JP2002179458A - Low thermal expansion high rigidity ceramic material and method for manufacturing the same - Google Patents

Low thermal expansion high rigidity ceramic material and method for manufacturing the same

Info

Publication number
JP2002179458A
JP2002179458A JP2000375546A JP2000375546A JP2002179458A JP 2002179458 A JP2002179458 A JP 2002179458A JP 2000375546 A JP2000375546 A JP 2000375546A JP 2000375546 A JP2000375546 A JP 2000375546A JP 2002179458 A JP2002179458 A JP 2002179458A
Authority
JP
Japan
Prior art keywords
thermal expansion
ppm
coefficient
modulus
ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000375546A
Other languages
Japanese (ja)
Inventor
Yoshiaki Kurihara
祥晃 栗原
Kiyoshi Kawai
潔 川合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2000375546A priority Critical patent/JP2002179458A/en
Publication of JP2002179458A publication Critical patent/JP2002179458A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide low thermal expansion and high rigidity ceramics and a method for manufacturing the ceramics having a coefficient of thermal expansion as small as in the range of -0.5 to 1 ppm/K at 20±5 deg.C and a Young's modulus as high as >=150 GPa. SOLUTION: The low thermal expansion and high rigidity ceramics contains SiC and a base material consisting of cordierite expressed by general formula of 2MgO.2Al2O3.5SiO2 with substitution of Ga2O3 for part of Al2O3 and/or substitution of GeO2 for part of SiO2 and having -3 to 0 ppm/K coefficient of thermal expansion at 20±5 deg.C. The ceramics show -5 to 1 ppm/K coefficient of thermal expansion at 20±5 deg.C and >=150 GPa Young's modulus. In the method for manufacturing the ceramics, a base material consisting of cordierite expressed by general formula of 2MgO.2Al2O3.5SiO2 with substitution of Ga2O3 for part of Al2O3 and/or substitution of GeO2 for part of SiO2 and having -3 to 0 ppm/K coefficient of thermal expansion at 20±5 deg.C is mixed with SiC powder, and the mixture is compacted and calcined at 1270 to 1480 deg.C. The obtained ceramics show -0.5 to 1 ppm/K coefficient of thermal expansion at 20±5 deg.C and >=150 GPa Young's modulus.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、露光装置に代表さ
れるような半導体製造装置などに使用されるステージ、
ウェハ吸着チャック及びこれらの構成部品に適した、低
熱膨張高剛性セラミックス及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stage used in a semiconductor manufacturing apparatus represented by an exposure apparatus,
The present invention relates to a low-thermal-expansion high-rigidity ceramic suitable for a wafer suction chuck and these components, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来、半導体製造装置の部品には、価格
や化学的安定性の面からアルミナセラミックス、SiC
セラミックス、窒化珪素セラミックス等が多く使用され
てきた。
2. Description of the Related Art Conventionally, parts of a semiconductor manufacturing apparatus include alumina ceramics and SiC in terms of cost and chemical stability.
Ceramics, silicon nitride ceramics, and the like have been widely used.

【0003】しかし近年、電子回路の高集積化が進むに
つれて、これらの部品により高い位置決め精度が要求さ
れるようなり、特に製造装置の温度変化に対し精度の低
下が問題となってきている。即ち、加工精度及び歩留ま
り向上のためには、室温付近(20±5℃)での熱膨張
係数が小さく、かつ高剛性な材料が要求されてきてい
る。
In recent years, however, as electronic circuits have become more highly integrated, these components have been required to have higher positioning accuracy, and a decrease in accuracy has been a problem, especially when the temperature of a manufacturing apparatus changes. That is, in order to improve the processing accuracy and the yield, a material having a small coefficient of thermal expansion near room temperature (20 ± 5 ° C.) and high rigidity has been required.

【0004】近年、半導体製造装置の部品に使用される
低熱膨張セラミックスとして、特公平6−97675号
公報などに示されるようなコーディエライト系セラミッ
クスが提案されている。特公平6−97675号公報に
は、真空中でSiウェハを保持及び搬送する静電チャッ
ク用基板材料としてコーディエライト系セラミックスを
使用することが記載されている。
In recent years, cordierite-based ceramics as disclosed in Japanese Patent Publication No. 6-97675 have been proposed as low thermal expansion ceramics used for parts of semiconductor manufacturing equipment. Japanese Patent Publication No. 6-97675 describes the use of cordierite ceramics as a substrate material for an electrostatic chuck for holding and transporting a Si wafer in a vacuum.

【0005】また、コーディエライト系セラミックス
は、上記の他に特開昭55−144468号公報などに
示されるように、Al23の一部をGa23で置換及び
/又はSiO2部分の一部をGeO2で置換することで、
評価温度範囲25〜800℃においてゼロ以下の熱膨張
係数を示すことも知られている。
Further, cordierite based ceramics, as shown, such as in JP 55-144468 discloses the addition to the above, a portion of the Al 2 O 3 Ga 2 O 3 substituted and / or SiO 2 By substituting part of the part with GeO 2 ,
It is also known to exhibit a coefficient of thermal expansion of zero or less in an evaluation temperature range of 25 to 800 ° C.

