JP2005114805A - Optical miller - Google Patents
Optical miller Download PDFInfo
- Publication number
- JP2005114805A JP2005114805A JP2003345418A JP2003345418A JP2005114805A JP 2005114805 A JP2005114805 A JP 2005114805A JP 2003345418 A JP2003345418 A JP 2003345418A JP 2003345418 A JP2003345418 A JP 2003345418A JP 2005114805 A JP2005114805 A JP 2005114805A
- Authority
- JP
- Japan
- Prior art keywords
- sic
- film
- mirror
- optical
- composite material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Ceramic Products (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Optical Elements Other Than Lenses (AREA)
Abstract
Description
本発明は、可視光やX線等の光を反射させ、所望の光学系を実現するためのものであって、特に、半導体製造装置や液晶製造装置等に使用される光学系ミラー、例えば、半導体ウェハ、マスク及びレチクル等の基板を、高精度で高速移動し、位置決めできるステージに使用される光学系ミラーに関するものである。 The present invention is for reflecting light such as visible light and X-rays to realize a desired optical system, and in particular, an optical system mirror used in a semiconductor manufacturing apparatus, a liquid crystal manufacturing apparatus, etc. The present invention relates to an optical system mirror used for a stage capable of moving and positioning a substrate such as a semiconductor wafer, a mask, and a reticle with high accuracy at high speed.
近年、精巧な光学系を搭載した装置に使用される光学系ミラーは、益々精密な表面粗さと平面度を有することが要求されている。
精巧な光学系を搭載した装置として、たとえば、半導体ウェハ、マスク及びレチクル等の基板を、高精度で高速移動し、位置決めできるステージにおいては、これを満足するために、高速化による力の増大に耐えるようヤング率が高く、環境変化に強くなるよう熱伝導率が高く、熱膨張係数の低い炭化珪素系セラミックが用いられつつある。
さらには、基体としてSiC-Si複合材料を用い、その表面にSiC膜とAl膜を積層して光学系ミラーを作製する技術も開示されている(例えば、特許文献1参照)。
As a device equipped with a sophisticated optical system, for example, a stage that can move and position a semiconductor wafer, mask, reticle, etc. at high speed with high accuracy. Silicon carbide ceramics having a high Young's modulus to withstand, a high thermal conductivity to be resistant to environmental changes, and a low thermal expansion coefficient are being used.
Furthermore, a technique is also disclosed in which a SiC-Si composite material is used as a substrate, and an optical system mirror is manufactured by laminating a SiC film and an Al film on the surface (see, for example, Patent Document 1).
しかしながら、炭化珪素を基体とする場合、炭化珪素の焼結体(熱伝導率約150W/mK)は比較的熱伝導率が高いが、その製造方法が焼結法であるため表面に微小な孔が多数存在しており、その上面に形成される膜の平滑度に影響を与えるという課題がある。この孔の中に入った光は孔の内壁で反射・散乱を繰り返し、反射率が悪化するという欠点がある。
また、SiC−Si複合材料を基体とする場合、SiC−Si複合材料にラップ加工を施すと、SiCとSiとの硬度に差があるために、Siが先に加工されてしまい、SiCがラウンド状に残り表面の平坦性は低くなり、仮にAl膜を蒸着させたとしても得られるミラーの平面度が悪くなるため、Al膜の蒸着に先立ちCVD法によりSiC膜を形成する必要がある。しかし、CVD法によるSiC膜の形成は一般に高温プロセスであり、1000℃を超える温度で形成されることも珍しくはない。そのため、基体との熱膨張係数の一致がきわめて重要である。基体としてSiC−Si複合材料を用いた場合は、比較的熱膨張係数が近いため表面に膜を形成することも可能であるが、SiC膜の熱膨張係数はその結晶方位によりわずかに異なり、高温プロセスで形成した膜にはわずかではあるが残留応力が生じ、超精密な平面粗さを得ることが困難なばかりか、その研磨条件によっては膜に亀裂が生じる場合があるという課題があった。
However, when silicon carbide is used as a base, a sintered body of silicon carbide (thermal conductivity of about 150 W / mK) has a relatively high thermal conductivity. However, since the manufacturing method is a sintering method, fine pores are formed on the surface. There is a problem that there is a large number of and affects the smoothness of the film formed on the upper surface. The light that has entered the hole has a drawback that it is repeatedly reflected and scattered on the inner wall of the hole, and the reflectivity deteriorates.
