JP2006182641A - Silicon carbide-based sintered compact, its producing method, and member for semiconductor production device using the same - Google Patents

Silicon carbide-based sintered compact, its producing method, and member for semiconductor production device using the same Download PDF

Info

Publication number
JP2006182641A
JP2006182641A JP2005344091A JP2005344091A JP2006182641A JP 2006182641 A JP2006182641 A JP 2006182641A JP 2005344091 A JP2005344091 A JP 2005344091A JP 2005344091 A JP2005344091 A JP 2005344091A JP 2006182641 A JP2006182641 A JP 2006182641A
Authority
JP
Japan
Prior art keywords
silicon carbide
sintered body
less
based sintered
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005344091A
Other languages
Japanese (ja)
Other versions
JP4761948B2 (en
Inventor
Tetsuya Inoue
徹彌 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2005344091A priority Critical patent/JP4761948B2/en
Publication of JP2006182641A publication Critical patent/JP2006182641A/en
Application granted granted Critical
Publication of JP4761948B2 publication Critical patent/JP4761948B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Ceramic Products (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a silicon carbide-based sintered compact which is substantially free from voids, inexpensive and suitable for a member for transporting or holding a semiconductor wafer, a liquid crystal substrate or the like, a mirror for measuring the stage position in an aligner, a mirror for a precise optical instrument, or the like; and a method for producing the same, by which the silicon carbide-based sintered compact can be produced easily in a good yield. <P>SOLUTION: The method for producing the silicon carbide-based sintered compact comprises forming a raw material powder, obtained by adding, as additives, at least a powdery boron compound and a powdery carbon compound to a silicon carbide powder being a main component, subjecting the obtained formed body to primary sintering at a temperature at which the grain growth of silicon carbide grains is suppressed to obtain a primary sintered compact, and sintering the obtained primary sintered compact by performing a hot isostatic press sintering (HIP) treatment. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、極めてボイドがなく、平滑な研磨面を有し、高熱伝導率である炭化珪素焼結体及びその製造方法に関し、特に、投影露光装置や各種精密加工装置または各種精密測定装置において、半導体ウェハ、マスク及びレチクル等の基板を、高精度で位置決め及び加工ができる基板保持盤またはミラーに好適な半導体製造装置用部材に関する。   The present invention relates to a silicon carbide sintered body having no voids, a smooth polished surface, and a high thermal conductivity, and a method for manufacturing the same, particularly in a projection exposure apparatus, various precision processing apparatuses, or various precision measurement apparatuses. The present invention relates to a member for a semiconductor manufacturing apparatus suitable for a substrate holding disk or a mirror capable of positioning and processing a substrate such as a semiconductor wafer, a mask and a reticle with high accuracy.

半導体製造工程における半導体ウェハの搬送、保持には、ステンレス等の金属部材が用いられてきたが、近年、半導体ウェハの大口径化、回路パターンの高密度化に伴って、部材の変形の抑制、金属汚染の抑制、長期にわたる精度維持などが要求されるようになり、これに対応するためセラミックス部材が多く使用されるようになってきた。   Metal members such as stainless steel have been used for transporting and holding semiconductor wafers in the semiconductor manufacturing process, but in recent years, with the increase in the diameter of semiconductor wafers and the increase in circuit pattern density, suppression of deformation of the members, Suppression of metal contamination, maintenance of accuracy over a long period of time, and the like have been demanded, and ceramic members have come to be used in many cases in order to meet this demand.

また、レーザー装置など精密光学機器に使用されるミラーや、基板保持盤などには、熱膨張に起因する精度低下を避けるためセラミックス部材が多く使用されている。そのセラミックス部材には多くの場合、アルミナ、または窒化珪素、コージライト、炭化珪素が用いられている。   Also, ceramic members are often used in mirrors used in precision optical equipment such as laser devices, substrate holding boards, and the like in order to avoid accuracy degradation due to thermal expansion. In many cases, alumina, silicon nitride, cordierite, or silicon carbide is used for the ceramic member.

そして、近年、高速および高精度と環境変化に安定した位置決め装置が要求されており、これを満足するために、ステージの天板として、高速化による力の増大に耐えるようヤング率が高く、環境変化に強くなるよう熱伝導率が高く、熱膨張係数の高い炭化珪素質焼結体が用いられつつある。   In recent years, there has been a demand for a positioning device that is stable at high speed, high accuracy, and environmental changes. To satisfy this requirement, the stage top plate has a high Young's modulus to withstand the increase in force due to high speed, A silicon carbide sintered body having a high thermal conductivity and a high thermal expansion coefficient is being used so as to be resistant to changes.

炭化珪素質焼結体は、機械的特性に優れ、特に高温において強度劣化の小さい材料として注目され、各種の分野への応用が進められている。このような炭化珪素質焼結体は、一般に炭化珪素粉末に対して炭素およびホウ素を焼結助剤として添加し、これを成形後、Ar等の不活性雰囲気中、無加圧で2000〜2050℃にて焼成することにより得られている。このようにして得られる炭化珪素質焼結体の熱伝導率は、せいぜい60〜80W/(m・K)程度である。   Silicon carbide-based sintered bodies are attracting attention as a material having excellent mechanical properties, particularly low strength deterioration at high temperatures, and are being applied to various fields. Such a silicon carbide based sintered body generally includes carbon and boron added to silicon carbide powder as a sintering aid, and after molding, 2000 to 2050 without pressure in an inert atmosphere such as Ar. It is obtained by firing at ° C. The thermal conductivity of the silicon carbide sintered body thus obtained is at most about 60 to 80 W / (m · K).

そこで、特許文献1では、平均粒径が0.7μm以下の炭化珪素粉末に焼結助剤であるホウ素またはその化合物の粉末を0.1〜0.5質量%および炭素粉末を1〜10質量%添加し成形した後、不活性ガス雰囲気中で1900〜2050℃の温度で常圧焼結、あるいは常圧焼結した焼結体をさらに不活性ガス雰囲気で98MPa以上の圧力下で、且つ常圧焼結した温度以下の温度でHIP処理することで、極めてボイドの少ないポリッシング面を有する炭化珪素焼結体を得る方法が提案されている。   Therefore, in Patent Document 1, a silicon carbide powder having an average particle size of 0.7 μm or less, boron or a compound powder thereof as a sintering aid is 0.1 to 0.5 mass%, and carbon powder is 1 to 10 mass. After being added and molded, atmospheric pressure sintering at a temperature of 1900 to 2050 ° C. in an inert gas atmosphere, or a sintered body that has been subjected to atmospheric pressure sintering is further performed in an inert gas atmosphere under a pressure of 98 MPa or more and There has been proposed a method for obtaining a silicon carbide sintered body having a polishing surface with very few voids by performing HIP treatment at a temperature equal to or lower than the pressure sintering temperature.

また、特許文献2では、ホウ素またはその化合物及び炭素粉または焼結中に炭素を生成する物質と平均粒径が1μm以下の炭化珪素粉末との化合物を成形した後、常圧焼成して吸水率が1%以下の一次焼結体を作製し、次いで一次焼結体を熱間静水圧処理することで吸水率が0.1%以下で、含有する遊離炭素の最大径が10μm以下の炭化珪素質焼結体を得る方法が提案されており、熱間静水圧処理が75MPa以上の加圧力で、かつ1700〜2100℃の温度で処理されている方法が提案されている。そして、この炭化硅素質焼結体を利用したミラーが提案されている。   Further, in Patent Document 2, after forming a compound of boron or a compound thereof and carbon powder or a substance that generates carbon during sintering and a silicon carbide powder having an average particle size of 1 μm or less, water absorption is performed by firing at normal pressure. Produced a primary sintered body having a water absorption of 0.1% or less and a maximum diameter of free carbon contained of 10 μm or less. A method of obtaining a sintered material has been proposed, and a method in which hot isostatic pressure treatment is performed at a pressure of 75 MPa or more and at a temperature of 1700 to 2100 ° C. is proposed. A mirror using this silicon carbide sintered body has been proposed.

また、特許文献3には、0.7μm以下の平均粒径を有する炭化珪素粉末に、焼結助剤としてホウ素またはその化合物を0.1〜0.8重量%、炭素を1〜5重量%添加し、成形し、それを1900〜2050℃の不活性ガス雰囲気中で常圧焼結した後、それをさらに1000kg/cm以上の圧力下で焼結温度よりも低い温度で熱間静水圧プレス(HIP)処理し、得られたHIP処理体の表面を2μm以下の平均粒径を有するダイヤモンド砥粒で研磨することを特徴とする炭化珪素質焼結体の製造方法が提案されている。 Patent Document 3 discloses that silicon carbide powder having an average particle size of 0.7 μm or less, boron or a compound thereof as a sintering aid is 0.1 to 0.8 wt%, and carbon is 1 to 5 wt%. After adding, forming, and sintering under normal pressure in an inert gas atmosphere of 1900 to 2050 ° C., it is further subjected to hot isostatic pressure at a temperature lower than the sintering temperature under a pressure of 1000 kg / cm 2 or more. There has been proposed a method for producing a silicon carbide-based sintered body, which is subjected to press (HIP) treatment and the surface of the obtained HIP-treated body is polished with diamond abrasive grains having an average particle size of 2 μm or less.

また、特許文献4に、6H型炭化珪素を主成分とし、少なくとも遊離炭素およびホウ素を含み、炭化珪素結晶の格子定数がa軸で3.0802Å以上、c軸で15.105Å以上で、かつ焼結体密度が2.8g/cm3以上、熱伝導率が130W/(m・K)以上であり、また、6H型炭化珪素を主成分とし、遊離炭素およびホウ素を含み、かつ珪素以外の化合物を10モル%以下の割合で含むとともに、炭化珪素結晶の格子定数がa軸で3.0802Å以上、c軸で15.105Å以上、かつ焼結体密度が2.8g/cm以上、熱伝導率が130W/(m・K)以上のものが提案されている。 Patent Document 4 discloses that 6H-type silicon carbide is the main component, contains at least free carbon and boron, the lattice constant of the silicon carbide crystal is 3.080280 or more on the a-axis, 15.105Å or more on the c-axis, and is sintered. Compound density is 2.8 g / cm 3 or more, thermal conductivity is 130 W / (m · K) or more, 6H-type silicon carbide is the main component, free carbon and boron are included, and compounds other than silicon In a proportion of not more than 10 mol%, the lattice constant of the silicon carbide crystal is not less than 3.0802Å on the a-axis, not less than 15.105Å on the c-axis, and the sintered body density is not less than 2.8 g / cm 3 , A rate of 130 W / (m · K) or more has been proposed.

このような炭化珪素質焼結体の特徴を活かした部材としては、特にウェハなどを吸着保持または搬送するための基体保持盤や、ステージ等の位置決めに用いられるミラー等に多用されている。   As a member that makes use of the characteristics of such a silicon carbide sintered body, in particular, it is frequently used for a substrate holding disk for attracting and holding or transporting a wafer or the like, a mirror used for positioning a stage or the like.

しかし、これら部材として炭化硅素質焼結体を用いた場合、焼結体の表面はセラミック材料自体が有するポアが研磨面に残り、表面平滑性や光学特性などの点で十分満足できるものではなかった。これは炭化硅素質焼結体が多結晶セラミックスからなる場合、焼結の過程で焼結体中の結晶粒子間の粒界にポアが残ることが主たる原因である。このため、極めて平滑な表面を要求される部材には、その表面にCVD(化学気相蒸着)法により炭化珪素の膜を形成し、その膜を研磨したものが用いられている。   However, when silicon carbide sintered bodies are used as these members, the pores of the ceramic material itself remain on the polished surface on the surface of the sintered body, which is not sufficiently satisfactory in terms of surface smoothness and optical characteristics. It was. This is mainly caused when pores remain at grain boundaries between crystal grains in the sintered body when the silicon carbide sintered body is made of polycrystalline ceramics. For this reason, a member requiring a very smooth surface is formed by forming a silicon carbide film on the surface by a CVD (chemical vapor deposition) method and polishing the film.

例えば、特許文献5では、SiC−Siセラミック等を含む炭化珪素系セラミック基材の少なくともミラー部となる面に、CVD法で形成されたSiC膜、Al膜とを積層した光学反射ミラーが提案されている。
特開平10−203870号公報 特開2001−247368号公報 特開平11−147766号公報 特許第3157957号公報 特開2003−57419号公報
For example, Patent Document 5 proposes an optical reflecting mirror in which a SiC film formed by a CVD method and an Al film are stacked on at least a surface to be a mirror portion of a silicon carbide ceramic substrate including SiC-Si ceramic. ing.
Japanese Patent Laid-Open No. 10-203870 JP 2001-247368 A Japanese Patent Laid-Open No. 11-147766 Japanese Patent No. 3157957 JP 2003-57419 A

炭化硅素質焼結体の製造方法として、特許文献1〜4に示すように様々な製造方法が提案されているが、何れもミラー、基板保持盤等の半導体製造装置に用いた場合に種々の問題を有している。   As a method for producing a silicon carbide sintered body, various production methods have been proposed as shown in Patent Documents 1 to 4, but various methods are used when used in semiconductor production apparatuses such as mirrors and substrate holding discs. Have a problem.

特許文献1では、平均粒径が0.7μm以下の炭化珪素粉末に焼結助剤であるホウ素またはその化合物の粉末を0.1〜0.5質量%および炭素粉末を1〜10質量%添加し成形した後、不活性ガス雰囲気中で1900〜2050℃の温度で常圧焼結、あるいは常圧焼結した焼結体をさらに不活性ガス雰囲気で98MPa以上の圧力下で、且つ常圧焼結した温度以下の温度でHIP処理することで、極めてボイドの少ないポリッシング面を有する炭化珪素焼結体が得られるが、ボイドの大きさ10μmが1mm当たり100個以上となり、この炭化珪素質焼結体を半導体製造装置用部材に用いた場合、基板保持盤では基板との摺接面におけるパーティクルが問題となってしまう。また、ミラーであればボイドが存在することで所望の反射率を得ることが出来ないといった問題があった。 In Patent Document 1, 0.1 to 0.5 mass% of boron or its compound powder as a sintering aid and 1 to 10 mass% of carbon powder are added to silicon carbide powder having an average particle size of 0.7 μm or less. And then sintering under normal pressure at a temperature of 1900 to 2050 ° C. in an inert gas atmosphere, or further sintering a sintered body under normal pressure sintering under a pressure of 98 MPa or more in an inert gas atmosphere. A silicon carbide sintered body having a polishing surface with very few voids can be obtained by performing the HIP treatment at a temperature lower than the bonded temperature, but the void size of 10 μm is 100 or more per 1 mm 2. When the bonded body is used as a member for a semiconductor manufacturing apparatus, particles on the sliding contact surface with the substrate become a problem in the substrate holding disk. Further, in the case of a mirror, there is a problem that a desired reflectance cannot be obtained due to the presence of voids.

また、特許文献2〜4では、炭化硅素質焼結体にHIP処理を行って、ボイドを低減させることが提案されているが、一次焼結を終えた炭化硅素質焼結体を単にHIP処理しただけでは、基板保持盤やミラーに使用するのは難しく、例えば基板保持盤であれば、基板を載置する部分のボイドが十分に消滅しないことがあり、基板の載置面の表面に多結晶セラミックス特有のボイド内にゴミや埃といったパーティクルが入り込み、それがウェハに転写してウェハの載置精度の悪化を招く場合があった。すなわち、HIP処理を行ってもその条件によりボイドを十分に低減させることができず、表面にCVD等によりSiCを被着することが多かった。また、ミラーであれば、ボイドが照射光を拡散し、高い反射率を得ることが困難であった。これらは、一次焼結における結晶粒径を制御できずに、そのままHIP処理を行っているためと考えられる。   Further, in Patent Documents 2 to 4, it has been proposed to reduce voids by performing HIP treatment on the silicon carbide sintered body, but simply performing HIP treatment on the silicon carbide sintered body that has undergone primary sintering. However, it is difficult to use it for a substrate holder or a mirror. For example, in the case of a substrate holder, the voids in the portion on which the substrate is placed may not disappear sufficiently, and there are many on the surface of the substrate placement surface. In some cases, particles such as dust and dust enter into the voids unique to the crystalline ceramics, which are transferred to the wafer and deteriorate the mounting accuracy of the wafer. That is, even if the HIP process is performed, the voids cannot be sufficiently reduced depending on the conditions, and SiC is often deposited on the surface by CVD or the like. Further, in the case of a mirror, it is difficult for the void to diffuse the irradiation light and to obtain a high reflectance. This is probably because the HIP treatment is performed as it is without controlling the crystal grain size in the primary sintering.

また、特許文献5では、Al膜を蒸着してなる光学反射ミラーが提案されているが、反射率が65%以上85%未満と反射率が不足する場合があった。算術平均粗さ(Ra)で比較すると、窒化珪素質焼結体を基材とした従来の光学反射ミラーの算術平均粗さ(Ra)が1nm以下であるのに対し、炭化珪素を基材とした光学反射ミラーの算術平均粗さ(Ra)は数nmに達する場合もあった。また、炭化珪素質焼結体としてSiCにSiが含浸されているSiC−Siセラミックを使用する場合、Al膜の蒸着前にラップ加工を施すが、SiCとSiとの硬度に差があるためにSiが先に加工されてしまい、SiCがラウンド状に残る場合があった。この場合、表面の平坦性が低く、算術平均粗さ(Ra)は10nm弱に達する場合もあり、仮にAl膜を蒸着したとしても、得られる光学反射ミラーの性能が不十分となる場合があった。   Further, Patent Document 5 proposes an optical reflecting mirror formed by depositing an Al film, but there are cases in which the reflectance is insufficient when the reflectance is 65% or more and less than 85%. When compared with arithmetic average roughness (Ra), the arithmetic average roughness (Ra) of a conventional optical reflecting mirror using a silicon nitride-based sintered body as a base material is 1 nm or less, whereas silicon carbide is used as a base material. In some cases, the arithmetic average roughness (Ra) of the optical reflecting mirror reached several nm. Moreover, when using SiC-Si ceramic in which Si is impregnated with SiC as the silicon carbide sintered body, lapping is performed before the deposition of the Al film, but there is a difference in hardness between SiC and Si. In some cases, Si was processed first, and SiC remained in a round shape. In this case, the surface flatness is low, and the arithmetic average roughness (Ra) may reach a little less than 10 nm. Even if an Al film is deposited, the performance of the obtained optical reflection mirror may be insufficient. It was.

以上のように、従来の炭化珪素質焼結体では、熱伝導率が高く、低熱膨張で、さらにボイドが極めて少ないといった特性を同時に全て満たすことのできる炭化珪素質焼結体はなく、特に近年の半導体製造工程においては、ますます高精度の露光が必要になってきていることから、上記の課題を解決した炭化珪素質焼結体が望まれていた。   As described above, the conventional silicon carbide sintered body has no silicon carbide sintered body that can simultaneously satisfy all of the characteristics such as high thermal conductivity, low thermal expansion, and extremely few voids. In this semiconductor manufacturing process, since exposure with higher precision is required, a silicon carbide sintered body that has solved the above-described problems has been desired.

そこで、本発明者は上記課題を鑑み、本発明の炭化珪素質焼結体の製造方法は、主成分として炭化珪素の粉末に、添加剤として少なくともホウ素の化合物及び炭素の粉末を添加した原料粉末を成形し、該成形体を炭化珪素の粒子が粒成長するのを抑制した温度で一次焼結を終了させ一次焼結体を得た後、熱間静水圧プレス成形(HIP)処理を行うことで焼結させたことを特徴とするものである。   In view of the above problems, the inventor of the present invention is a raw material powder in which at least a boron compound and carbon powder are added as additives to silicon carbide powder as a main component. After the primary sintering is finished at a temperature at which the silicon carbide particles are suppressed from growing, the primary sintered body is obtained and then subjected to hot isostatic pressing (HIP) treatment. It is characterized by being sintered with.

本発明の炭化硅素質焼結体の製造方法は、さらにチタンの化合物をチタン換算で、200ppm以上、且つ400ppm以下の範囲で添加したことを特徴とするものである。   The method for producing a silicon carbide sintered body of the present invention is characterized in that a titanium compound is further added in a range of 200 ppm or more and 400 ppm or less in terms of titanium.

また、本発明の炭化硅素質焼結体の製造方法は、上記炭化珪素の粉末の平均粒径が0.1〜1μmであることを特徴とするものである。   The method for producing a silicon carbide sintered body of the present invention is characterized in that the silicon carbide powder has an average particle size of 0.1 to 1 μm.

さらに、本発明の炭化硅素質焼結体の製造方法は、上記一次焼結の温度が1900〜2100℃の真空雰囲気にて焼成するとともに、上記HIP処理の温度が1800〜2000℃、圧力が180MPa以上の不活性ガス雰囲気にて処理したことを特徴とするものである。   Furthermore, the method for producing a silicon carbide sintered body according to the present invention is such that the primary sintering temperature is fired in a vacuum atmosphere of 1900 to 2100 ° C., the HIP treatment temperature is 1800 to 2000 ° C., and the pressure is 180 MPa. The treatment is performed in the above inert gas atmosphere.

