2O3계 엔지니어링 세라믹스에 있어, 충격저항성이 높은 ZrO2-Al2O3-MgO-MnO 복합소결체를 제공할 수 있는 효과가 있는 것이다.As described above, the present invention Ce-TZP-Al 2 O 3 complex to increase the strength of the by the addition of a suitable amount of MgO square ZrO 2 by inhibiting crystal growth of the crystal grains Ce-TZP-Al 2 O 3 sintered composite and the By adding an appropriate amount of MnO to the sintered composite, the secondary phase of CeO 2 -containing CeO 2 is formed in the square ZrO 2 matrix to lower the surface roughness of the square ZrO 2 , thereby facilitating the phase transition when the stress is applied to the material to improve the fracture toughness The ZrO 2 -Al 2 O 3 -MgO-MnO composite sintered body having high impact resistance in Ce-TZP-Al 2 O 3 engineering ceramics can be provided.

Claims (3)

ZrO2-Al2O3-MgO-MnO 계 복합소결체에 있어서,In the ZrO 2 -Al 2 O 3 -MgO-MnO composite sintered body, 11-13mol%의 CeO2를 함유한 정방정 ZrO2:77.4-93.5중량%(이하"%"라 한다), Al2O3:5-20%, MgO:0.5-1% 및 MnO:1-1.6%를 포함하고;Containing CeO 2 of 11-13mol% tetragonal ZrO 2: 77.4-93.5 wt.% (Hereinafter "%" is referred to), Al 2 O 3: 5-20 %, MgO: 0.5-1% and MnO: 1- 1.6%; 최종 정방정 ZrO2결정립의 평균크기가 1μm이하이고; 그리고 2차상인 Al2O3-CeO2-MnO이 침상인 것을 특징으로 하는 고인성 ZrO2-Al2O3-MgO-MnO계 복합소결체The average size of the final tetragonal ZrO 2 crystal grains is 1 탆 or less; And the secondary phase Al 2 O 3 -CeO 2 -MnO is an acicular phase, characterized in that the high-toughness ZrO 2 -Al 2 O 3 -MgO-MnO composite sintered body 제 1항에 있어서,The method according to claim 1, 상기 정방정 ZrO2이 12mol%의 CeO2를 함유하고 있는 것을 특징으로 하는 고인성 ZrO2-Al2O3-MgO-MnO계 복합소결체Characterized in that the tetragonal ZrO 2 contains 12 mol% CeO 2. The high-toughness ZrO 2 -Al 2 O 3 -MgO-MnO complex sintered body 제 1항 또는 제 2항에 있어서,3. The method according to claim 1 or 2, 상기 복합소결체는 652-715MPa의 4점 곡강도 및 12.5-16.2 MPa의 파괴인성을 갖는 것을 특징으로 하는 고인성 ZrO2-Al2O3-MgO-MnO계 복합소결체The composite sintered body had a four-point bending strength of 652-715 MPa and a bending strength of 12.5-16.2 MPa Wherein the high-strength ZrO 2 -Al 2 O 3 -MgO-MnO composite sintered body
KR1019960045035A 1996-10-10 1996-10-10 ZIRCONIUM OXIDE-ALUMINUM OXIDE-MAGNESIUM OXIDE-MANGANESE OXIDE(ZrO2-Al2O3-MgO-MnO) COMPOSITE SINTERED BODY IMPROVING STRENGTH AND FRACTURE TOUGHNESS KR100428563B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960045035A KR100428563B1 (en) 1996-10-10 1996-10-10 ZIRCONIUM OXIDE-ALUMINUM OXIDE-MAGNESIUM OXIDE-MANGANESE OXIDE(ZrO2-Al2O3-MgO-MnO) COMPOSITE SINTERED BODY IMPROVING STRENGTH AND FRACTURE TOUGHNESS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960045035A KR100428563B1 (en) 1996-10-10 1996-10-10 ZIRCONIUM OXIDE-ALUMINUM OXIDE-MAGNESIUM OXIDE-MANGANESE OXIDE(ZrO2-Al2O3-MgO-MnO) COMPOSITE SINTERED BODY IMPROVING STRENGTH AND FRACTURE TOUGHNESS

Publications (2)

Publication Number Publication Date
KR19980026556A KR19980026556A (en) 1998-07-15
KR100428563B1 true KR100428563B1 (en) 2004-08-02