Further, when the SiC-Si composite material is used as a base, if the SiC-Si composite material is lapped, Si is processed first because there is a difference in hardness between SiC and Si, and SiC is round. The flatness of the remaining surface becomes low, and even if the Al film is deposited, the flatness of the mirror obtained is deteriorated. Therefore, it is necessary to form the SiC film by the CVD method prior to the deposition of the Al film. However, the formation of the SiC film by the CVD method is generally a high temperature process, and it is not uncommon to form the SiC film at a temperature exceeding 1000 ° C. Therefore, it is very important to match the thermal expansion coefficient with the substrate. When a SiC-Si composite material is used as the substrate, it is possible to form a film on the surface because the coefficient of thermal expansion is relatively close, but the coefficient of thermal expansion of the SiC film varies slightly depending on the crystal orientation, A slight amount of residual stress is generated in the film formed by the process, and it is difficult to obtain an ultra-precise plane roughness, and there is a problem that the film may crack depending on the polishing conditions.
したがって、本発明の目的は、亀裂のない反射膜の形成が容易であり、放熱性に優れ、なおかつ超精密な表面粗さと平面度を有している光学系ミラーを得ることを目的としている。 Accordingly, an object of the present invention is to obtain an optical system mirror that is easy to form a reflective film without cracks, has excellent heat dissipation, and has ultra-precise surface roughness and flatness.
本発明者らは、上記課題に鑑み鋭意研究した結果、100℃程度という従来より著しく低い温度で緻密な膜を形成できるダイヤモンドライクカーボンが光学系ミラーの平滑膜として好適であることを見出して本発明を完成した。
即ち本発明の目的は、下記する手段により達成される。
(1)基体がSiC−Si複合材料からなり、該基体の少なくともミラーとなる面にダイヤモンドライクカーボンの平滑膜を形成したことを特徴とする光学系ミラー。
(2)前記複合材料の強化材がSiCであり、該強化材の含有率が40〜80体積%であることを特徴とする(1)記載の光学系ミラー。
As a result of intensive studies in view of the above problems, the present inventors have found that diamond-like carbon capable of forming a dense film at a temperature significantly lower than the conventional temperature of about 100 ° C. is suitable as a smooth film for optical mirrors. Completed the invention.
That is, the object of the present invention is achieved by the following means.
(1) An optical system mirror characterized in that the base is made of a SiC-Si composite material, and a smooth film of diamond-like carbon is formed on at least the mirror surface of the base.
(2) The optical system mirror according to (1), wherein the reinforcing material of the composite material is SiC, and the content of the reinforcing material is 40 to 80% by volume.
以下に詳細に説明する通り、本発明の光学系ミラーによれば、放熱性に優れ、なおかつ超精密な表面粗さと平面度を有している光学系ミラーを得ることが可能となる。 As will be described in detail below, according to the optical system mirror of the present invention, it is possible to obtain an optical system mirror that is excellent in heat dissipation and has ultra-precise surface roughness and flatness.
以下、本発明の光学系ミラーについて、更に詳しく説明する。
上記で述べたように本発明の光学系ミラーは、基体がSiC−Si複合材料からなり、該基体の少なくとも該基体の少なくともミラーとなる面にダイヤモンドライクカーボンの平滑膜を形成したことを特徴とするものである。(請求項1)
Hereinafter, the optical system mirror of the present invention will be described in more detail.
As described above, the optical system mirror of the present invention is characterized in that the base is made of a SiC-Si composite material, and a smooth film of diamond-like carbon is formed on at least the surface of the base that becomes the mirror. To do. (Claim 1)
ここで、本発明でダイヤモンドライクカーボンを用いたのは、100℃程度という従来より著しく低い温度で緻密な膜を形成できるために残留応力が少なく、亀裂等の問題なく大面積への膜形成が可能であるからである。
また、ダイヤモンドライクカーボンは、チャンバ内に導体を介して被処理物となる基体を配し、被処理物周囲をプラズマ状態とした上で、前記導体に負の高電圧パルスを印加して、被処理物にイオン誘引を行う表面改質方法により得られ、かかる成膜プロセスによって、厚さが10〜40μmに達するダイヤモンドライクカーボン膜が形成される。したがって、Al膜の蒸着の場合と比べ、膜厚が十分厚いため、鏡面研磨の前処理であるCVD法によるSiC膜の形成を省略できる。なお、ダイヤモンドライクカーボン膜の成膜手法として、陰極アーク法やスパッタリング成膜法を用いてもよい。
Here, the diamond-like carbon is used in the present invention because a dense film can be formed at a temperature significantly lower than the conventional temperature of about 100 ° C., so there is little residual stress, and a film can be formed on a large area without problems such as cracks. It is possible.
In addition, diamond-like carbon is provided with a substrate to be processed through a conductor in a chamber, and the periphery of the object to be processed is in a plasma state, and a negative high voltage pulse is applied to the conductor. A diamond-like carbon film having a thickness of 10 to 40 μm is formed by a surface modification method in which ions are attracted to the processed material. Therefore, since the film thickness is sufficiently thick as compared with the case of vapor deposition of the Al film, the formation of the SiC film by the CVD method, which is a pretreatment for mirror polishing, can be omitted. Note that a cathode arc method or a sputtering film forming method may be used as a diamond-like carbon film forming method.
そのダイヤモンドライクカーボン膜を形成する基体としては、SiC−Si複合材料が好ましい。SiC−Si複合材料(熱伝導率約200W/mK)は、焼結SiC(熱伝導率約150W/mK)等の従来の基体に比して熱伝導率が高く、放熱性に優れているという作用を持つ。 As the substrate on which the diamond-like carbon film is formed, a SiC-Si composite material is preferable. SiC-Si composite material (thermal conductivity about 200W / mK) has higher thermal conductivity and excellent heat dissipation than conventional substrates such as sintered SiC (thermal conductivity about 150W / mK). Has an effect.
また、焼結SiCは、その製造方法が焼結法であるため表面に微小な孔が多数存在しており、その上面に形成される膜の平滑度に影響を与えるという課題がある。この孔の中に入った光は孔の内壁で反射・散乱を繰り返し、反射率が悪化するという欠点がある。この点に関しても、本発明のSiC−Si複合材料を基体として用いると、その製造方法がSiの凝固膨張を利用する方法であるので、緻密な表面を形成できるという優位性がある。
また、Al2O3、Si3N4、SiC等のセラミックスは絶縁体であるが、SiC−Si合材料は導電体である。従って、ダイヤモンドライクカーボン膜を形成するに際し、前処理として基体に電極を形成する必要がなく、工程を簡略化できるという利点も有している。
Sintered SiC has a problem that since the manufacturing method is a sintering method, there are many fine holes on the surface, which affects the smoothness of the film formed on the upper surface. The light that has entered the hole has a drawback that it is repeatedly reflected and scattered on the inner wall of the hole, and the reflectivity deteriorates. Also in this regard, when the SiC-Si composite material of the present invention is used as a substrate, there is an advantage that a dense surface can be formed because the manufacturing method uses the solidification expansion of Si.
Further, Al 2 O 3, Si 3 N 4, ceramics such as SiC is an insulator, SiC-Si if the material is a conductor. Therefore, when forming the diamond-like carbon film, it is not necessary to form an electrode on the substrate as a pretreatment, and the process can be simplified.
本発明では、SiC−Si複合材料からなる基体の少なくともミラーとなる面を鏡面研磨している。ここで、鏡面研磨法としては、公知のラップ加工等により研磨すればよい。
さらに、これにより得られた鏡面上に、ダイヤモンドライクカーボンを成膜し、例えばラップ加工により平面度が0.1μm以下、表面粗さRaが1nm以下になるように鏡面加工し、平滑膜と成せば、本発明の光学系ミラーを得ることができる。
In the present invention, at least the mirror surface of the substrate made of the SiC-Si composite material is mirror-polished. Here, as the mirror polishing method, polishing may be performed by a known lapping process or the like.
Furthermore, a diamond-like carbon film is formed on the mirror surface obtained in this way, and is mirror-finished so that the flatness is 0.1 μm or less and the surface roughness Ra is 1 nm or less by lapping, for example, to form a smooth film. The optical system mirror of the present invention can be obtained.
また、本発明の光学系ミラーは、前記複合材料の強化材がSiCであり、該強化材の含有率が40〜80体積%であることを特徴ととしている。(請求項2)
ここで、SiC強化材の含有率を40〜80体積%に限定したのは、SiC含有率が40体積%より少ないと場合では、SiC−Si複合材料の剛性が低下するため鏡面の平面度が低下するからである。さらには、熱伝導率が150W/mK以下に低下し好ましくない。また、SiC含有率を80体積%以下とする理由は、これよりSiC含有率が多いと緻密なSiC−Si複合材料が得られなくなるからである。
In the optical system mirror of the present invention, the reinforcing material of the composite material is SiC, and the content of the reinforcing material is 40 to 80% by volume. (Claim 2)
Here, the content rate of the SiC reinforcing material is limited to 40 to 80% by volume. In the case where the SiC content rate is less than 40% by volume, the rigidity of the SiC-Si composite material is lowered, so that the mirror flatness is low. It is because it falls. Furthermore, the thermal conductivity is lowered to 150 W / mK or less, which is not preferable. The reason why the SiC content is 80% by volume or less is that when the SiC content is higher than this, a dense SiC-Si composite material cannot be obtained.
以下、実施例と比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。
〔実施例〕
市販のSiC粉末の粗粒(信濃電気精錬社製、平均粒径50μm)60重量部と微粒(信濃電気精錬社製、平均粒径10μm)40重量部に有機バインダーとしてフェノール樹脂10重量部(炭素換算3重量部)を混合し、プレス成形した後、窒素雰囲気中で1000℃の温度で3時間加熱処理を行った。これにより、フェノール樹脂は炭化されSiC充填率70体積%のプリフォームを得た。得られたプリフォームと金属Siとをアルゴン雰囲気中で1500℃の温度で3時間保持して溶融したSiとプリフォーム中に含まれている炭素とを反応させてSiCとすると同時にSiを浸透させることによりSiC−Si複合材料(強化材SiCの含有率は、70体積%)を作製した。
EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example.
〔Example〕
60 parts by weight of coarse particles of SiC powder (Shinano Denki Smelting Co., average particle size 50 μm) and 40 parts by weight of fine particles (Shinano Denki Smelting Co., Ltd., average particle size 10 μm) 10 parts by weight of phenolic resin (carbon) as an organic binder 3 parts by weight) was mixed and press-molded, followed by heat treatment at 1000 ° C. for 3 hours in a nitrogen atmosphere. As a result, the phenol resin was carbonized to obtain a preform with a SiC filling rate of 70% by volume. The obtained preform and metal Si are held in an argon atmosphere at a temperature of 1500 ° C. for 3 hours, and the melted Si reacts with the carbon contained in the preform to form SiC and simultaneously infiltrate Si. This produced a SiC-Si composite material (the content of the reinforcing material SiC was 70% by volume).
得られたSiC−Si複合材料からφ200×t10mmの試験片を切り出し、一面をラップ加工により鏡面研磨しミラーとなる面を得た。次に、得られた鏡面上にイオン注入法によりダイヤモンドライクカーボン膜を20μmの厚さに成膜した。さらに、このダイヤモンドライクカーボン膜をラップ加工により平面度が0.1μm以下、表面粗さRaが1nm以下になるように鏡面加工して平滑膜となし、光学系ミラーを作製した。
このようにして得られた光学系ミラーの反射率を測定したところ、反射率は90%であり、光学系ミラーとして十分な反射率が得られた。
A test piece of φ200 × t10 mm was cut out from the obtained SiC-Si composite material, and one surface was mirror-polished by lapping to obtain a surface to be a mirror. Next, a diamond-like carbon film having a thickness of 20 μm was formed on the obtained mirror surface by ion implantation. Further, this diamond-like carbon film was mirror-finished by lapping so that the flatness was 0.1 μm or less and the surface roughness Ra was 1 nm or less to form a smooth film, thereby producing an optical system mirror.
When the reflectance of the optical system mirror thus obtained was measured, the reflectance was 90%, and a sufficient reflectance as an optical system mirror was obtained.
[比較例]
実施例と同様の方法で得られたSiC−Si複合材料から、同形状(φ200×t10mm)の試験片を切り出し、一面をラップ加工により鏡面研磨した。次に、この鏡面にCVD法でSiC皮膜を20μmの厚さに成膜した。さらに、このSiC膜をラップ加工したが、表面粗さRaが1nm以下に達する前に、膜内に亀裂が発生し、光学系ミラーを得ることができなかった。
[Comparative example]
A test piece of the same shape (φ200 × t10 mm) was cut out from the SiC—Si composite material obtained by the same method as in the example, and one surface was mirror-polished by lapping. Next, a SiC film having a thickness of 20 μm was formed on this mirror surface by CVD. Further, this SiC film was lapped, but before the surface roughness Ra reached 1 nm or less, a crack occurred in the film, and an optical system mirror could not be obtained.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003345418A JP2005114805A (en) | 2003-10-03 | 2003-10-03 | Optical miller |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003345418A JP2005114805A (en) | 2003-10-03 | 2003-10-03 | Optical miller |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005114805A true JP2005114805A (en) | 2005-04-28 |
Family
ID=34538703
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003345418A Pending JP2005114805A (en) | 2003-10-03 | 2003-10-03 | Optical miller |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005114805A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010002776A (en) * | 2008-06-20 | 2010-01-07 | Canon Electronics Inc | Micromirror device, optical scanning device and image forming apparatus |
JP2022164770A (en) * | 2019-01-09 | 2022-10-27 | 東京エレクトロン株式会社 | Plasma processing device and ring assembly |
-
2003
- 2003-10-03 JP JP2003345418A patent/JP2005114805A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010002776A (en) * | 2008-06-20 | 2010-01-07 | Canon Electronics Inc | Micromirror device, optical scanning device and image forming apparatus |
JP2022164770A (en) * | 2019-01-09 | 2022-10-27 | 東京エレクトロン株式会社 | Plasma processing device and ring assembly |
JP7361856B2 (en) | 2019-01-09 | 2023-10-16 | 東京エレクトロン株式会社 | plasma processing equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI785212B (en) | Y2o3-zro2 erosion resistant material for chamber components in plasma environments | |
JP6182661B2 (en) | Handle substrate for composite substrate for semiconductor and composite substrate for semiconductor | |
JP4476701B2 (en) | Manufacturing method of sintered body with built-in electrode | |
KR102188440B1 (en) | Handle substrate for composite substrate for semiconductor | |
KR101597501B1 (en) | Handle substrate and composite wafer for semiconductor device | |
KR101595693B1 (en) | Handle substrate for compound substrate for use with semiconductor | |
JPH10236871A (en) | Plasma resistant member | |
EP1323684A1 (en) | Low thermal expansion ceramic and member for exposure system | |
JP3967093B2 (en) | Ceramic member and manufacturing method thereof | |
JP5651278B1 (en) | Handle substrate for composite substrates for semiconductors | |
JP5697813B1 (en) | Handle substrate for composite substrates for semiconductors | |
JP2005114805A (en) | Optical miller | |
JP4446611B2 (en) | Black low thermal expansion ceramics and exposure apparatus components | |
JP2001237303A (en) | Vacuum chuck for wafer and its manufacturing method | |
JP4761948B2 (en) | Sintered silicon carbide and parts for semiconductor manufacturing equipment using the same | |
JP2006003376A (en) | Optical reflection mirror | |
JP4708891B2 (en) | Optical reflection mirror | |
TWI814429B (en) | wafer support | |
WO2023223646A1 (en) | Wafer support | |
JP4514859B2 (en) | Dummy wafer | |
JPH06281795A (en) | Fabrication of sic mirror for reflecting radioactive ray and x-ray | |
JP2003318251A (en) | Electrostatic chuck | |
JP2004177587A (en) | Low thermal expansion mirror and its manufacturing method | |
JP2001015251A (en) | Complex layer ceramic heater and its manufacture | |
JP2005314157A (en) | Silicon carbide sintered compact and semiconductor using the same, and member for liquid crystal-manufacturing apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060214 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080819 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080916 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090203 |