またさらに、本発明の炭化珪素質焼結体の製造方法は、上記一次焼結体の見掛密度を3.10〜3.17g/cmで一次焼結を終了させることを特徴とするものである。 Furthermore, the method for producing a silicon carbide based sintered body of the present invention is characterized in that the primary sintering is terminated at an apparent density of 3.10 to 3.17 g / cm 3 of the primary sintered body. It is.

さらにまた、本発明の炭化珪素質焼結体の製造方法は、上記一次焼結体の平均結晶粒径が3〜10μmであることを特徴とするものである。   Furthermore, the method for producing a silicon carbide sintered body according to the present invention is characterized in that the average grain size of the primary sintered body is 3 to 10 μm.

次に、本発明の炭化珪素質焼結体は、室温における熱伝導率が180W/(m・K)以上、室温における線膨張係数2.6×10−6/℃以下、平均ボイド径が1.5μm以下、最大ボイド径が5μm以下であることを特徴とするものである。 Next, the silicon carbide based sintered body of the present invention has a thermal conductivity at room temperature of 180 W / (m · K) or more, a linear expansion coefficient at room temperature of 2.6 × 10 −6 / ° C. or less, and an average void diameter of 1. .5 μm or less and the maximum void diameter is 5 μm or less.

また、本発明の炭化珪素質焼結体は、チタンまたはその化合物がチタン換算で、200ppm以上、且つ400ppm以下の範囲で含有することを特徴とするものである。   Moreover, the silicon carbide based sintered body of the present invention is characterized in that titanium or a compound thereof is contained in a range of 200 ppm or more and 400 ppm or less in terms of titanium.

さらに、本発明の炭化珪素質焼結体は、600〜800℃における熱伝導率が60W/(m・K)以上であることを特徴とするものである。   Furthermore, the silicon carbide based sintered body of the present invention is characterized in that the thermal conductivity at 600 to 800 ° C. is 60 W / (m · K) or more.

そして、本発明の半導体製造装置用部材は、上記炭化珪素質焼結体にて形成された半導体製造装置用部材であって、少なくとも一部にミラー部を備えたことを特徴とするものである。   A member for a semiconductor manufacturing apparatus according to the present invention is a member for a semiconductor manufacturing apparatus formed of the silicon carbide sintered body, and is characterized in that at least a part thereof is provided with a mirror portion. .

また、本発明の半導体製造装置用部材は、上記ミラー部は、上記炭化珪素質焼結体の表面に被着された金属膜からなり、且つ金属膜を含むミラー部のミラー部の波長400nm〜700nmにおける正反射率が、85%以上であることを特徴とするものである。   Further, in the member for a semiconductor manufacturing apparatus of the present invention, the mirror portion is made of a metal film deposited on the surface of the silicon carbide sintered body, and the wavelength of the mirror portion of the mirror portion including the metal film is from 400 nm to 400 nm. The regular reflectance at 700 nm is 85% or more.

さらに、少なくとも金属膜を除く上記ミラー部における炭化珪素質焼結体における波長400nm〜700nmにおける正反射率が、20%以上であることを特徴とするものである。   Furthermore, the regular reflectance at a wavelength of 400 nm to 700 nm in the silicon carbide sintered body in the mirror part excluding at least the metal film is 20% or more.

またさらに、本発明の半導体製造装置用部材は、上記炭化珪素質焼結体を用いた半導体製造装置用部材の上記ミラー部の算術平均粗さ(Ra)が、1nm以下の面を有することを特徴とするものである。   Furthermore, the member for a semiconductor manufacturing apparatus of the present invention has a surface having an arithmetic average roughness (Ra) of the mirror part of the member for a semiconductor manufacturing apparatus using the silicon carbide sintered body of 1 nm or less. It is a feature.

次に、本発明の半導体製造装置用部材は、上記炭化珪素質焼結体にて形成された半導体製造装置用部材であって、基板保持盤に用いたことを特徴とするものである。   Next, a member for a semiconductor manufacturing apparatus according to the present invention is a member for a semiconductor manufacturing apparatus formed of the silicon carbide sintered body, and is used for a substrate holding board.

本発明の炭化珪素質焼結体の製造方法によれば、成形体を炭化珪素の粒子が粒成長するのを抑制した温度で一次焼結を終了させ、その後、熱間静水圧プレス成形(HIP)処理を行うことで焼結させるため、炭化珪素の結晶の大きさを一次焼結の終了時の大きさと略同じ大きさに維持したままボイドを消滅させることができ、しかも、結晶粒径を小さくした場合、結晶間に存在するボイドも一次焼結時で小さくすることができるため、平均結晶粒径が2〜10μmで、平均ボイド径が1.5μm以下、最大ボイド径が5μm以下であるような緻密で高熱伝導性の炭化珪素質焼結体を得ることができる。しかも、結晶粒子を小さく形成した場合には表面が算術平均粗さ(Ra)1nm以下とすることが可能となり、半導体製造工程において用いられるミラーとして使用した場合、光線を照射しても安定で、熱による形状変形が少なく平滑なミラー部を形成することができ、高精度な位置決め用のミラーとして好適に使用することができる。そして、正反射率を低下させるボイドが極めて小さく少ないことで、アルミニウム等の金属膜を被着することにより、高反射率を有するミラーを提供することができる。また、算術平均粗さ(Ra)が1nm以下の面を有するので、製作上高価なCVDを施すこと無く、研磨するだけで極めて平滑な面を得ることが出来、高精度なミラーを提供することができる。   According to the method for producing a silicon carbide based sintered body of the present invention, primary sintering is terminated at a temperature at which silicon carbide particles are suppressed from growing, and then hot isostatic pressing (HIP) is performed. ) Since sintering is performed, voids can be eliminated while maintaining the size of the silicon carbide crystal at substantially the same size as at the end of primary sintering, and the crystal grain size can be reduced. When it is reduced, the voids existing between the crystals can be reduced during the primary sintering, so the average crystal grain size is 2 to 10 μm, the average void diameter is 1.5 μm or less, and the maximum void diameter is 5 μm or less. Such a dense and high thermal conductivity silicon carbide sintered body can be obtained. Moreover, when the crystal grains are formed small, the surface can have an arithmetic average roughness (Ra) of 1 nm or less, and when used as a mirror used in a semiconductor manufacturing process, it is stable even when irradiated with light rays. A smooth mirror part with little shape deformation due to heat can be formed, and it can be suitably used as a highly accurate positioning mirror. And since the void which reduces regular reflectance is very small and few, the mirror which has high reflectance can be provided by depositing metal films, such as aluminum. In addition, since the arithmetic average roughness (Ra) has a surface of 1 nm or less, an extremely smooth surface can be obtained only by polishing without performing expensive CVD in production, and a highly accurate mirror is provided. Can do.

また、本発明の炭化珪素質焼結体は、熱伝導率が室温で180W/(m・K)以上、線膨張係数が室温で2.6×10−6/℃以下、平均ボイド径が1.5μm以下、最大ボイド径が5μm以下とするので、例えば、半導体製造工程の露光にて発生した熱を素早く拡散して熱膨張による精度変化をなくし、さらにゴミや埃がボイドに入り込むことなく、パーティクルの影響を少なくすることができる。 The silicon carbide sintered body of the present invention has a thermal conductivity of 180 W / (m · K) or more at room temperature, a linear expansion coefficient of 2.6 × 10 −6 / ° C. or less at room temperature, and an average void diameter of 1. .5 μm or less and the maximum void diameter is 5 μm or less, for example, quickly diffuses the heat generated in the exposure of the semiconductor manufacturing process to eliminate accuracy change due to thermal expansion, and further, dust and dust do not enter the void. The influence of particles can be reduced.

また、600〜800℃における熱伝導率が、60W/(m・K)以上であるので、高温環境においても素早く熱を伝達でき、例えば鉛フリーのガラス成形に使用される成形型の用途にも好適である。   Moreover, since the heat conductivity in 600-800 degreeC is 60 W / (m * K) or more, it can transfer heat | fever rapidly also in a high temperature environment, for example, the use of the shaping | molding die used for lead-free glass shaping | molding Is preferred.

また、本発明ではこのような製造方法により作製された炭化珪素質焼結体を基板保持盤に用いたことにより、高熱伝導率で、低熱膨張率で、かつボイドが少ない特徴を有することから、例えば基盤を保持した際に、露光などのビームを照射しても局所的に熱がこもらず、放熱して形状変形を少なくし、安定した高精度を維持することが可能となり、また、基盤と接する支持面のボイドが少ないことからパーティクルなどのコンタミを防ぐことができる。   Further, in the present invention, by using a silicon carbide sintered body produced by such a production method for a substrate holding disk, it has a feature of high thermal conductivity, low thermal expansion coefficient, and few voids. For example, when holding the substrate, even if irradiation with a beam such as exposure is performed, heat is not locally stored, it is possible to dissipate heat and reduce shape deformation, and stable high accuracy can be maintained. Contamination of particles and the like can be prevented because there are few voids on the supporting surface that comes into contact.

以下、本発明の実施形態を説明する。   Embodiments of the present invention will be described below.

本発明の炭化珪素質焼結体は、炭化珪素質焼結体の室温における熱伝導率が180W/(m・K)以上、室温における線膨張係数2.6×10−6/℃以下、平均ボイド径が1.5μm以下、最大ボイド径が5μm以下であることを特徴とするものである。 In the silicon carbide based sintered body of the present invention, the thermal conductivity of the silicon carbide based sintered body at room temperature is 180 W / (m · K) or more, the linear expansion coefficient at room temperature is 2.6 × 10 −6 / ° C. or less, and the average The void diameter is 1.5 μm or less, and the maximum void diameter is 5 μm or less.

熱伝導率が180W/(m・K)未満であれば、放熱性が悪く、局所的に熱が加わった際に放熱がされず、いくら熱膨張係数が低くとも歪みが生じ精度が悪化してしまう。好ましくは放熱性が良好であることがよく、180W/(m・K)以上であることがよい。さらには200W/(m・K)以上であることが望ましい。200W/(m・K)以上であれば、他の金属の部材との熱伝導率が似てくるため、設計の面でも好ましい。特にアルミニウムとの熱伝導率が近づくので、基体に本発明の炭化硅素質を使用して、その上面にアルミニウム合金の膜を成膜しても熱伝導率に差が少ない部材を得ることが可能となる。   If the thermal conductivity is less than 180 W / (m · K), the heat dissipation will be poor, and heat will not be dissipated when heat is locally applied, and even if the thermal expansion coefficient is low, distortion will occur and accuracy will deteriorate. End up. The heat dissipation is preferably good, and is preferably 180 W / (m · K) or more. Furthermore, it is desirable that it is 200 W / (m · K) or more. If it is 200 W / (m · K) or more, the thermal conductivity with other metal members is similar, which is preferable in terms of design. In particular, since the thermal conductivity is close to that of aluminum, it is possible to obtain a member having a small difference in thermal conductivity even when an aluminum alloy film is formed on the upper surface of the substrate using the silicon carbide of the present invention. It becomes.

なお、室温における熱伝導率とは、測定温度を22℃から24℃の範囲内として測定した値であり、この温度範囲内のうち何れかの設定温度で測定した熱伝導率が180W/(m・K)以上であることを示す。   The thermal conductivity at room temperature is a value measured at a measurement temperature in the range of 22 ° C. to 24 ° C., and the thermal conductivity measured at any set temperature within this temperature range is 180 W / (m -K) Indicates that it is greater than or equal to

さらに、室温を超える環境においても、熱伝導率を高い値で保持することができ、例えば600℃以上での用途でも、熱伝導率60W/(m・K)以上を保つことができる。   Furthermore, even in an environment exceeding the room temperature, the thermal conductivity can be maintained at a high value, and for example, the thermal conductivity of 60 W / (m · K) or more can be maintained even in applications at 600 ° C. or higher.

この炭化珪素質焼結体は、平均結晶粒径が3〜10μmの範囲が好ましい。その理由として、3μm未満であると、炭化珪素質焼結体中の結晶粒子が十分に充填していない状態になり、焼結体の機械的特性が損なわれるためである。特に、強度や剛性の面で低いものとなってしまう。また、平均結晶粒径が10μmよりも大きいサイズの結晶となれば、結晶間に存在するボイドが潰れずに残ってしまうことがあるため、10μm以下であることがよい。従って、平均結晶粒径は3〜10μmの範囲がよく、好ましくは3〜7μmの範囲が好ましい。   The silicon carbide sintered body preferably has an average crystal grain size in the range of 3 to 10 μm. The reason is that if it is less than 3 μm, the crystal particles in the silicon carbide sintered body are not sufficiently filled, and the mechanical properties of the sintered body are impaired. In particular, the strength and rigidity are low. In addition, if the average crystal grain size is larger than 10 μm, voids existing between the crystals may remain without being crushed, and it is preferably 10 μm or less. Accordingly, the average crystal grain size is preferably in the range of 3 to 10 μm, and more preferably in the range of 3 to 7 μm.

また、炭化珪素質焼結体の密度が3.18g/cm以上で、ヤング率は440GPa以上とすることができ、比剛性が135GPa・cm/g以上とすることができる。そのため、半導体製造装置用部材として使用した場合、極めて高精度で変形の少ない部材を提供することが可能となる。 The density of the silicon carbide based sintered body is 3.18 g / cm 3 or more, the Young's modulus can be 440 GPa or more, and the specific rigidity can be 135 GPa · cm 3 / g or more. Therefore, when used as a member for a semiconductor manufacturing apparatus, it is possible to provide a member with extremely high accuracy and little deformation.

また、熱伝導率がいくら高くても、線膨張係数が室温で2.6×10−6/℃以下であることが重要であり、上述の放熱性と相まって半導体製造装置用部材として好適な材質となる。加えて平均ボイド径が1.5μm以下、最大ボイド径が5μm以下であることで、ウェハに直接接触する部材であってもボイドが小さく、炭化珪素質結晶間に発生するパーティクルの発生を抑制することができる。 Moreover, it is important that the linear expansion coefficient is 2.6 × 10 −6 / ° C. or less at room temperature no matter how high the thermal conductivity is, and it is a material suitable as a member for a semiconductor manufacturing apparatus in combination with the above heat dissipation. It becomes. In addition, since the average void diameter is 1.5 μm or less and the maximum void diameter is 5 μm or less, even if the member is in direct contact with the wafer, the void is small and the generation of particles generated between silicon carbide crystals is suppressed. be able to.

次いで、本発明の炭化珪素質焼結体の製造方法について説明する。   Next, a method for manufacturing the silicon carbide sintered body of the present invention will be described.

先ず、主成分として炭化珪素の粉末に、添加剤として少なくともホウ素の化合物及び炭素の化合物の粉末を添加した原料粉末を得る。次いで、この原料粉末を種々の成形方法を用いて成形して成形体を得た後、この成形体を炭化珪素の粒子が粒成長するのを抑制した温度で一次焼結を終了させ一次焼結体を得た後、熱間静水圧プレス成形(HIP)処理を行うものである。   First, a raw material powder obtained by adding at least a boron compound powder and a carbon compound powder as additives to silicon carbide powder as a main component is obtained. Next, the raw material powder is molded using various molding methods to obtain a molded body, and then the primary sintering is completed at a temperature at which silicon carbide particles are suppressed from growing, and primary sintering is performed. After obtaining the body, hot isostatic pressing (HIP) treatment is performed.

以下、さらに詳細に説明する。主成分として炭化珪素粉末に、添加剤としてホウ素成分を成すホウ素の化合物として炭化ホウ素(BC)や金属ホウ素等、炭素成分を成す炭素の化合物ではカーボンブラック、グラファイト等の他に熱分解により炭素を生成しうるフェノール樹脂やコールタールピッチ等を用いることができる。これら添加剤の含有量は、原料粉末中の酸素量に依存し、炭化珪素原料中の酸素量1モルに対して0.15〜3モルのホウ素、1〜5モルの炭素が残ることが必要である。 This will be described in more detail below. Silicon carbide powder as a main component, boron compound (B 4 C) or metal boron as a boron compound as a boron component as an additive, such as carbon black, graphite, etc. A phenol resin or coal tar pitch that can generate carbon can be used. The content of these additives depends on the amount of oxygen in the raw material powder, and it is necessary that 0.15 to 3 mol of boron and 1 to 5 mol of carbon remain with respect to 1 mol of oxygen in the silicon carbide raw material. It is.

これらの原料粉末を所定の割合で秤量し、ボールミル等の混合手段により充分に混合した後、この粉末にバインダーを添加し、周知の成形方法、例えば、プレス成形、押出成形、鋳込み成形、冷間静水圧成形等により所望の形状に成形することで成形体を得る。なお、添加剤としてフェノール樹脂等を添加した場合には、600〜800℃で成形体を非酸化性雰囲気中で仮焼処理して熱分解することにより炭素を生成することができる。   These raw material powders are weighed at a predetermined ratio and mixed thoroughly by a mixing means such as a ball mill, and then a binder is added to the powder, and a known molding method such as press molding, extrusion molding, casting molding, cold A molded body is obtained by molding into a desired shape by isostatic pressing or the like. In addition, when phenol resin etc. are added as an additive, carbon can be produced | generated by carrying out the calcination process in 600-800 degreeC in a non-oxidizing atmosphere, and thermally decomposing.

次に、高熱伝導を得るために、上記のようにして得られた成形体を真空中またはAr等の不活性雰囲気中で、1900〜2100℃の比較的低温で一次焼結を行う。これにより、一次焼結の際の熱量を少なくして活性を上げずに粒成長を抑制できるため、成形体の炭化珪素粒子が粒成長するのを抑制でき、且つ結晶間に存在するボイドも小さくすることができる。一次焼結の温度が1900℃よりも低い温度となると、結晶の焼結が進まず、その後にいくらHIP処理を行っても十分なボイドの消滅が困難となる。一方、2100℃よりも高い温度となると、一次焼結体の結晶が肥大化してしまうため、さらにHIP処理を行う場合に、いくら低温で処理しても得られる炭化珪素質焼結体の結晶が大きく、ボイドの消滅が困難となってしまう。さらに、結晶の焼結が不十分であると、粒子の結合も不十分となり、この炭化珪素質焼結体を基板保持盤に使用すると、突起形成時にブラスト加工を行う際に結晶の脱粒が起きやすく、チッピングの原因となってしまう。また、結晶が肥大化した場合は、結晶1つが脱粒した際に一度に欠損部が生じるため、この場合でも突起形成時のブラスト加工時において好ましくない。   Next, in order to obtain high heat conduction, the molded body obtained as described above is subjected to primary sintering at a relatively low temperature of 1900 to 2100 ° C. in a vacuum or in an inert atmosphere such as Ar. As a result, since the grain growth can be suppressed without increasing the activity by reducing the amount of heat at the time of primary sintering, it is possible to suppress the grain growth of the silicon carbide particles of the molded body, and the voids existing between the crystals are also small. can do. When the primary sintering temperature is lower than 1900 ° C., the crystal does not sinter, and it becomes difficult to eliminate sufficient voids no matter how much the HIP treatment is performed thereafter. On the other hand, when the temperature is higher than 2100 ° C., the crystals of the primary sintered body will be enlarged, so that when the HIP treatment is further performed, the crystals of the silicon carbide-based sintered body that are obtained no matter how low the temperature are processed. Large, void disappearance becomes difficult. Furthermore, if the crystals are not sufficiently sintered, the bonding of the particles will be insufficient, and if this silicon carbide sintered body is used for a substrate holding disk, the grains will be shattered during blasting during the formation of protrusions. It is easy to cause chipping. In addition, when the crystal is enlarged, a defective portion is generated at a time when one crystal is grain-removed, which is not preferable at the time of blasting when forming a protrusion.

最後に、得られた一次焼結体をHIP処理する。これにより、炭化珪素の結晶の大きさを一次焼結の終了時の大きさとほぼ同じ大きさに維持したまま、ボイド径が5μmを超えるボイドをほとんど消滅させることができる。加えて、ホウ素や炭素の化合物からなる添加剤や添加物中の陽イオンの炭化珪素への固溶を制御することが可能となり、炭化珪素粒子の粒成長を有効に抑制することができる。   Finally, the obtained primary sintered body is subjected to HIP treatment. As a result, voids having a void diameter exceeding 5 μm can be almost eliminated while maintaining the size of the silicon carbide crystal substantially the same as the size at the end of the primary sintering. In addition, it becomes possible to control the solid solution of an additive composed of a compound of boron or carbon or a cation in the additive into silicon carbide, and the grain growth of silicon carbide particles can be effectively suppressed.

焼成工程において、一次焼結は温度1900〜2100℃、真空雰囲気で行うことが、HIP処理は温度1800〜2000℃、180MPa以上の不活性ガス雰囲気にて行うことにより、得られる炭化珪素質焼結体の平均ボイド径を1.5μm以下、最大ボイド径を5μm以下にすることができ、半導体や液晶製造装置の部材である基板保持盤や、ミラーとして用いた際に、炭化珪素質結晶間に発生するパーティクルの発生を抑制することができる。HIP処理の温度が1800℃よりも低くなると、一次焼結体を形成した温度に対して低いため、緻密化の促進が行われない。さらに、一次焼結の温度よりも100℃以下の低い温度でHIP処理の温度を設定することが好ましく、この温度範囲であれば結晶が軟化した際に高圧にすることができるため、ボイドがより消滅しやすい。一方、2000℃よりも高い温度となると、一次焼結の温度よりも高い温度範囲となるので、結晶の成長が促進されてボイドが消滅しにくく、ミラーとして用いた際に正反射率が低くなりやすい。同時に、180MPa以上の不活性ガス雰囲気とすることで、炭化硅素粒子間に存在するボイドを押しつぶすため、さらにボイドが消滅しやすい。   In the firing step, primary sintering is performed in a vacuum atmosphere at a temperature of 1900 to 2100 ° C., and HIP treatment is performed in an inert gas atmosphere at a temperature of 1800 to 2000 ° C. and 180 MPa or higher to obtain a silicon carbide-based sintered material. The average void diameter of the body can be 1.5 μm or less and the maximum void diameter can be 5 μm or less. When used as a substrate holding disk or a mirror as a member of a semiconductor or liquid crystal manufacturing apparatus, between silicon carbide crystals Generation of the generated particles can be suppressed. When the temperature of the HIP process is lower than 1800 ° C., the densification is not promoted because the temperature is lower than the temperature at which the primary sintered body is formed. Furthermore, it is preferable to set the temperature of HIP treatment at a temperature lower than 100 ° C. below the temperature of primary sintering, and if this temperature range is reached, the pressure can be increased when the crystal is softened. Easily disappear. On the other hand, when the temperature is higher than 2000 ° C., the temperature range is higher than the temperature of primary sintering, so that the crystal growth is promoted and voids hardly disappear, and the regular reflectance becomes low when used as a mirror. Cheap. At the same time, by setting the inert gas atmosphere to 180 MPa or more, voids existing between the silicon carbide particles are crushed, and the voids are more likely to disappear.

さらに好ましくは、上記一次焼結の温度が1950〜2050℃の真空雰囲気にて焼成するとともに、上記HIP処理の温度が1850〜1950℃、190MPa以上の不活性ガス雰囲気にて処理すればよい。   More preferably, the primary sintering temperature is fired in a vacuum atmosphere of 1950 to 2050 ° C., and the HIP treatment temperature is 1850 to 1950 ° C. and an inert gas atmosphere of 190 MPa or more.

また、添加剤として、TiC、TiN、TiO等のチタンの化合物をチタン換算で200ppm以上、且つ400ppm以下の範囲で添加することが好ましい。これは、200ppm未満となると、得られる焼結体の熱伝導率が180W/(m・K)以上、600〜800℃における熱伝導率が60W/(m・K)以上を得ることができず、400ppmを超えると、これらの金属化合物が炭化珪素結晶中に固溶しやすく、炭化珪素質焼結体の強度や剛性を劣化させてしまうためである。また、他の焼結助剤であるホウ素と化合物を生成しやすくなり、焼結性が阻害され、密度が上がらないなどの影響が出てしまう。   Moreover, it is preferable to add titanium compounds, such as TiC, TiN, and TiO, as an additive in the range of 200 ppm or more and 400 ppm or less in terms of titanium. If it is less than 200 ppm, the thermal conductivity of the obtained sintered body is 180 W / (m · K) or higher, and the thermal conductivity at 600 to 800 ° C. cannot be 60 W / (m · K) or higher. If it exceeds 400 ppm, these metal compounds are liable to be dissolved in silicon carbide crystals, and the strength and rigidity of the silicon carbide based sintered body are deteriorated. Moreover, it becomes easy to produce | generate a boron and compound which are other sintering auxiliary agents, and sinterability will be inhibited, and influences, such as a density not going up, will come out.

なお、添加される金属化合物としては、その他に、WC、Si、AlN、VC、TaC、ZrO等を添加していてもよく、その場合の量は炭化硅素粉末の量に対して、10モル%以下であることが好ましい。10モル%を越えると、この金属化合物が炭化珪素結晶中に固溶しやすくなってしまうためである。 In addition, as a metal compound to be added, WC, Si 3 N 4 , AlN, VC, TaC, ZrO 2 or the like may be added, and the amount in that case is based on the amount of silicon carbide powder. It is preferable that it is 10 mol% or less. This is because when the amount exceeds 10 mol%, the metal compound is liable to be dissolved in the silicon carbide crystal.

また、原料粉末における炭化珪素の粉末の平均粒径は0.1〜1μmであることが好ましい。これは、一次焼結の温度で低温易焼結の性質を損なわず焼成可能となるので適正となる。特に1μmよりも大きい粉末であれば、低温易焼結の性質が損なわれ低温での焼結ができなくなってしまう。また、1μmより大きい粉末であれば、炭化硅素質焼結体を得た際に、結晶粒径が大きくなるので、強度が損なわれてしまう。そして、平均粒径が0.1μmよりも微粉な炭化珪素の粉末を得ることは難しいので、原料粉末における炭化珪素の粉末の平均粒径は0.1〜1μmの範囲が良く、好ましくは0.1〜0.7μmの範囲であることがよく、さらに好ましくは0.1〜0.5μmの範囲であることがよい。   The average particle size of the silicon carbide powder in the raw material powder is preferably 0.1 to 1 μm. This is appropriate because it can be fired at the primary sintering temperature without impairing the properties of low-temperature easy sintering. In particular, if the powder is larger than 1 μm, the properties of low-temperature easy sintering are impaired, and sintering at low temperatures becomes impossible. Further, if the powder is larger than 1 μm, the crystal grain size becomes large when the silicon carbide sintered body is obtained, so that the strength is impaired. Since it is difficult to obtain a silicon carbide powder having an average particle size smaller than 0.1 μm, the average particle size of the silicon carbide powder in the raw material powder is preferably in the range of 0.1 to 1 μm, preferably 0.8. It may be in the range of 1 to 0.7 μm, and more preferably in the range of 0.1 to 0.5 μm.

また、炭化硅素質焼結体で、上記ホウ素の化合物をホウ素換算で0.2質量%以上、且つ1.5質量%以下、上記炭素の化合物を炭素換算で1質量%以上、且つ3質量%以下の範囲となるよう添加することが好ましい。   Further, in the silicon carbide sintered body, the boron compound is 0.2% by mass or more and 1.5% by mass or less in terms of boron, and the carbon compound is 1% by mass or more and 3% by mass in terms of carbon. It is preferable to add so that it may become the following ranges.

これら添加剤の添加量は、原料粉末中の酸素量に依存し、炭化珪素原料中の酸素量1モルに対して1〜5モルの炭素及び0.15〜3モルのホウ素を必要としており、およそ炭素分が1〜3質量%、ホウ素が0.2〜1.5質量%となる量を添加することが望ましい。さらに、液相のあるAl系の助材の炭化珪素質焼結体に比べNaが少なく、ウェハに直接接触してもコンタミの原因となることがなくなる。そして、炭素やホウ素が焼結助剤のものであれば、ボイドを容易に消滅させる効果がある。   The addition amount of these additives depends on the amount of oxygen in the raw material powder, and requires 1 to 5 mol of carbon and 0.15 to 3 mol of boron with respect to 1 mol of oxygen in the silicon carbide raw material. It is desirable to add such an amount that the carbon content is about 1 to 3% by mass and the boron is about 0.2 to 1.5% by mass. Further, the amount of Na is less than that of a silicon carbide sintered body of an Al-based auxiliary material having a liquid phase, and even if it comes into direct contact with the wafer, it does not cause contamination. If carbon or boron is a sintering aid, there is an effect of easily eliminating voids.

さらに、上記一次焼結体の見掛密度を3.10〜3.17g/cm、結晶粒径を3〜10μmとすることが好ましい。この範囲に見掛密度を調整することで、HIP処理でのボイドの消滅をより有効に行うことができ、3.10g/cm未満であれば、焼結が進まず、3.17g/cmよりも大きいと結晶が肥大化する傾向がある。そのため、一次焼結においてこの範囲で見掛密度を管理すれば適正なHIP処理が可能となる。結晶粒径が3μm未満となると、充分な焼結が行われておらず強度、剛性の低いものとなり、一方、10μmを超えると、結晶が肥大化してボイドがボイドを十分小さくすることができない。 Furthermore, it is preferable that the apparent density of the primary sintered body is 3.10 to 3.17 g / cm 3 and the crystal grain size is 3 to 10 μm. By adjusting the apparent density within this range, voids disappear in the HIP process more effectively, and if it is less than 3.10 g / cm 3 , sintering does not proceed and 3.17 g / cm 3. When it is larger than 3 , the crystal tends to enlarge. For this reason, if the apparent density is controlled within this range in the primary sintering, an appropriate HIP process can be performed. When the crystal grain size is less than 3 μm, sufficient sintering is not performed and the strength and rigidity are low. On the other hand, when the crystal grain size exceeds 10 μm, the crystal is enlarged and the void cannot sufficiently reduce the void.

なお、一次焼結体の見掛密度を3.10〜3.17g/cm、結晶粒径を3〜10μmとするためには、上述のように一次焼結の温度を1900〜2100℃とすればよい。 In order to set the apparent density of the primary sintered body to 3.10 to 3.17 g / cm 3 and the crystal grain size to 3 to 10 μm, the temperature of the primary sintering is 1900 to 2100 ° C. as described above. do it.

また、見掛密度の測定方法は、JIS R 1634に準拠した方法で測定し、平均結晶粒径の測定方法としては、1万倍に撮影したSEM写真を用いて、任意に直線を引き、その直線上の距離を、直線上にある結晶粒子の数にて割った値とする。   The apparent density is measured by a method in accordance with JIS R 1634. The average crystal grain size is measured by using an SEM photograph taken 10,000 times, and a straight line is arbitrarily drawn. The distance on the straight line is divided by the number of crystal grains on the straight line.

このようにして得られた炭化珪素質焼結体は、HIP処理後に所望の形状に仕上げ、研削加工やラッピング加工等、ブラスト加工、ポリッシング加工等の種々の加工を施して、半導体ウェハ、液晶基板等の搬送や保持部材、露光装置におけるステージ位置測定用ミラー、精密光学機器用ミラー等の半導体製造装置用部材として好適に用いることができる。   The silicon carbide sintered body thus obtained is finished into a desired shape after HIP processing, and subjected to various processing such as grinding processing and lapping processing, blast processing, polishing processing, etc., to produce a semiconductor wafer, a liquid crystal substrate It can be suitably used as a member for a semiconductor manufacturing apparatus such as a transporting and holding member, a stage position measuring mirror in an exposure apparatus, a precision optical instrument mirror, and the like.

ここで、本発明の炭化硅素質焼結体を用いなるミラー部を有する半導体製造装置用部材について説明する。   Here, the member for semiconductor manufacturing apparatuses which has a mirror part which uses the silicon carbide sintered body of this invention is demonstrated.

図1は、本発明に係る炭化珪素質焼結体を用い、ミラー部6aを備えた半導体製造装置用部材6を示す斜視図である。   FIG. 1 is a perspective view showing a semiconductor manufacturing apparatus member 6 using a silicon carbide sintered body according to the present invention and provided with a mirror portion 6a.

半導体製造装置用部材6を構成する基体5は、四角柱形状であり、基体5の設置されるプレート(不図示)に対して側面にあたる少なくとも一面にミラー部6aを備えたものであり、ミラー部6aに光を受光して反射させ、その位置を光の反射速度から算出して、距
離位置を決めるための装置である。
The substrate 5 constituting the semiconductor manufacturing apparatus member 6 has a quadrangular prism shape, and includes a mirror portion 6a on at least one side corresponding to a side surface of a plate (not shown) on which the substrate 5 is installed. 6a is a device for receiving and reflecting light and calculating the position from the light reflection speed to determine the distance position.

このミラー部6aを有する半導体製造装置用部材6として、上記炭化硅素質焼結体を基体5として用いることで、ラッピングまたはポリッシング加工により、ミラー部6aとなる面を平面度0.1μm以下、算術表面粗さ(Ra)1nm以下に仕上げ、さらに表面の平均ボイド径が1.5μm以下、最大ボイド径が5μm以下とすることができる。従来であればCVDなどでSiC膜を被着して、ボイドを埋めた後に膜を研削・研磨して平滑な面を得ていたが、本発明では基体5をなす炭化硅素質焼結体自体が、反射率を低下させるボイドが極めて小さく、少ないため、アルミニウムに代表される金属膜を直接被着することにより、高反射率を有するミラー部6aを形成することが可能となる。   By using the silicon carbide sintered body as the base 5 as the member 6 for a semiconductor manufacturing apparatus having the mirror portion 6a, the surface to be the mirror portion 6a is flattened to have a flatness of 0.1 μm or less by lapping or polishing. The surface roughness (Ra) can be finished to 1 nm or less, and the average void diameter of the surface can be 1.5 μm or less, and the maximum void diameter can be 5 μm or less. Conventionally, a SiC film was deposited by CVD or the like, and after filling the voids, the film was ground and polished to obtain a smooth surface. In the present invention, the silicon carbide sintered body itself forming the substrate 5 is used. However, since the voids that reduce the reflectance are extremely small and few, it is possible to form the mirror portion 6a having a high reflectance by directly depositing a metal film typified by aluminum.

また、上記ミラー部6aは金属膜からなり、金属膜としては、蒸着またはスパッタにより被着されたAl、Ag、Pt等を用いることができる。さらに必要に応じて、Alの金属膜上に低屈折率膜を1層以上と、高屈折率膜を1層以上とが、成膜方向に交互に積層されてなる表面膜を蒸着またはスパッタによって形成してもよい。   The mirror portion 6a is made of a metal film, and Al, Ag, Pt, etc. deposited by vapor deposition or sputtering can be used as the metal film. Furthermore, if necessary, a surface film in which one or more low refractive index films and one or more high refractive index films are alternately laminated in the film forming direction on an Al metal film is deposited or sputtered. It may be formed.

これにより、このミラー部6aは、波長400nm〜700nmにおける正反射率が85%以上となり、照射光であるレーザー等の光がミラー部6aに照射された際、照射光のエネルギーを劣化させることなく、反射光の受光の感度を維持することができる。特に、He−Neレーザーの照射光に対する拡散反射率は限りなく0%に近くなり、反射光の反射率は正反射率に依存することになる。これは、焼結体の表面にボイドが極めて少ないため、照射光がボイドに拡散する影響がないためである。さらには、633nmの波長における正反射率が95%以上とすることが好ましい。なお、上記正反射率はミラー部6a全体の値であり、表面に形成された金属膜およびその下面に形成された基体5を成す炭化硅素質焼結体の値である。   Thereby, this mirror part 6a becomes regular reflection rate in wavelength 400nm -700nm 85% or more, and when light, such as a laser which is irradiation light, is irradiated to mirror part 6a, without deteriorating the energy of irradiation light The sensitivity of receiving reflected light can be maintained. In particular, the diffuse reflectance with respect to the irradiation light of the He—Ne laser is close to 0%, and the reflectance of the reflected light depends on the regular reflectance. This is because the surface of the sintered body has very few voids, so that the irradiation light does not affect the voids. Furthermore, the regular reflectance at a wavelength of 633 nm is preferably 95% or more. The regular reflectance is a value of the entire mirror portion 6a, and is a value of a silicon carbide sintered body constituting the metal film formed on the surface and the base 5 formed on the lower surface thereof.

また、金属膜の厚みは、0.1〜0.3μmの範囲が好ましく、膜厚が0.1μm未満となると、基体5の呈色の影響が大きく出てしまい、反射率が低下することがある。逆に、膜厚が0.3μmよりも大きくなると、表面の凹凸が影響し基体5の表面の精度が崩れてしまい、正反射率が損なわれてしまう。   Further, the thickness of the metal film is preferably in the range of 0.1 to 0.3 μm. If the film thickness is less than 0.1 μm, the influence of coloration of the substrate 5 is greatly generated, and the reflectance may be lowered. is there. On the contrary, when the film thickness is larger than 0.3 μm, the surface unevenness is affected by the surface irregularities, and the regular reflectance is lost.

さらに、基体5のうち、少なくともミラー部6aにおける炭化珪素質焼結体の表面の波長400nm〜700nmにおける正反射率が20%以上であることが好ましい。これは、ミラー部6aに金属膜を被着した場合においても、金属膜自体の反射率を損なうことなく、高い正反射率を得ることができるからである。なお、上記正反射率は、ミラー部6aを構成する基体5を成す炭化珪素質焼結体の表面、即ち金属膜の直下の基体5の表面における値である。   Furthermore, it is preferable that the regular reflectance in the wavelength 400nm-700nm of the surface of the silicon carbide sintered body in the mirror part 6a among the base | substrates 5 is 20% or more. This is because even when a metal film is deposited on the mirror portion 6a, a high regular reflectance can be obtained without impairing the reflectance of the metal film itself. The regular reflectance is a value on the surface of the silicon carbide sintered body constituting the substrate 5 constituting the mirror portion 6a, that is, the surface of the substrate 5 immediately below the metal film.

また、ミラー部6aを成す炭化硅素質焼結体からなる基体5の算術平均粗さ(Ra)が1nm以下の面を有することが好ましい。これは、算術平均粗さ(Ra)が1nmよりも大きくなると、反射光が散乱し、金属膜を被着した場合での正反射率が損なわれ、所望の正反射率85%以上を得るのが困難となるためである。   Moreover, it is preferable that the arithmetic mean roughness (Ra) of the base body 5 made of a silicon carbide sintered body constituting the mirror portion 6a has a surface of 1 nm or less. This is because when the arithmetic average roughness (Ra) is larger than 1 nm, the reflected light is scattered and the regular reflectance when the metal film is applied is impaired, and a desired regular reflectance of 85% or more is obtained. This is because it becomes difficult.

次いで、本発明の炭化硅素質焼結体を用いた半導体製造装置用部材である基板保持盤について説明する。   Next, a substrate holding plate which is a member for a semiconductor manufacturing apparatus using the silicon carbide sintered body of the present invention will be described.

図2は、本発明に係る炭化珪素質焼結体を用いた基板保持盤を示し、(a)はその斜視図、(b)は基板保持盤の一部を拡大した断面図である。   2A and 2B show a substrate holding plate using the silicon carbide sintered body according to the present invention, in which FIG. 2A is a perspective view thereof, and FIG. 2B is an enlarged sectional view of a part of the substrate holding plate.

本発明の基板保持盤1は、上述の炭化珪素質焼結体からなる平板状体の基体4からなり、その表面に複数の突起が形成されており、各突起は液晶基板7に接触してこれを支持する支持面2と、支持面2よりも下がった非支持面3とから構成されている。   The substrate holder 1 of the present invention comprises a flat substrate 4 made of the above-mentioned silicon carbide sintered body, and a plurality of protrusions are formed on the surface thereof, and each protrusion contacts the liquid crystal substrate 7. It is comprised from the support surface 2 which supports this, and the non-support surface 3 lowered from the support surface 2.

なお、上記平板状体とは円盤状や四角形状をしたプレート形状のものであり、形状に何ら限定されるものではない。また、支持面2の形状も円であっても四角であってもよく、好ましくはブラスト加工時にチッピングが起きにくいことから円形状であることがよい。   The flat plate-like body is a disk-shaped or quadrangular plate shape, and is not limited to the shape. Further, the shape of the support surface 2 may be a circle or a square, and preferably a circular shape because chipping hardly occurs during blasting.

本発明の基盤保持盤1の製造方法は、得られた炭化珪素質焼結体を所望の形状に仕上げ、基体4を所望の板状体に研削加工にて形成した後、ラッピング若しくは研磨面に仕上げ、しかる後ブラスト加工にて支持面2と非支持面3を形成することで、基板保持盤1を製作することができる。さらに、基板保持盤1の支持面2をさらにラッピング、ポリッシング加工にて高精度に仕上げることで、ボイドが少ない基板保持盤1を得ることできる。   In the manufacturing method of the substrate holding disk 1 of the present invention, the obtained silicon carbide sintered body is finished into a desired shape, the base 4 is formed into a desired plate-like body by grinding, and then the lapping or polishing surface is formed. The substrate holding disk 1 can be manufactured by forming the support surface 2 and the non-support surface 3 by finishing and then blasting. Furthermore, by further finishing the support surface 2 of the substrate holder 1 with high accuracy by lapping and polishing, the substrate holder 1 with few voids can be obtained.

また、支持面2を算術平均粗さ(Ra)が1nm以下の面とすることで極めてパーティクルの少ない支持面2を得ることができる。基板保持盤1の好ましい比剛性としては、135GPa・cm/g以上であればよく、上述の炭化珪素質焼結体であれば、これらを満足させることができる。 Moreover, the support surface 2 with very few particles can be obtained by making the support surface 2 into a surface whose arithmetic mean roughness (Ra) is 1 nm or less. The preferable specific rigidity of the substrate holder 1 may be 135 GPa · cm 3 / g or more, and these can be satisfied with the above-described silicon carbide sintered body.

そして、本発明の炭化珪素質焼結体を用いた基板保持盤1であれば、半導体製造工程の露光にて発生した熱を素早く拡散し、熱膨張による精度変化をなくし、さらにゴミや埃がボイドに入り込むことなく、パーティクルの影響のない基板保持盤1を提供することが可能となる。さらに、製作上高価なCVDを施すこと無く、研磨するだけで極めて平滑な面を得ることができる。   And if it is the board | substrate holding board 1 using the silicon carbide sintered body of this invention, the heat | fever which generate | occur | produced by exposure of the semiconductor manufacturing process will be spread | diffused quickly, the accuracy change by thermal expansion will be lost, and also dust and dust It is possible to provide the substrate holder 1 that is not affected by particles without entering the void. Furthermore, an extremely smooth surface can be obtained only by polishing without performing expensive CVD.

また、本発明の半導体製造装置用部材6は、基板保持盤1にミラー部6aを備えたものであってもよく、通常、基板保持盤1を固定するベースとなる部材とミラー部6aと基板保持盤1が一体もので形成された形状であっても問題ない。この形状を採用した場合には、位置決めが確実にできるので、さらなる高精度の位置決めを備えた露光用装置部や検査装置部品に好適である。   In addition, the semiconductor manufacturing apparatus member 6 of the present invention may be one in which the substrate holding plate 1 is provided with the mirror portion 6a. Usually, the member serving as a base for fixing the substrate holding plate 1, the mirror portion 6a and the substrate. There is no problem even if the holding plate 1 is formed as a single unit. When this shape is adopted, positioning can be ensured, which is suitable for exposure apparatus parts and inspection apparatus parts having higher precision positioning.

以下に本発明の実施例について説明する。   Examples of the present invention will be described below.

(実施例1)
原料粉末として、平均結晶粒径が0.8μmの炭化珪素粉末に、TiCをチタン換算で表1に示す如く量で添加し、BCをホウ素換算で0.8質量%、且つ炭素を2質量%となるようそれぞれ調整した。また、炭化珪素粉末は平均粒径が0.5μmのものを用いた。
Example 1
As raw material powder, TiC is added to silicon carbide powder having an average crystal grain size of 0.8 μm as shown in Table 1 in terms of titanium, B 4 C is 0.8% by mass in terms of boron, and 2% of carbon. It adjusted so that it might become mass%. Silicon carbide powder having an average particle size of 0.5 μm was used.

そして、直径10mm、厚さ5mmの円盤状の成形体、3mm×3mmで長さ16mmの角柱状の成形体をそれぞれ準備し、表1に示す温度で一次焼結を行い、さらに同表に示す温度および圧力でHIP処理を行った。最後に、得られた炭化珪素質焼結体の表面を研削加工し、最終仕上げとして2μmの遊離ダイヤ砥粒を用いてスズ盤にてラッピング加工し、評価用の試料を得た。   Then, a disk-shaped molded body having a diameter of 10 mm and a thickness of 5 mm, a prismatic molded body having a length of 3 mm × 3 mm and a length of 16 mm were prepared, and primary sintering was performed at the temperatures shown in Table 1, and further shown in the same table. HIP treatment was performed at temperature and pressure. Finally, the surface of the obtained silicon carbide sintered body was ground and lapped with a tin plate using 2 μm free diamond abrasive grains as a final finish to obtain a sample for evaluation.

なお、一次焼結体の見掛密度は、JIS C 2141に準じて測定し、一次焼結体の平均結晶粒径は1万倍に撮影したSEM写真を用いて、任意に一定長さの直線を引き、その直線上の距離を、直線上にある結晶粒子の数にて割った値とした。   The apparent density of the primary sintered body was measured in accordance with JIS C 2141, and the average crystal grain size of the primary sintered body was arbitrarily measured using a SEM photograph taken at a magnification of 10,000. The distance on the straight line was divided by the number of crystal grains on the straight line.

得られた炭化硅素質焼結体のうち、直径10mm、厚さ5mmの円盤状の試料を用いて熱伝導率を室温23℃、700℃にてレーザーフラッシュ法により測定するとともに、3mm×3mmで長さ16mmの角柱状の試料を用いて熱膨張係数を真空理工製レーザー熱膨張計LIX−1型装置を用いてレーザー干渉法により、昇温1℃/minとして、0℃〜50℃の範囲で、ヘリウム中にて測定した際の室温(23℃)のデータを熱膨張係数として測定した。また、直径10mm、厚さ5mmの円盤状の試料を用いて平均ボイド径及び最大ボイド径を、ニレコ製LUZEX−FSを用いて、金属顕微鏡の画像をCCDカメラで取り込み、画像解析を用いて倍率200倍で数値化して測定し、また直径10mm、厚さ5mmの円盤状の試料を用いて正反射率を日立製作所製分光光度計U−4000を用いて、He−Neレーザーの波長633nmにおける値として測定した。   Among the obtained silicon carbide sintered bodies, the thermal conductivity was measured by a laser flash method at a room temperature of 23 ° C. and 700 ° C. using a disk-shaped sample having a diameter of 10 mm and a thickness of 5 mm, and at 3 mm × 3 mm. Using a prismatic sample with a length of 16 mm, the coefficient of thermal expansion is in the range of 0 ° C. to 50 ° C. with a temperature increase of 1 ° C./min by laser interferometry using a laser thermal dilatometer LIX-1 type manufactured by Vacuum Riko Then, the data of room temperature (23 ° C.) measured in helium was measured as the coefficient of thermal expansion. In addition, the average void diameter and the maximum void diameter were obtained using a disk-shaped sample having a diameter of 10 mm and a thickness of 5 mm, the image of a metal microscope was captured with a CCD camera using a Nireco LUZEX-FS, and magnification was obtained using image analysis. Measured by quantifying at 200 times, and using a disk-shaped sample having a diameter of 10 mm and a thickness of 5 mm, the regular reflectance is a value at a wavelength of 633 nm of a He—Ne laser using a spectrophotometer U-4000 manufactured by Hitachi As measured.

表1に結果を示す。

Figure 2006182641
Table 1 shows the results.
Figure 2006182641

表1より、製法においてHIP処理を施していない試料(No.27)は、平均ボイド径が7.9μm、最大ボイド径が26μmと非常に大きなものとなることが判った。   From Table 1, it was found that the sample (No. 27) which was not subjected to HIP treatment in the production method had a very large average void diameter of 7.9 μm and a maximum void diameter of 26 μm.

また、HIP処理を施した試料のうち、一次焼結における温度が1900℃未満の試料(No.2)は、平均ボイド径が2.6μm、最大ボイド径が14.6μmと大きなものとなることが判った。一方、2100℃を超える試料(No.25)は、平均ボイド径が2.6μm、最大ボイド径が7.6μmと大きなものとなることが判った。   Of the samples subjected to HIP treatment, the sample (No. 2) having a primary sintering temperature of less than 1900 ° C. has a large average void diameter of 2.6 μm and a maximum void diameter of 14.6 μm. I understood. On the other hand, the sample (No. 25) exceeding 2100 ° C. was found to have a large average void diameter of 2.6 μm and a maximum void diameter of 7.6 μm.

HIP処理温度が1800℃未満の試料(No.3)は、平均ボイド径が1.9μm、最大ボイド径が14.3μmと大きなものとなることが判った。一方HIP処理温度が2000℃を越える試料(No.13)は、平均ボイド径が2.9μm、最大ボイド径が8.4μmと大きなものとなることが判った。   It was found that the sample (No. 3) having an HIP treatment temperature of less than 1800 ° C. had a large average void diameter of 1.9 μm and a maximum void diameter of 14.3 μm. On the other hand, it was found that the sample (No. 13) whose HIP treatment temperature exceeded 2000 ° C. had a large average void diameter of 2.9 μm and a maximum void diameter of 8.4 μm.

また、チタンの量が200ppm未満の試料(No.1、14)は、室温、高温における熱伝導率とも低いことが判った。   Further, it was found that the samples (No. 1 and 14) having an amount of titanium of less than 200 ppm had low thermal conductivity at room temperature and high temperature.

さらに、線膨張係数は、どの試料も大きな差はなく原料粉末に添加したホウ素、炭素の添加量に左右される値である。   Further, the coefficient of linear expansion is a value that depends on the amount of boron and carbon added to the raw material powder without any significant difference among the samples.

これに対し、一次焼結の温度を1900〜2100℃、HIP処理の温度を1800〜2000℃とすることで、平均ボイド径、最大ボイド径を非常に小さなものとでき、正反射率も20%以上を得ることができた。   On the other hand, by setting the primary sintering temperature to 1900-2100 ° C. and the HIP treatment temperature to 1800-2000 ° C., the average void diameter and the maximum void diameter can be made extremely small, and the regular reflectance is also 20%. I was able to get the above.

本発明に係る半導体製造装置用部材であるミラーを示す斜視図である。It is a perspective view which shows the mirror which is a member for semiconductor manufacturing apparatuses which concerns on this invention. 本発明に係る半導体製造装置用部材である基板保持盤を示し、(a)はその斜視図、(b)はその一部を拡大した断面図である。The board | substrate holding board which is a member for semiconductor manufacturing apparatuses which concerns on this invention is shown, (a) is the perspective view, (b) is sectional drawing to which the one part was expanded.

符号の説明Explanation of symbols

1…基板保持盤
2…支持面
3…非支持面
4、5…基体
6…半導体製造装置用部材
6a・・・ミラー部
7…液晶基板
DESCRIPTION OF SYMBOLS 1 ... Substrate holding | maintenance board 2 ... Support surface 3 ... Non-support surface 4, 5 ... Base | substrate 6 ... Member 6a for semiconductor manufacturing apparatuses ... Mirror part 7 ... Liquid crystal substrate

Claims (14)

主成分として炭化珪素の粉末に、添加剤として少なくともホウ素の化合物及び炭素の化合物の粉末を添加した原料粉末を成形し、得られた成形体を炭化珪素の粒子が粒成長するのを抑制した温度で一次焼結を終了させ一次焼結体を得た後、熱間静水圧プレス成形(HIP)処理を行うことで焼結させたことを特徴とする炭化珪素質焼結体の製造方法。 A temperature at which raw material powder in which at least a boron compound and a carbon compound powder are added as additives to silicon carbide powder as a main component is molded, and silicon carbide particles are prevented from growing in the resulting molded body. A method for producing a silicon carbide based sintered body characterized in that after the primary sintering is completed and a primary sintered body is obtained, sintering is performed by performing a hot isostatic pressing (HIP) treatment. 上記添加剤として、さらにチタンの化合物をチタン換算で、200ppm以上、且つ400ppm以下の範囲で添加したことを特徴とする請求項1に記載の炭化珪素質焼結体の製造方法。 The method for producing a silicon carbide based sintered body according to claim 1, wherein a titanium compound is further added as the additive in a range of 200 ppm or more and 400 ppm or less in terms of titanium. 上記炭化珪素の粉末の平均粒径が0.1〜1μmであることを特徴とする請求項1または2に記載の炭化珪素質焼結体の製造方法。 The method for producing a silicon carbide based sintered body according to claim 1 or 2, wherein the silicon carbide powder has an average particle size of 0.1 to 1 µm. 上記一次焼結は温度1900〜2100℃の真空雰囲気にて焼成するとともに、上記HIP処理は温度1800〜2000℃、圧力180MPa以上の不活性ガス雰囲気にて処理することを特徴とする請求項1〜3の何れかに記載の炭化珪素質焼結体の製造方法。 The primary sintering is performed in a vacuum atmosphere at a temperature of 1900 to 2100 ° C, and the HIP treatment is performed in an inert gas atmosphere at a temperature of 1800 to 2000 ° C and a pressure of 180 MPa or more. 4. A method for producing a silicon carbide based sintered body according to any one of 3 above. 上記一次焼結体の見掛密度を3.10〜3.17g/cmで一次焼結を終了させることを特徴とする請求項1〜4の何れかに記載の炭化珪素質焼結体の製造方法。 The primary sintered body is terminated at an apparent density of 3.10 to 3.17 g / cm 3 , and the silicon carbide based sintered body according to claim 1 is finished. Production method. 上記一次焼結体の平均結晶粒径が3〜10μmであることを特徴とする請求項1〜5の何れかに記載の炭化珪素質焼結体の製造方法。 The method for producing a silicon carbide based sintered body according to any one of claims 1 to 5, wherein an average crystal grain size of the primary sintered body is 3 to 10 µm. 炭化珪素質焼結体の室温における熱伝導率が180W/(m・K)以上、室温における線膨張係数2.6×10−6/℃以下、平均ボイド径が1.5μm以下、最大ボイド径が5μm以下であることを特徴とする炭化珪素質焼結体。 The thermal conductivity of the silicon carbide sintered body at room temperature is 180 W / (m · K) or more, the linear expansion coefficient at room temperature is 2.6 × 10 −6 / ° C. or less, the average void diameter is 1.5 μm or less, and the maximum void diameter is Is 5 μm or less. チタンまたはその化合物が、チタン換算で200ppm以上、且つ400ppm以下の範囲で含有することを特徴とする請求項7に記載の炭化珪素質焼結体。 The silicon carbide based sintered body according to claim 7, wherein titanium or a compound thereof is contained in a range of 200 ppm or more and 400 ppm or less in terms of titanium. 600〜800℃における熱伝導率が60W/(m・K)以上であることを特徴とする請求項7または8に記載の炭化珪素質焼結体。 9. The silicon carbide based sintered body according to claim 7, wherein the thermal conductivity at 600 to 800 ° C. is 60 W / (m · K) or more. 請求項7〜9の何れかに記載の炭化珪素質焼結体にて形成された半導体製造装置用部材であって、少なくとも一部にミラー部を備えたことを特徴とする半導体製造装置用部材。 A member for semiconductor manufacturing apparatus formed of the silicon carbide sintered body according to claim 7, wherein the member is provided with a mirror part at least in part. . 上記ミラー部は、上記炭化珪素質焼結体の表面に被着された金属膜からなり、且つミラー部の波長400nm〜700nmにおける正反射率が85%以上であることを特徴とする請求項10に記載の半導体製造装置用部材。 The mirror part is made of a metal film deposited on the surface of the silicon carbide sintered body, and the regular reflectance at a wavelength of 400 nm to 700 nm of the mirror part is 85% or more. The member for semiconductor manufacturing apparatuses as described in any one of Claims 1-3. 少なくとも上記ミラー部の炭化珪素質焼結体の波長400nm〜700nmにおける正反射率が20%以上であることを特徴とする請求項10または11に記載の半導体製造装置用部材。 12. The member for a semiconductor manufacturing apparatus according to claim 10, wherein at least the regular reflectance of the silicon carbide sintered body of the mirror portion at a wavelength of 400 nm to 700 nm is 20% or more. 算術平均粗さ(Ra)が1nm以下の面を有することを特徴とする請求項10〜12の何れかに記載の半導体製造装置用部材。 Arithmetic mean roughness (Ra) has a surface of 1 nm or less, The member for semiconductor manufacturing apparatuses in any one of Claims 10-12 characterized by the above-mentioned. 請求項7〜9の何れかに記載の炭化珪素質焼結体にて形成された半導体製造装置用部材であって、基板保持盤に用いたことを特徴とする半導体製造装置用部材。 A member for a semiconductor manufacturing apparatus formed of the silicon carbide sintered body according to claim 7, wherein the member is used for a substrate holding disk.
JP2005344091A 2004-12-01 2005-11-29 Sintered silicon carbide and parts for semiconductor manufacturing equipment using the same Active JP4761948B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005344091A JP4761948B2 (en) 2004-12-01 2005-11-29 Sintered silicon carbide and parts for semiconductor manufacturing equipment using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004348406 2004-12-01
JP2004348406 2004-12-01
JP2005344091A JP4761948B2 (en) 2004-12-01 2005-11-29 Sintered silicon carbide and parts for semiconductor manufacturing equipment using the same

Publications (2)

Publication Number Publication Date
JP2006182641A true JP2006182641A (en) 2006-07-13
JP4761948B2 JP4761948B2 (en) 2011-08-31

Family

ID=36736030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005344091A Active JP4761948B2 (en) 2004-12-01 2005-11-29 Sintered silicon carbide and parts for semiconductor manufacturing equipment using the same

Country Status (1)

Country Link
JP (1) JP4761948B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010171029A (en) * 2008-12-25 2010-08-05 Covalent Materials Corp SiC TOOL FOR GAS PHASE DEVELOPMENT
WO2017170738A1 (en) * 2016-03-30 2017-10-05 京セラ株式会社 Suction member
JP2022008512A (en) * 2016-07-28 2022-01-13 エーエスエムエル ネザーランズ ビー.ブイ. Substrate holding device, method for manufacturing such device, and device and method for processing or image forming sample

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6177669A (en) * 1984-09-20 1986-04-21 日本ピラ−工業株式会社 Superhigh density silicon carbide sintered body and manufacture
JPH06300907A (en) * 1993-04-16 1994-10-28 Nippon Steel Corp Parts for optical purpose and x-ray formed by using silicon carbide sintered compact and their production
JPH0741366A (en) * 1993-07-30 1995-02-10 Kyocera Corp High heat-conductivity silicon carbide sintered compact
JP2001220239A (en) * 2000-02-07 2001-08-14 Hitachi Chem Co Ltd Silicon carbide sintered compact and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6177669A (en) * 1984-09-20 1986-04-21 日本ピラ−工業株式会社 Superhigh density silicon carbide sintered body and manufacture
JPH06300907A (en) * 1993-04-16 1994-10-28 Nippon Steel Corp Parts for optical purpose and x-ray formed by using silicon carbide sintered compact and their production
JPH0741366A (en) * 1993-07-30 1995-02-10 Kyocera Corp High heat-conductivity silicon carbide sintered compact
JP2001220239A (en) * 2000-02-07 2001-08-14 Hitachi Chem Co Ltd Silicon carbide sintered compact and method for producing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010171029A (en) * 2008-12-25 2010-08-05 Covalent Materials Corp SiC TOOL FOR GAS PHASE DEVELOPMENT
WO2017170738A1 (en) * 2016-03-30 2017-10-05 京セラ株式会社 Suction member
JPWO2017170738A1 (en) * 2016-03-30 2019-01-10 京セラ株式会社 Adsorption member
JP2022008512A (en) * 2016-07-28 2022-01-13 エーエスエムエル ネザーランズ ビー.ブイ. Substrate holding device, method for manufacturing such device, and device and method for processing or image forming sample
JP7240463B2 (en) 2016-07-28 2023-03-15 エーエスエムエル ネザーランズ ビー.ブイ. Substrate-holding devices, methods for manufacturing such devices, and apparatus and methods for processing or imaging samples

Also Published As

Publication number Publication date
JP4761948B2 (en) 2011-08-31

Similar Documents

Publication Publication Date Title
JP5700631B2 (en) Cordierite sintered body
JP2010016176A (en) Test piece holder
KR20160120719A (en) Handle substrate of composite substrate for semiconductor, and composite substrate for semiconductor
JP4761948B2 (en) Sintered silicon carbide and parts for semiconductor manufacturing equipment using the same
JPH11343168A (en) Low thermal expansion black ceramics, its production and member for semiconductor producing apparatus
JP4261631B2 (en) Manufacturing method of ceramic sintered body
JPH11209171A (en) Dense low thermal expansion ceramics, its production and member for semiconductor producing device
JPH08316283A (en) Dummy wafer
KR20120136217A (en) Optical device and method for the same
JP4446611B2 (en) Black low thermal expansion ceramics and exposure apparatus components
JP3147977B2 (en) Substrate for reflecting mirror made of sintered silicon carbide and method of manufacturing the same
JP2001237303A (en) Vacuum chuck for wafer and its manufacturing method
JPH06300907A (en) Parts for optical purpose and x-ray formed by using silicon carbide sintered compact and their production
JP2006003376A (en) Optical reflection mirror
JP4708891B2 (en) Optical reflection mirror
JP4460804B2 (en) Low thermal expansion ceramics and exposure device components
JP2003095744A (en) Silicon carbide sintered compact and member for manufacturing semiconductor using the same, member for manufacturing magnetic head, wear resistant sliding member and method of manufacturing the same
JP4795529B2 (en) Ceramic substrate, thin film circuit substrate, and method for manufacturing ceramic substrate
JP4461102B2 (en) Pin chuck material
JP2003137644A (en) Low thermal expansion ceramic, members for ultra- precise machine structure, measuring instrument and semiconductor manufacturing equipment using the same, and method of producing low thermal expansion ceramic
JP4062059B2 (en) Low thermal expansion ceramic member, method for manufacturing the same, and member for semiconductor manufacturing apparatus
JP2001302340A (en) High density low thermal expansion ceramic and manufacturing method thereof and member for semiconductor manufacturing device
TWI762164B (en) High purity cordierite material for semiconductor applications
JP2939297B2 (en) Laser reflecting mirror and method of manufacturing the same
JP2005114805A (en) Optical miller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4761948

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150