【0006】同じく低熱膨張セラミックスとして知られ
ているリチウムアルミノシリケート(一般式Li2O・
Al23・nSiO2)系セラミックス、特にβ−スポ
デューメンについては、天然材料を使用して作製される
ことが特開昭56−164070号公報に示されてい
る。また、β−ユークリプタイトについては、MgOを
含むことにより緻密化できることが特開2000−21
9572号公報に示されている。
[0006] Lithium aluminosilicate (also represented by the general formula Li 2 O.
Japanese Patent Application Laid-Open No. 56-164070 discloses that an Al 2 O 3 .nSiO 2 ) -based ceramic, particularly β-spodumene, is produced using a natural material. Japanese Patent Application Laid-Open No. 2000-21 discloses that β-eucryptite can be densified by containing MgO.
No. 9572.

【0007】近年、コンピュータに搭載されている記憶
チップに代表されるような半導体LSI、VLSI等の
高集積化がさらに進み、それに伴いサブミクロンオーダ
の超微細な回路形成が必須となってきている。従って、
超微細回路をSiウェハ上に形成する露光装置には高い
精度、例えば位置決めでは0.05μm以下の精度が要
求されている。
In recent years, higher integration of semiconductor LSIs, VLSIs, etc., typified by storage chips mounted on computers, has been further advanced, and accordingly, formation of ultrafine circuits on the order of submicrons has become essential. . Therefore,
An exposure apparatus for forming an ultrafine circuit on a Si wafer is required to have high precision, for example, 0.05 μm or less in positioning.

【0008】半導体製造装置及びその部品には、金属に
比べ剛性が高く、かつ熱膨張係数の小さな窒化珪素セラ
ミックスやコーディエライト系セラミックスが用いられ
ている。しかし、窒化珪素においては、剛性はヤング率
が約300GPa(ギガパスカル、=×109Pa)と
高いが、20±5℃のときの熱膨張係数が1.31pp
m/K(=×10-6/K)であり、このことは長さ1m
の露光装置部材の温度が0.05℃変化するだけで0.
06μm(ミクロン、=×10-6m)程度の寸法変化が
生じることを意味しており、精密回路を形成する上での
品質及び歩留まりの低下をもたらしている。
[0008] Silicon nitride ceramics and cordierite ceramics, which have higher rigidity than metals and a small thermal expansion coefficient, are used for semiconductor manufacturing equipment and parts thereof. However, in silicon nitride, the rigidity is as high as about 300 GPa (gigapascal, = × 10 9 Pa), but the coefficient of thermal expansion at 20 ± 5 ° C. is 1.31 pp.
m / K (= × 10 −6 / K), which means that the length is 1 m
Only when the temperature of the exposure device member changes by 0.05 ° C.
This means that a dimensional change of about 0.6 μm (micron, = × 10 −6 m) occurs, which causes a decrease in quality and yield in forming a precision circuit.

【0009】これに対し、コーディエライト系セラミッ
クスは、20±5℃のときの熱膨張係数は0.2ppm
/K程度と小さく、温度変化に対する寸法変化を低減さ
せることができている。しかし剛性の点ではヤング率が
約100〜120GPaと低く、外部応力に対して寸法
変化が生じ易いという欠点がある。
On the other hand, cordierite ceramic has a coefficient of thermal expansion of 0.2 ppm at 20 ± 5 ° C.
/ K, which is small, so that a dimensional change due to a temperature change can be reduced. However, in terms of rigidity, the Young's modulus is as low as about 100 to 120 GPa, and there is a disadvantage that a dimensional change easily occurs due to external stress.

【0010】リチウムアルミノシリケート系セラミック
スはその組成により、20±5℃のときの熱膨張係数が
−8〜2ppm/K程度のものが得られているが、やは
り剛性が低く、ヤング率は60〜90GPa程度であ
り、コーディエライト系セラミックスと同じく外部応力
に対して寸法変化が生じ易いという欠点がある。
[0010] Lithium aluminosilicate ceramics have a thermal expansion coefficient of about -8 to 2 ppm / K at 20 ± 5 ° C depending on the composition, but also have low rigidity and a Young's modulus of 60 to 5 ppm. It is about 90 GPa, which is disadvantageous in that dimensional changes easily occur with respect to external stress similarly to cordierite ceramics.

【0011】[0011]

【発明が解決しようとする課題】請求項1、2及び3記
載の発明は、20±5℃のときの熱膨張係数が小さく−
0.5〜1ppm/Kの範囲内にあり、かつヤング率が
150GPa以上と高い低熱膨張高剛性セラミックスを
提供するものである。請求項4、5及び6記載の発明
は、20±5℃のときの熱膨張係数が小さく−0.5〜
1ppm/Kの範囲内にあり、かつヤング率が150G
Pa以上と高い低熱膨張高剛性セラミックスの製造方法
を提供するものである。
According to the first, second and third aspects of the present invention, the thermal expansion coefficient at 20 ± 5 ° C. is small.
It is intended to provide a low-thermal-expansion high-rigidity ceramic having a Young's modulus as high as 150 GPa or more in the range of 0.5 to 1 ppm / K. The invention according to Claims 4, 5 and 6 has a small thermal expansion coefficient at 20 ± 5 ° C.
Within 1 ppm / K and Young's modulus is 150G
An object of the present invention is to provide a method for producing a low-thermal-expansion high-rigidity ceramic as high as Pa or more.

【0012】[0012]

【課題を解決するための手段】本発明は、一般式2Mg
O・2Al23・5SiO2で表されるコーディエライ
トのAl23の一部をGa23で置換及び/又はSiO
2の一部をGeO2で置換し、かつ20±5℃のときの熱
膨張係数が−3〜0ppm/Kの母材及びSiCを含有
し、さらに20±5℃のときの熱膨張係数が−0.5〜
1ppm/Kで、ヤング率が150GPa以上である低
熱膨張高剛性セラミックスに関する。また、本発明は、
前記の母材の含有量が60〜90体積%及びSiCの含
有量が10〜40体積%である低熱膨張高剛性セラミッ
クスに関する。また、本発明は、Al23の5〜20モ
ル%をGa23で置換及び/又はSiO2の一部をGe
2で置換してなる請求項1又は2記載の低熱膨張高剛
性セラミックスに関する。
According to the present invention, there is provided a compound of the general formula 2Mg
A part of Al 2 O 3 of cordierite represented by O.2Al 2 O 3 .5SiO 2 is replaced with Ga 2 O 3 and / or SiO 2
2 is partially substituted with GeO 2 , and contains a base material and SiC having a thermal expansion coefficient of −3 to 0 ppm / K at 20 ± 5 ° C., and further has a thermal expansion coefficient of 20 ± 5 ° C. -0.5 ~
The present invention relates to a low-thermal-expansion high-rigidity ceramic having a Young's modulus of 150 ppm or more at 1 ppm / K. Also, the present invention
The present invention relates to a low-thermal-expansion high-rigidity ceramic in which the content of the base material is 60 to 90% by volume and the content of SiC is 10 to 40% by volume. Further, the present invention is a part of 5 to 20 mol% Al 2 O 3 Ga 2 O 3 substituted and / or SiO 2 Ge
The low-thermal-expansion high-rigidity ceramic according to claim 1 or 2, which is substituted by O 2 .

【0013】また、本発明は、一般式2MgO・2Al
23・5SiO2で表されるコーディエライトのAl2
3の一部をGa23で置換及び/又はSiO2の一部をG
eO2で置換し、かつ20±5℃のときの熱膨張係数が
−3〜0ppm/Kの母材及びSiC粉末を混合、成形
した後、1270〜1480℃の温度で焼成することを
特徴とする20±5℃のときの熱膨張係数が−0.5〜
1ppm/Kで、ヤング率が150GPa以上の低熱膨
張高剛性セラミックスの製造方法に関する。また、本発
明は、前記の母材の含有量が60〜90体積%及びSi
Cの含有量が10〜40体積%である低熱膨張高剛性セ
ラミックスの製造方法に関する。さらに、本発明は、A
23の5〜20モル%をGa23で置換及び/又はS
iO2の5〜20モル%をGeO2で置換してなる請求項
4又は5記載の低熱膨張高剛性セラミックスの製造方法
に関する。
Further, the present invention relates to a compound of the general formula 2MgO.2Al
Al 2 O cordierite represented by 2 O 3 · 5SiO 2
3 is replaced by Ga 2 O 3 and / or SiO 2 is partially replaced by G
After mixing and molding a base material and SiC powder having a thermal expansion coefficient of −3 to 0 ppm / K at 20 ± 5 ° C. after substituting with eO 2 , firing at a temperature of 1270 to 1480 ° C. The thermal expansion coefficient at 20 ± 5 ° C
The present invention relates to a method for producing a low-thermal-expansion high-rigidity ceramic having a Young's modulus of 1 ppm / K and a Young's modulus of 150 GPa or more. Further, the present invention relates to the above-mentioned metal alloy, wherein the content of the base material is 60 to 90% by volume and Si
The present invention relates to a method for producing a low-thermal-expansion high-rigidity ceramic having a C content of 10 to 40% by volume. Furthermore, the present invention provides
5 to 20 mol% of l 2 O 3 is replaced by Ga 2 O 3 and / or
5-20 mol% of iO 2 relates to a manufacturing method according to claim 4 or 5 low thermal expansion and high rigidity ceramic according formed by substituted with GeO 2.

【0014】[0014]

【発明の実施の形態】本発明の母材に用いられる一般式
2MgO・2Al23・5SiO2で表されるコーディ
エライトのAl23の一部をGa23で置換及び/又は
SiO2の一部をGeO2で置換したもので、20±5℃
のときの熱膨張係数が−3〜0ppm/K、好ましくは
−2.5〜−0ppm/K、さらに好ましくは−2〜0
ppm/Kの範囲の粉末を用いることが必要とされ、−
3〜0ppm/Kの範囲から外れた粉末を用いると、本
発明の目的とする20±5℃のときの熱膨張係数が−
0.5〜1ppm/Kで、ヤング率が150GPa以上
の低熱膨張高剛性セラミックスを得ることができない。
Replacing a part of the general used in matrix type 2MgO · 2Al 2 O 3 cordierite represented by · 5SiO 2 Al 2 O 3 of the present invention DETAILED DESCRIPTION OF THE INVENTION In Ga 2 O 3 and / Or a substance obtained by substituting a part of SiO 2 with GeO 2 , at 20 ± 5 ° C.
, The coefficient of thermal expansion is -3 to 0 ppm / K, preferably -2.5 to -0 ppm / K, and more preferably -2 to 0 ppm / K.
It is necessary to use powders in the ppm / K range,
When a powder out of the range of 3 to 0 ppm / K is used, the thermal expansion coefficient at 20 ± 5 ° C. which is the object of the present invention is −
At 0.5 to 1 ppm / K, a low-thermal-expansion high-rigidity ceramic having a Young's modulus of 150 GPa or more cannot be obtained.

【0015】本発明において、一般式2MgO・2Al
23・5SiO2で表されるコーディエライトは、Al2
3の一部をGa23で置換及び/又はSiO2の一部を
GeO2で置換して用いるが、その置換量は得られるセ
ラミックスの20±5℃のときの熱膨張係数を小さくす
る点で、Al23の一部をGa23で置換する場合は、
Al23の5〜20モル%をGa23で置換することが
好ましく、Al23の10〜20モル%をGa23で置
換することがさらに好ましい。一方、SiO 2の一部を
GeO2で置換する場合は、SiO2の5〜20モル%を
GeO2で置換することが好ましく、SiO2の10〜2
0モル%をGeO2で置換することがさらに好ましい。
In the present invention, the general formula 2MgO.2Al
TwoOThree・ 5SiOTwoCordierite represented byTwo
OThreePart of GaTwoOThreeAnd / or SiOTwoPart of
GeOTwoTo be used.
Reduce the coefficient of thermal expansion of Lamix at 20 ± 5 ° C
In terms ofTwoOThreePart of GaTwoOThreeTo replace with
AlTwoOThreeFrom 5 to 20 mol% of GaTwoOThreeCan be replaced by
Preferably, AlTwoOThree10 to 20 mol% of GaTwoOThreePut in
It is more preferable that the replacement is performed. On the other hand, SiO TwoPart of
GeOTwoWhen substituting withTwo5 to 20 mol% of
GeOTwoIt is preferable to substituteTwo10-2
0% by mole of GeOTwoIt is more preferred to substitute

【0016】なお、前記コーディエライトは、Al23
の一部をGa23で置換したものとSiO2の一部をG
eO2で置換したものを併用して用いる場合は、Al2
3に対するGa23の置換モル%とSiO2に対するGe
2の置換モル%の和は、得られるセラミックスの20
±5℃のときの熱膨張係数を小さくする点で、5〜30
モル%の範囲が好ましく、10〜27モル%の範囲がよ
り好ましく、15〜25モル%の範囲がさらに好まし
い。
The cordierite is made of Al 2 O 3
Is partially replaced by Ga 2 O 3 and SiO 2 is partially replaced by G
When used in combination with those substituted with eO 2 , use Al 2 O
Ge to the substitutions mol% and SiO 2 of Ga 2 O 3 for 3
The sum of the substitution mole% of O 2 is 20
In terms of reducing the coefficient of thermal expansion at ± 5 ° C, 5-30
The range of mol% is preferable, the range of 10 to 27 mol% is more preferable, and the range of 15 to 25 mol% is further preferable.

【0017】上記の母材となる粉末は、例えば純度が9
9%以上のMgO、Al23、Ga 23、SiO2及び
GeO2の粉末を、モル比で2:1.6〜1.9:0.
1〜0.4:4〜4.75:0.25〜1となるように
秤量し、ボールミルなどを用いて湿式混合、乾燥、造粒
後、大気中で仮焼きし、その後平均粒径を10〜20μ
mに造粒して得ることができる。
The above-mentioned base material powder has, for example, a purity of 9%.
9% or more MgO, AlTwoOThree, Ga TwoOThree, SiOTwoas well as
GeOTwoIn a molar ratio of 2: 1.6 to 1.9: 0.
1 to 0.4: 4 to 4.75: 0.25 to 1
Weigh, wet mix using a ball mill, dry, granulate
After that, it is calcined in the air, and then the average particle size is 10 to 20 μm.
m can be obtained by granulation.

【0018】一方、本発明に用いられるSiC粉末は、
α型、β型のいずれでもよいが、価格が安く、焼成時の
結晶構造変化の少ないα型のSiC粉末を用いることが
好ましい。純度は高純度の粉末を用いることが好ましい
が、本発明においては通常用いられるGCグレードの焼
結用SiC粉末でも差し支えない。
On the other hand, the SiC powder used in the present invention is:
Although it may be either α-type or β-type, it is preferable to use α-type SiC powder which is inexpensive and has little change in crystal structure during firing. It is preferable to use a high-purity powder for the purity, but in the present invention, a GC-grade SiC powder for sintering which is generally used may be used.

【0019】SiC粉末の粒径は、平均粒径が0.1μ
m以上が好ましく、0.5μm以上がより好ましく、
0.6〜10μmの範囲がさらに好ましい。平均粒径が
0.1μm未満ではSiC粉末の価格が数百倍以上と高
価になり不経済である。SiC粉末の平均粒径は、レー
ザー式粒度分布測定器(MALVERN社製のマスター
サイザー)で測定して求めることができる。また、Si
C粉末は、20±5℃のときの熱膨張係数が1.5〜
2.5ppm/Kで、ヤング率が200GPa以上の粉
末を用いることが好ましい。
The average particle diameter of the SiC powder is 0.1 μm.
m or more, more preferably 0.5 μm or more,
The range of 0.6 to 10 μm is more preferable. If the average particle size is less than 0.1 μm, the cost of SiC powder is several hundred times or more, which is expensive and uneconomical. The average particle size of the SiC powder can be determined by measuring with a laser type particle size distribution measuring device (master sizer manufactured by MALVERN). In addition, Si
C powder has a coefficient of thermal expansion of 1.5 to 20 ± 5 ° C.
It is preferable to use a powder having a Young's modulus of 200 GPa or more at 2.5 ppm / K.