Family

ID=37335188

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960045035A KR100428563B1 (en) 1996-10-10 1996-10-10 ZIRCONIUM OXIDE-ALUMINUM OXIDE-MAGNESIUM OXIDE-MANGANESE OXIDE(ZrO2-Al2O3-MgO-MnO) COMPOSITE SINTERED BODY IMPROVING STRENGTH AND FRACTURE TOUGHNESS

Country Status (1)

Country Link
KR (1) KR100428563B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110102291A (en) * 2019-05-15 2019-08-09 北京化工大学 A kind of Mn oxide/zirconia composite catalyst and the preparation method and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100365615B1 (en) * 1998-10-07 2003-03-04 삼성전자 주식회사 Method for dialing by expectation value in cordless phone

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR860001771A (en) * 1984-08-20 1986-03-22 알프레드 엘. 마이클센 Zirconia ceramic body with improved toughness and manufacturing method
KR890000686A (en) * 1987-06-11 1989-03-16 미쯔노 고오지 High toughness ZrO₂ sintered body and manufacturing method thereof
US4977114A (en) * 1986-11-28 1990-12-11 Sumitomo Chemical Company, Limited Zirconia ceramics and method for producing same
JPH10101418A (en) * 1996-10-01 1998-04-21 Matsushita Electric Works Ltd Zirconia-based composite ceramic sintered compact and its production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR860001771A (en) * 1984-08-20 1986-03-22 알프레드 엘. 마이클센 Zirconia ceramic body with improved toughness and manufacturing method
US4977114A (en) * 1986-11-28 1990-12-11 Sumitomo Chemical Company, Limited Zirconia ceramics and method for producing same
KR890000686A (en) * 1987-06-11 1989-03-16 미쯔노 고오지 High toughness ZrO₂ sintered body and manufacturing method thereof
JPH10101418A (en) * 1996-10-01 1998-04-21 Matsushita Electric Works Ltd Zirconia-based composite ceramic sintered compact and its production

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110102291A (en) * 2019-05-15 2019-08-09 北京化工大学 A kind of Mn oxide/zirconia composite catalyst and the preparation method and application thereof
CN110102291B (en) * 2019-05-15 2021-04-23 北京化工大学 Manganese oxide/zirconia composite catalyst and preparation method and application thereof

Also Published As

Publication number Publication date
KR19980026556A (en) 1998-07-15

Similar Documents

Publication Publication Date Title
US4753902A (en) Transformation toughened zirconia-titania-yttria ceramic alloys
US7056851B2 (en) ZrO2-Al2O3 composite ceramic material
EP1845072B1 (en) Composite ceramic and method for producing same
EP0466836B1 (en) Ceramics with high toughness, strength and hardness
US20140011661A1 (en) Method of making high toughness high strength zirconia bodies
JP4465173B2 (en) Composite ceramics and manufacturing method thereof
JPH10101418A (en) Zirconia-based composite ceramic sintered compact and its production
JP4723127B2 (en) Alumina ceramic sintered body, method for producing the same, and cutting tool
KR0184846B1 (en) Sintered moulding and its use
KR101575561B1 (en) Manufacturing Method of Polycrystalline Aluminum Oxynitride with Improved Transparency
KR100428563B1 (en) ZIRCONIUM OXIDE-ALUMINUM OXIDE-MAGNESIUM OXIDE-MANGANESE OXIDE(ZrO2-Al2O3-MgO-MnO) COMPOSITE SINTERED BODY IMPROVING STRENGTH AND FRACTURE TOUGHNESS
JP2847818B2 (en) Conductive zirconia sintered body and method for producing the same
JPH0553751B2 (en)
JP2002154873A (en) Zirconia sintered compact excellent in durability
JP2864455B2 (en) Low temperature resistant zirconia material and method for producing the same
JP2001302345A (en) Zirconia sintered body excellent in durability and manufacturing method thereof
JP2645894B2 (en) Method for producing zirconia ceramics
JP2517249B2 (en) High-strength zirconia-based HIP sintered body
US20100035747A1 (en) Partially stabilized zirconia materials
JPH06102574B2 (en) High toughness ceramic sintered body excellent in heat resistance stability and method for producing the same
JPH01212273A (en) Alumina ceramic reinforced with zirconia
Sivakumar et al. The Effect of Copper Oxide on the Mechanical Properties of Y-TZP Ceramics
JP4612358B2 (en) Alumina / zirconia ceramics and production method thereof
CN116514543A (en) Zirconia composite ceramic
JP2006062918A (en) Zirconia-alumina-based ceramic and method of manufacturing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130410

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20140410

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee