JP2003146757A - Method for cleaning silicon carbide sintered compact and cleaning solution - Google Patents

Method for cleaning silicon carbide sintered compact and cleaning solution

Info

Publication number
JP2003146757A
JP2003146757A JP2001343399A JP2001343399A JP2003146757A JP 2003146757 A JP2003146757 A JP 2003146757A JP 2001343399 A JP2001343399 A JP 2001343399A JP 2001343399 A JP2001343399 A JP 2001343399A JP 2003146757 A JP2003146757 A JP 2003146757A
Authority
JP
Japan
Prior art keywords
silicon carbide
cleaning
sintered body
carbide sintered
cleaning liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001343399A
Other languages
Japanese (ja)
Other versions
JP4198349B2 (en
Inventor
Fumio Odaka
文雄 小高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2001343399A priority Critical patent/JP4198349B2/en
Publication of JP2003146757A publication Critical patent/JP2003146757A/en
Application granted granted Critical
Publication of JP4198349B2 publication Critical patent/JP4198349B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cleaning By Liquid Or Steam (AREA)
  • Ceramic Products (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for cleaning a silicon carbide sintered compact, by which organic and inorganic impurities present on the surface and in the vicinity of the surface of the silicon carbide sintered compact can be easily cleaned and removed. SOLUTION: The method for cleaning the silicon carbide sintered compact is characterized by cleaning the silicon carbide sintered compact with a cleaning solution containing a high purity silicon carbide powder.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体各種部材及
び電子部品用途向け炭化ケイ素焼結体の洗浄方法に関す
る。詳しくは、高純度が要求されるダミーウェハ、ター
ゲット、発熱体等に関する半導体製造用途炭化ケイ素焼
結体の有機物汚染、金属元素汚染、及びパーティクル汚
染等の除去方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for cleaning a silicon carbide sintered body for various semiconductor members and electronic parts. More specifically, the present invention relates to a method for removing organic contaminants, metallic element contaminants, particle contaminants, and the like in a silicon carbide sintered body for semiconductor manufacturing, which is required for high purity such as a dummy wafer, a target, and a heating element.

【0002】[0002]

【従来の技術】従来、炭化ケイ素焼結体の洗浄方法に関
する報告としては、(1)登録181841号では、酸
洗浄後、1200℃以上の温度で酸化処理し、その後窒
素雰囲気で表面処理する方法が、(2)特開平5−17
229号ではシリカ砥粒でブラスト洗浄した後に、フッ
酸及び硝酸の混酸で湿式洗浄する方法が、(3)特開平
6−77310号では、フッ酸水溶液に浸清洗浄した
後、超純水で濯ぎ、更に酸素・ハロゲンガスで乾式洗浄
した後に、酸素処理する方法が、(4)焼結後の、高純
度化は非常に困難なことから、多孔質炭化珪素成形時に
ハロゲン化水素ガス及び無機酸洗浄処理をして一旦高純
度化した後、二次焼結する方法(特開昭55−1586
22号、特開昭60−138913号、特開昭64−7
2964号)等が報告されている。
2. Description of the Related Art Conventionally, as a report on a method for cleaning a silicon carbide sintered body, (1) Registration No. 181841 discloses a method in which after acid cleaning, oxidation treatment is performed at a temperature of 1200 ° C. or higher, and then surface treatment is performed in a nitrogen atmosphere. (2) JP-A-5-17
In No. 229, a method of blast cleaning with silica abrasive grains and then wet cleaning with a mixed acid of hydrofluoric acid and nitric acid is used. The method of rinsing and further dry-cleaning with oxygen / halogen gas, followed by oxygen treatment is (4) high purification after sintering is very difficult. A method of carrying out an acid cleaning treatment to once raise the purity and then performing secondary sintering (Japanese Patent Laid-Open No. 55-1586).
No. 22, JP-A-60-138913, and JP-A-64-7.
2964) has been reported.

【0003】しかしながら、以上の方法は工程が複雑に
なる点で改良の余地が多く残されていた。一方、近年、
環境負荷のさらなる軽減が求められていることより、洗
浄工程に用いられる薬液と純粋使用量の最小化、並びに
排気や廃液の削減の要請が強まる傾向にある。
However, the above method leaves much room for improvement in that the process becomes complicated. On the other hand, in recent years,
Due to the demand for further reduction of environmental load, there is a growing demand for minimizing the amount of chemicals used in the cleaning process and the amount of pure use, as well as reducing exhaust gas and waste liquid.

【0004】[0004]

【発明が解決しようとする課題】本発明は、前記事実を
考慮してなされたものであり、本発明の目的は、半導体
各種部材及び電子部品に用いられるよう、炭化ケイ素焼
結体の表面及び表面近傍に存在する有機及び無機不純物
を、簡易に洗浄除去することができる炭化ケイ素焼結体
の洗浄方法を提供することにある。また、本発明は洗浄
方法の環境に与える負荷を軽減することを目的とする。
The present invention has been made in consideration of the above facts, and an object of the present invention is to provide a surface of a sintered silicon carbide and a surface of a silicon carbide sintered body for use in various semiconductor members and electronic parts. An object of the present invention is to provide a method for cleaning a silicon carbide sintered body, which can easily remove organic and inorganic impurities existing near the surface by cleaning. Another object of the present invention is to reduce the environmental load of the cleaning method.

【0005】[0005]

【課題を解決するための手段】即ち、請求項1に係る発
明によれば、炭化ケイ素焼結体を、高純度炭化ケイ素粉
体を含有する洗浄液で洗浄することを特徴とする炭化ケ
イ素焼結体の洗浄方法が提供される。
That is, according to the invention of claim 1, the silicon carbide sintered body is washed with a cleaning liquid containing a high-purity silicon carbide powder. A method of cleaning the body is provided.

【0006】請求項2に係る発明によれば、炭化ケイ素
焼結体を、高純度炭化ケイ素粉体を含有する洗浄液に浸
漬することを特徴とする請求項1に記載の炭化ケイ素焼
結体の洗浄方法が提供される。
According to the invention of claim 2, the silicon carbide sintered body is immersed in a cleaning liquid containing high-purity silicon carbide powder, and the silicon carbide sintered body according to claim 1 is immersed. A cleaning method is provided.

【0007】請求項3に係る発明によれば、炭化ケイ素
焼結体を、高純度炭化ケイ素粉体を含有する洗浄液を用
いてフラッシングすることを特徴とする請求項1に記載
の炭化ケイ素焼結体の洗浄方法が提供される。
According to the invention of claim 3, the silicon carbide sintered body is flushed with a cleaning liquid containing a high-purity silicon carbide powder, and the silicon carbide sintered body according to claim 1 is characterized. A method of cleaning the body is provided.

【0008】請求項4に係る発明によれば、炭化ケイ素
焼結体を、高純度炭化ケイ素粉体を含有する洗浄液を用
いてスクラブすることを特徴とする請求項1に記載の炭
化ケイ素焼結体の洗浄方法が提供される。
According to the invention of claim 4, the silicon carbide sintered body is scrubbed with a cleaning liquid containing high-purity silicon carbide powder, and the silicon carbide sintered body according to claim 1 is characterized. A method of cleaning the body is provided.

【0009】請求項5に係る発明によれば、周波数24
kHz以上の超音波を照射しながら洗浄することを特徴
とする請求項1〜4に記載の炭化ケイ素焼結体の洗浄方
法が提供される。
According to the invention of claim 5, the frequency 24
The method for cleaning a silicon carbide sintered body according to any one of claims 1 to 4, wherein cleaning is performed while irradiating an ultrasonic wave of kHz or higher.

【0010】請求項6に係る発明によれば、前記高純度
炭化ケイ素粉体を含有する洗浄液として、媒体としての
純水に高純度炭化ケイ素粉体を前記洗浄液の全重量基準
で50重量%以上含む洗浄液を使用することを特徴とす
る請求項1〜5に記載の炭化ケイ素焼結体の洗浄方法が
提供される。
According to the invention of claim 6, as the cleaning liquid containing the high-purity silicon carbide powder, the high-purity silicon carbide powder is added to pure water as a medium in an amount of 50% by weight or more based on the total weight of the cleaning liquid. A method of cleaning a silicon carbide sintered body according to any one of claims 1 to 5, wherein a cleaning solution containing the same is used.

【0011】請求項7に係る発明によれば、媒体として
の純水に、高純度炭化ケイ素粉体が洗浄液の全重量基準
で50重量%以上含まれていることを特徴とする洗浄液
が提供される。
According to a seventh aspect of the present invention, there is provided a cleaning liquid characterized in that pure water as a medium contains 50% by weight or more of high-purity silicon carbide powder based on the total weight of the cleaning liquid. It

【0012】[0012]

【発明の実施の形態】まず、本発明に用いられる高純度
炭化ケイ素粉体を含有する洗浄液について説明する。前
記洗浄液の好ましい1態様としては、溶媒としての水
に、高純度炭化ケイ素粉体を混合した洗浄液が挙げられ
る。好ましくは高純度炭化ケイ素粉体が前記純水溶媒中
に浮遊している(即ち、スラリー状態の)洗浄液が用い
られる。この場合、前記高純度炭化ケイ素粉体の含有量
は、前記洗浄液の全重量基準で50重量%以上、好まし
くは60〜70重量%、さらに好ましくは70〜80重
量%である。50重量%以下だと洗浄効果が低下し、8
0重量%以上だと高純度炭化ケイ素粉末が分散しずらく
なり洗浄効果が低下する。
BEST MODE FOR CARRYING OUT THE INVENTION First, a cleaning liquid containing a high-purity silicon carbide powder used in the present invention will be described. As one preferable embodiment of the cleaning liquid, a cleaning liquid prepared by mixing high-purity silicon carbide powder with water as a solvent can be mentioned. A cleaning liquid in which high-purity silicon carbide powder is suspended in the pure water solvent (that is, in a slurry state) is preferably used. In this case, the content of the high-purity silicon carbide powder is 50% by weight or more, preferably 60 to 70% by weight, more preferably 70 to 80% by weight, based on the total weight of the cleaning liquid. If it is less than 50% by weight, the cleaning effect will decrease, and
If it is 0% by weight or more, the high-purity silicon carbide powder becomes difficult to disperse, and the cleaning effect is reduced.

【0013】(高純度炭化ケイ素粉体)前記洗浄液中に
含まれる前記高純度炭化ケイ素粉体としては、α型、β
型、非晶質あるいはこれらの混合物等が挙げられる。ま
た、高純度の炭化ケイ素焼結体を得るためには、原料の
炭化ケイ素粉末として、高純度の炭化ケイ素粉末を用い
ることが好ましい。
(High-Purity Silicon Carbide Powder) The high-purity silicon carbide powder contained in the cleaning liquid includes α-type and β-type.
Examples include molds, amorphous materials, and mixtures thereof. Further, in order to obtain a high-purity silicon carbide sintered body, it is preferable to use high-purity silicon carbide powder as the raw material silicon carbide powder.

【0014】このβ型炭化ケイ素粉末のグレードには特
に制限はなく、例えば、一般に市販されているβ型炭化
ケイ素を用いることができる。炭化ケイ素粉末の粒径
は、高密度の観点からは、小さいことが好ましく、具体
的には、0.01〜10μm程度、さらに好ましくは、
0.05〜5μmである。粒径が、0.01μm未満で
あると、計量、混合等の処理工程における取扱いが困難
となりやすく、10μmを超えると、比表面積が小さ
く、即ち、隣接する粉末との接触面積が小さくなり、高
密度化し難くなるため好ましくない。
The grade of this β-type silicon carbide powder is not particularly limited, and, for example, β-type silicon carbide that is generally commercially available can be used. The particle size of the silicon carbide powder is preferably small from the viewpoint of high density, specifically, about 0.01 to 10 μm, and more preferably,
It is 0.05 to 5 μm. If the particle size is less than 0.01 μm, handling in processing steps such as weighing and mixing tends to be difficult, and if it exceeds 10 μm, the specific surface area is small, that is, the contact area with the adjacent powder is small, which is high. It is not preferable because it is difficult to increase the density.

【0015】高純度の炭化ケイ素粉末は、例えば、少な
くとも1種以上のケイ素化合物を含むケイ素源と、少な
くとも1種以上の加熱により炭素を生成する有機化合物
を含む炭素源と、重合又は架橋触媒と、を溶媒中で溶解
し、乾燥した後に得られた粉末を非酸化性雰囲気下で焼
成する工程により得ることができる。
The high-purity silicon carbide powder includes, for example, a silicon source containing at least one or more silicon compounds, a carbon source containing at least one or more organic compounds which generate carbon by heating, and a polymerization or crosslinking catalyst. Can be obtained by a step of dissolving and drying in a solvent and drying the resulting powder in a non-oxidizing atmosphere.

【0016】前記ケイ素化合物を含むケイ素源(以下、
「ケイ素源」という。)として、液状のものと固体のも
のとを併用することができるが、少なくとも1種は液状
のものから選ばれなくてはならない。液状のものとして
は、アルコキシシラン(モノ−、ジ−、トリ−、テトラ
−)及びテトラアルコキシシランの重合体が用いられ
る。アルコキシシランの中ではテトラアルコキシシラン
が好適に用いられ、具体的には、メトキシシラン、エト
キシシラン、プロポキシシラン、ブトキシシラン等が挙
げられるが、ハンドリングの点からは、エトキシシラン
が好ましい。また、テトラアルコキシシランの重合体と
しては、重合度が2〜15程度の低分子量重合体(オリ
ゴマー)及びさらに重合度が高いケイ酸ポリマーで液状
のものが挙げられる。これらと併用可能な固体状のもの
としては、酸化ケイ素が挙げられる。前記反応焼結法に
おいて酸化ケイ素とは、SiOの他、シリカゲル(コロ
イド状超微細シリカ含有液、内部にOH基やアルコキシ
ル基を含む)、二酸化ケイ素(シリカゲル、微細シリ
カ、石英粉末)等を含む。これらケイ素源は、単独で用
いてもよいし、2種以上併用してもよい。
A silicon source containing the silicon compound (hereinafter,
It is called "silicon source". As the above), a liquid type and a solid type can be used in combination, but at least one must be selected from the liquid type. Polymers of alkoxysilane (mono-, di-, tri-, tetra-) and tetraalkoxysilane are used as the liquid. Tetraalkoxysilane is preferably used among the alkoxysilanes, and specific examples thereof include methoxysilane, ethoxysilane, propoxysilane, butoxysilane, and the like. From the viewpoint of handling, ethoxysilane is preferable. Examples of the tetraalkoxysilane polymer include low molecular weight polymers (oligomers) having a degree of polymerization of about 2 to 15 and liquid silicic acid polymers having a higher degree of polymerization. Examples of solid substances that can be used in combination with these include silicon oxide. In the reaction sintering method, the silicon oxide includes, in addition to SiO, silica gel (liquid containing colloidal ultrafine silica, containing OH groups and alkoxyl groups inside), silicon dioxide (silica gel, fine silica, quartz powder) and the like. . These silicon sources may be used alone or in combination of two or more.

【0017】これらケイ素源の中でも、均質性やハンド
リング性が良好な観点から、テトラエトキシシランのオ
リゴマー及びテトラエトキシシランのオリゴマーと微粉
末シリカとの混合物等が好適である。また、これらのケ
イ素源は高純度の物質が用いられ、初期の不純物含有量
が20ppm以下であることが好ましく、5ppm以下
であることがさらに好ましい。
Among these silicon sources, tetraethoxysilane oligomers and a mixture of tetraethoxysilane oligomers and fine powder silica are preferable from the viewpoint of good homogeneity and handling property. A high-purity substance is used as these silicon sources, and the initial impurity content is preferably 20 ppm or less, more preferably 5 ppm or less.

【0018】高純度の炭化ケイ素粉末の製造に用いら料
る重合及び架橋触媒としては、炭素源に応じて適宜選択
でき、炭素源がフェノール樹脂やフラン樹脂の場合、ト
ルエンスルホン酸、トルエンカルボン酸、酢酸、しゅう
酸、硫酸等の酸類が挙げられる。これらの中でも、トル
エンスルホン酸が好適に用いられる。
The polymerization and crosslinking catalyst used in the production of high-purity silicon carbide powder can be appropriately selected according to the carbon source. When the carbon source is a phenol resin or furan resin, toluenesulfonic acid or toluenecarboxylic acid is used. Acids such as acetic acid, oxalic acid, and sulfuric acid. Of these, toluenesulfonic acid is preferably used.