【0020】本発明において、母材とSiC粉末との配
合割合は、母材60〜90体積%に対してSiC粉末が
10〜40体積%の範囲が好ましく、母材60〜85体
積%に対してSiC粉末が15〜40体積%の範囲がよ
り好ましく、母材60〜80体積%に対してSiC粉末
が20〜40体積%の範囲がさらに好ましい。母材が6
0体積%未満でSiC粉末が40体積%を超えると、得
られるセラミックスが緻密化しなくなる傾向があり、母
材が90体積%を超えSiC粉末が10体積%未満であ
ると得られるセラミックスのヤング率が150GPa以
上とならず外部応力に対して寸法変化が生じ易くなる傾
向がある。なお、本発明における体積%は、成分の重量
をその成分の密度で除して算出した値である。
In the present invention, the mixing ratio of the base material and the SiC powder is preferably in the range of 10 to 40% by volume of the SiC powder with respect to 60 to 90% by volume of the base material. Thus, the SiC powder is more preferably in the range of 15 to 40% by volume, and the base material is more preferably in the range of 20 to 40% by volume with respect to 60 to 80% by volume. Base material is 6
If the SiC powder is less than 0% by volume and the SiC powder exceeds 40% by volume, the resulting ceramic tends not to be densified, and the Young's modulus of the ceramic obtained if the base material exceeds 90% by volume and the SiC powder is less than 10% by volume. Is not more than 150 GPa, and there is a tendency that a dimensional change is easily caused by external stress. The volume% in the present invention is a value calculated by dividing the weight of a component by the density of the component.

【0021】本発明によって得られる低熱膨張高剛性セ
ラミックスの20±5℃のときの熱膨張係数は、−0.
5〜1ppm/K、好ましくは−0.5〜0.7ppm
/K、さらに好ましくは−0.5〜0.5ppm/Kの
範囲とされ、−0.5〜1ppm/Kの範囲から外れる
と微妙な温度変化により寸法変化が生じる。熱膨張係数
は、レーザー干渉法で測定して求めることができる。
The coefficient of thermal expansion at 20 ± 5 ° C. of the low-thermal-expansion high-rigidity ceramic obtained by the present invention is −0.05 ° C.
5-1 ppm / K, preferably -0.5-0.7 ppm
/ K, more preferably in the range of -0.5 to 0.5 ppm / K. If the temperature is outside the range of -0.5 to 1 ppm / K, a dimensional change occurs due to a slight temperature change. The coefficient of thermal expansion can be determined by measuring with a laser interferometry.

【0022】また、本発明によって得られる低熱膨張高
剛性セラミックスのヤング率は、150GPa以上、好
ましくは160GPa以上、さらに好ましくは170G
Pa以上とされ、150GPa未満であると外部応力に
対して寸法変化が生じる。ヤング率は、超音波パルス法
で測定して求めることができる。
The low thermal expansion high rigidity ceramics obtained by the present invention has a Young's modulus of 150 GPa or more, preferably 160 GPa or more, and more preferably 170 GPa or more.
When it is set to Pa or more, and less than 150 GPa, a dimensional change occurs with respect to external stress. The Young's modulus can be determined by measuring using an ultrasonic pulse method.

【0023】母材とSiC粉末との混合法については特
に制限はなく、例えばボールミルなどを用いて粉砕混合
することができる。成形についても制限はなく、金型プ
レス成形、鋳込み成形、射出成形、押し出し成形等の方
法で成形することができる。なお成形圧力は、各々成形
方法により異なるため特に制限はない。
The method of mixing the base material and the SiC powder is not particularly limited, and may be pulverized and mixed using, for example, a ball mill. There is no limitation on the molding, and molding can be performed by a method such as die press molding, casting, injection molding, extrusion molding, or the like. The molding pressure is not particularly limited because it differs depending on the molding method.

【0024】また、焼成は、高いヤング率を得る点で窒
素(N2)ガス、アルゴンガス等の不活性ガス雰囲気中
又は真空中で焼成することが好ましい。焼成温度は、1
270〜1480℃、好ましくは1300〜1450
℃、さらに好ましくは1350〜1400℃の範囲とさ
れ、1270℃未満であると得られるセラミックスが緻
密化せず、1480℃を超えると成形体が溶融するとい
う問題点が生じる。
The firing is preferably performed in an atmosphere of an inert gas such as a nitrogen (N2) gas or an argon gas or in a vacuum in order to obtain a high Young's modulus. The firing temperature is 1
270-1480 ° C, preferably 1300-1450
° C, more preferably in the range of 1350 to 1400 ° C. If the temperature is lower than 1270 ° C, the resulting ceramic will not be densified, and if it exceeds 1480 ° C, there will be a problem that the molded body will melt.

【0025】[0025]

【実施例】以下、本発明を実施例により説明する。純度
99%以上のMgO、Al23、Ga23、SiO2
びGeO2の粉末を、表1に示す割合で秤量し、これらの
粉末の総量200gに対してイオン交換水を50ミリリ
ットル加えてボールミルで24時間湿式混合し、この後
得られたスラリーを乾燥容器に移す際に、イオン交換水
をさらに50ミリリットル加えてボールミル内をすす
ぎ、これらのイオン交換水を含む混合物を乾燥容器に移
して45℃で24時間乾燥した。
The present invention will be described below with reference to examples. Purity of 99% of MgO, the Al 2 O 3, Ga 2 O 3, the SiO 2 and GeO 2 powder, were weighed in proportions shown in Table 1 50 ml of ion-exchanged water based on the total amount 200g of these powders In addition, the mixture was wet-mixed in a ball mill for 24 hours, and then, when the obtained slurry was transferred to a drying vessel, another 50 ml of ion-exchanged water was added to rinse the inside of the ball mill, and the mixture containing the ion-exchanged water was placed in a drying vessel. Transferred and dried at 45 ° C. for 24 hours.

【0026】次いで、乳鉢で上記乾燥物を粉砕した後粉
砕物を60メッシュの篩を通して造粒し、次いで大気中
において1400℃(但し、試料No.9のみ融点低下
のため1300℃)で5時間仮焼きして、セラミックス
母材を得た。得られた各セラミックス母材の23±1℃
のときの熱膨張係数は、それぞれ1.2ppm/K(試
料No.1)、−1.5ppm/K(試料No.2〜7
及び試料No.14〜19)、−1.2ppm/K(試
料No.8)、0.5ppm/K(試料No.9)、−
1.2ppm/K(試料No.10及び11)並びに−
1.1(試料No.12及び13)ppm/Kであっ
た。また得られたセラミックス母材をX線回折で測定し
た結果、コーディエライト単相であった。
Then, the dried product is pulverized in a mortar, and the pulverized product is granulated through a 60-mesh sieve, and then at 1,400 ° C. in air (1300 ° C. for sample No. 9 due to a decrease in melting point) for 5 hours. By calcining, a ceramic base material was obtained. 23 ± 1 ℃ of each ceramic base material obtained
Are 1.2 ppm / K (sample No. 1) and -1.5 ppm / K (samples Nos. 2 to 7), respectively.
And sample no. 14 to 19), -1.2 ppm / K (sample No. 8), 0.5 ppm / K (sample No. 9),-
1.2 ppm / K (Sample Nos. 10 and 11) and-
1.1 (Samples Nos. 12 and 13) were ppm / K. Further, as a result of measuring the obtained ceramic base material by X-ray diffraction, it was found to be a cordierite single phase.

【0027】次に、セラミックス母材に対して、高剛性
粒子として23±1℃のときの熱膨張係数が2.13p
pm/K及びヤング率が410GPaで平均粒径が0.
6μmのα型SiC粉末を表2に示す割合で添加し、ボ
ールミルで72時間粉砕・混合し、45℃で24時間乾
燥し、乾燥後60メッシュの篩を通して造粒し、その後
120MPaの圧力で乾式一軸加圧成形して、直径が2
5mm及び厚さが12mmのペレット形状の成形体を得
た。次いで得られた成形体を表2に示す条件で焼成して
焼結体(低熱膨張高剛性セラミックス)を得た。
Next, the ceramic base material has a coefficient of thermal expansion of 2.13p at 23 ± 1 ° C. as highly rigid particles.
pm / K, Young's modulus is 410 GPa, and average particle size is 0.1 GP.
6 μm α-type SiC powder was added at the ratio shown in Table 2, ground and mixed in a ball mill for 72 hours, dried at 45 ° C. for 24 hours, dried, granulated through a 60-mesh sieve, and then dried at a pressure of 120 MPa. Uniaxial pressure molding, 2 diameter
A pellet-shaped compact having a thickness of 5 mm and a thickness of 12 mm was obtained. Next, the obtained molded body was fired under the conditions shown in Table 2 to obtain a sintered body (low thermal expansion high rigidity ceramic).

【0028】得られた焼結体について、気孔率、ヤング
率及び熱膨張係数を求めた。その結果を表2に示す。な
お気孔率はアルキメデス法で測定して求め、ヤング率は
超音波パルス法で測定して求め、また熱膨張係数はレー
ザー干渉法で測定して求めた。なお熱膨張係数は23±
1℃のときの値を示した。
The porosity, Young's modulus and coefficient of thermal expansion of the obtained sintered body were determined. Table 2 shows the results. The porosity was determined by the Archimedes method, the Young's modulus was determined by the ultrasonic pulse method, and the coefficient of thermal expansion was determined by the laser interferometry. The coefficient of thermal expansion is 23 ±
The value at 1 ° C. is shown.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】表2に示されるように、本発明になる焼結
体(低熱膨張高剛性セラミックス)は、気孔率が3.4
%以下、ヤング率が151GPa以上及び23±1℃の
ときの熱膨張係数が−0.5〜0.8ppm/Kの範囲
で全ての特性に優れていることが明らかである。これに
対し、本発明に含まれない試料No.1及び9の焼結体
は、ヤング率が125GPa以下と低く、23±1℃の
ときの熱膨張係数は1.2ppm/K以上と高い値であ
った。
As shown in Table 2, the sintered body (low thermal expansion high rigidity ceramic) according to the present invention has a porosity of 3.4.
%, The coefficient of thermal expansion when the Young's modulus is 151 GPa or more and the temperature is 23 ± 1 ° C. is in the range of −0.5 to 0.8 ppm / K. On the other hand, Sample No. which is not included in the present invention. The sintered bodies of Nos. 1 and 9 had a low Young's modulus of 125 GPa or less, and a high coefficient of thermal expansion at 23 ± 1 ° C. of 1.2 ppm / K or more.

【0032】また、試料No.7の焼結体は、23±1
℃のときの熱膨張係数は1.2ppm/Kと高い値であ
り、さらに試料No.2、10、12及び19の焼結体
は、ヤング率が130GPa以下と低く、23±1℃の
ときの熱膨張係数は−1.1ppm/K以下と低い値で
あった。さらに、試料No.14の焼結体は、気孔率が
高いためヤング率を測定することができなかった。な
お、試料No.18は、成形体が溶融し焼結体を得るこ
とができなかった。
The sample No. The sintered body of No. 7 is 23 ± 1
The coefficient of thermal expansion at a temperature of 100 ° C. was as high as 1.2 ppm / K. The sintered bodies of 2, 10, 12, and 19 had Young's modulus as low as 130 GPa or less, and the coefficient of thermal expansion at 23 ± 1 ° C was as low as -1.1 ppm / K or less. Further, the sample No. The sintered body of No. 14 could not measure Young's modulus because of high porosity. The sample No. In No. 18, the molded body was melted and a sintered body could not be obtained.

【0033】[0033]

【発明の効果】請求項1、2及び3記載の低熱膨張高剛
性セラミックスは、20±5℃のときの熱膨張係数が−
0.5〜1ppm/Kの範囲内にあり、かつヤング率が
150GPa以上と高い低熱膨張高剛性セラミックスで
ある。請求項4、5及び6記載の方法により得られる低
熱膨張高剛性セラミックスは、20±5℃のときの熱膨
張係数が−0.5〜1ppm/Kの範囲内で、かつヤン
グ率が150GPa以上と高い低熱膨張高剛性セラミッ
クスである。
The low-thermal-expansion high-rigidity ceramics according to the first, second and third aspects have a coefficient of thermal expansion at 20 ± 5 ° C.
It is a low-thermal-expansion high-rigidity ceramic in the range of 0.5 to 1 ppm / K and having a high Young's modulus of 150 GPa or more. The low-thermal-expansion high-rigidity ceramic obtained by the method according to claim 4, 5 or 6, has a coefficient of thermal expansion in the range of -0.5 to 1 ppm / K at 20 ± 5 ° C and a Young's modulus of 150 GPa or more. And high rigidity ceramics with low thermal expansion.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】一般式2MgO・2Al23・5SiO2
で表されるコーディエライトのAl23の一部をGa2
3で置換及び/又はSiO2の一部をGeO2で置換
し、かつ20±5℃のときの熱膨張係数が−3〜0pp
m/Kの母材及びSiCを含有し、さらに20±5℃の
ときの熱膨張係数が−0.5〜1ppm/Kで、ヤング
率が150GPa以上である低熱膨張高剛性セラミック
ス。
1. The general formula 2MgO.2Al 2 O 3 .5SiO 2
Some of the Al 2 O 3 of in represented by cordierite Ga 2
The part of a substituent and / or SiO 2 in O 3 was replaced with GeO 2, and 20 thermal expansion coefficient when the ± 5 ℃ is -3~0pp
A low-thermal-expansion high-rigidity ceramic containing a base material of m / K and SiC, having a thermal expansion coefficient of -0.5 to 1 ppm / K at 20 ± 5 ° C, and a Young's modulus of 150 GPa or more.
【請求項2】前記の母材の含有量が60〜90体積%及
びSiCの含有量が10〜40体積%である請求項1記
載の低熱膨張高剛性セラミックス。
2. The low thermal expansion and high rigidity ceramic according to claim 1, wherein the content of the base material is 60 to 90% by volume and the content of SiC is 10 to 40% by volume.
【請求項3】Al23の5〜20モル%をGa23で置
換及び/又はSiO2の5〜20モル%をGeO2で置換
してなる請求項1又は2記載の低熱膨張高剛性セラミッ
クス。
3. A low thermal expansion of the replacement and / or 5 to 20 mol% of SiO 2 formed by substituted with GeO 2 according to claim 1 or 2, wherein 5 to 20 mole% Al 2 O 3 in Ga 2 O 3 High rigidity ceramics.
【請求項4】一般式2MgO・2Al23・5SiO2
で表されるコーディライトのAl2 3の一部をGa23
で置換及び/又はSiO2の一部をGeO2で置換し、か
つ20±5℃のときの熱膨張係数が−3〜0ppm/K
の母材及びSiC粉末を混合、成形した後、1270〜
1480℃の温度で焼成することを特徴とする20±5
℃のときの熱膨張係数が−0.5〜1ppm/Kで、ヤ
ング率が150GPa以上の低熱膨張高剛性セラミック
スの製造方法。
4. The general formula 2MgO.2AlTwoOThree・ 5SiOTwo
Al of cordierite represented byTwoO ThreePart of GaTwoOThree
And / or SiOTwoPart of GeOTwoReplace with
Thermal expansion coefficient at 20 ± 5 ° C. is -3 to 0 ppm / K
After mixing and molding the base material and SiC powder of 1270-
20 ± 5 characterized by firing at a temperature of 1480 ° C.
The coefficient of thermal expansion at -0.5 ° C is -0.5 to 1 ppm / K.
Thermal expansion high rigidity ceramic with a modulus of at least 150 GPa
Manufacturing method.
【請求項5】前記の母材の含有量が60〜90体積%及
びSiCの含有量が10〜40体積%である請求項4記
載の低熱膨張高剛性セラミックスの製造方法。
5. The method according to claim 4, wherein the content of the base material is 60 to 90% by volume and the content of SiC is 10 to 40% by volume.
【請求項6】Al23の5〜20モル%をGa23で置
換及び/又はSiO2の5〜20モル%をGeO2で置換
してなる請求項4又は5記載の低熱膨張高剛性セラミッ
クスの製造方法。
6. The low thermal expansion of the replacement and / or 5 to 20 mol% of SiO 2 formed by substituted with GeO 2 according to claim 4 or 5, wherein 5 to 20 mole% Al 2 O 3 in Ga 2 O 3 Manufacturing method of high rigidity ceramics.
JP2000375546A 2000-12-11 2000-12-11 Low thermal expansion high rigidity ceramic material and method for manufacturing the same Pending JP2002179458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000375546A JP2002179458A (en) 2000-12-11 2000-12-11 Low thermal expansion high rigidity ceramic material and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000375546A JP2002179458A (en) 2000-12-11 2000-12-11 Low thermal expansion high rigidity ceramic material and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2002179458A true JP2002179458A (en) 2002-06-26

Family

ID=18844546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000375546A Pending JP2002179458A (en) 2000-12-11 2000-12-11 Low thermal expansion high rigidity ceramic material and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2002179458A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55144468A (en) * 1979-04-23 1980-11-11 Ngk Insulators Ltd Low expansion ceramics
JPS58104064A (en) * 1981-11-30 1983-06-21 ザ・パ−キン−エルマ−・コ−ポレイシヨン Polycrystal sintered ceramic structure and manufacture
JPH1179830A (en) * 1997-08-29 1999-03-23 Kyocera Corp Low-thermal expansion ceramics, their production and part for producing semiconductor
JPH11236262A (en) * 1998-02-23 1999-08-31 Kyocera Corp Low thermal expansion ceramic structural member and member for semiconductor device producing apparatus using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55144468A (en) * 1979-04-23 1980-11-11 Ngk Insulators Ltd Low expansion ceramics
JPS58104064A (en) * 1981-11-30 1983-06-21 ザ・パ−キン−エルマ−・コ−ポレイシヨン Polycrystal sintered ceramic structure and manufacture
JPH1179830A (en) * 1997-08-29 1999-03-23 Kyocera Corp Low-thermal expansion ceramics, their production and part for producing semiconductor
JPH11236262A (en) * 1998-02-23 1999-08-31 Kyocera Corp Low thermal expansion ceramic structural member and member for semiconductor device producing apparatus using the same

Similar Documents

Publication Publication Date Title
JP4416191B2 (en) Low thermal expansion ceramics, manufacturing method thereof, and semiconductor manufacturing component
US4272500A (en) Process for forming mullite
JP2001019540A (en) Black ceramic sintered body with low thermal expansion and its production
US20080096758A1 (en) Low-thermal expansion ceramics bonding body and manufacturing method of the same
JPH11343168A (en) Low thermal expansion black ceramics, its production and member for semiconductor producing apparatus
JP4261631B2 (en) Manufacturing method of ceramic sintered body
JPH11209171A (en) Dense low thermal expansion ceramics, its production and member for semiconductor producing device
JP3676552B2 (en) Low thermal expansion ceramics and method for producing the same
JP2006232667A (en) Low thermal expansion ceramic and member for device for manufacturing semiconductor using it
JP3469513B2 (en) Exposure apparatus and support member used therein
JP2002160972A (en) High rigidity and low thermal expansion ceramic and its manufacturing method
TWI232853B (en) Electroconductive low thermal expansion ceramics sintered compact
JP4025455B2 (en) Composite oxide ceramics
JP2002179458A (en) Low thermal expansion high rigidity ceramic material and method for manufacturing the same
JP5011609B2 (en) Dense cordierite ceramics and method for producing the same
JPH06100306A (en) Sialon crystal particle and sintered compact of complex ceramics
JPH11236262A (en) Low thermal expansion ceramic structural member and member for semiconductor device producing apparatus using the same
JP4912544B2 (en) Low thermal conductivity high rigidity ceramics
JP3260340B2 (en) Composite ceramic and method for producing the same
JP4568979B2 (en) Cordierite dense sintered body and manufacturing method thereof
JPH0515668B2 (en)
JPH11100275A (en) Low thermal expansion ceramic and its preparation
JP2001302338A (en) Composite ceramic and manufacturing method thereof
JP2003321271A (en) Composite ceramic and method for producing the same
JP2001039764A (en) Cordierite ceramics and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100316