【0019】前記反応焼結法に使用される原料粉末であ
る高純度炭化ケイ素粉末を製造する工程における、炭素
とケイ素の比(以下、C/Si比と略記)は、混合物を
l000℃にて炭化して得られる炭化物中間体を、元素
分析することにより定義される。化学量論的には、C/
Si比が3.0の時に生成炭化ケイ素中の遊離炭素が0
%となるばずであるが、実際には同時に生成するSiO
ガスの揮散により低C/Si比において遊離炭素が発生
する。この生成炭化ケイ素粉末中の遊離炭素量が焼結体
等の製造用途に適当でない量にならないように予め配合
を決定することが重要である。通常、1気圧近傍で16
00℃以上での焼成では、C/Si比を2.0〜2.5
にすると遊離炭素を抑制することができ、この範囲を好
適に用いることができる。C/Si比を2.55以上に
すると遊離炭素が頭著に増加するが、この遊離炭素は粒
成長を抑制する効果を持つため、粒子形成の目的に応じ
て適宜選択しても良い。但し、雰囲気の圧力を低圧又は
高圧とする場合は、純粋な炭化ケイ素を得るためのC/
Si比は変動するので、この場合は必ずしも前記C/S
i比の範囲に限定するものではない。
The ratio of carbon to silicon (hereinafter abbreviated as C / Si ratio) in the step of producing a high-purity silicon carbide powder, which is a raw material powder used in the reaction sintering method, is 1000 ° C. for the mixture. It is defined by elemental analysis of a carbide intermediate obtained by carbonization. Stoichiometrically, C /
When the Si ratio is 3.0, the free carbon in the generated silicon carbide is 0.
%, But it is actually formed at the same time as SiO
Free carbon is generated at a low C / Si ratio due to gas volatilization. It is important to determine the composition in advance so that the amount of free carbon in the produced silicon carbide powder does not become an amount unsuitable for the production use of a sintered body or the like. 16 at around 1 atm
When firing at 00 ° C or higher, the C / Si ratio is 2.0 to 2.5.
When it is set, free carbon can be suppressed, and this range can be preferably used. When the C / Si ratio is 2.55 or more, free carbon increases remarkably, but since this free carbon has an effect of suppressing grain growth, it may be appropriately selected depending on the purpose of grain formation. However, when the pressure of the atmosphere is low or high, C /
Since the Si ratio fluctuates, in this case, the C / S
It is not limited to the range of i ratio.

【0020】以上より、特に高純度の炭化ケイ素粉末を
得る方法としては、本願出願人が先に出願した特開平9
−48605号の単結晶の製造方法に記載の原料粉末の
製造方法、即ち、高純度のテトラアルコキシシラン、テ
トラアルコキシシラン重合体から選択される1種以上を
ケイ素源とし、加熱により炭素を生成する高純度有機化
合物を炭素源とし、これらを均質に混合して得られた混
合物を非酸化性雰囲気下において加熱焼成して炭化ケイ
素粉末を得る炭化ケイ素生成工程と、得られた炭化ケイ
素粉末を、1700℃以上2000℃未満の温度に保持
し、該温度の保持中に、2000℃〜2100℃の温度
において5〜20分間にわたり加熱する処理を少なくと
も1回行う後処理工程とを含み、前記2工程を行うこと
により、各不純物元素の含有量が0.5ppm以下であ
る炭化ケイ素粉末を得ること、を特徴とする高純度炭化
ケイ素粉末の製造方法等を利用することができる。この
様にして得られた炭化ケイ素粉末は、大きさが不均一で
あるため、解粉、分級により前記粒度に適合するように
処理する。
From the above, as a method for obtaining particularly high-purity silicon carbide powder, the applicant of the present application filed Japanese Patent Application Laid-Open No.
-48605 No. 48605 single crystal production method, the method of producing a raw material powder, that is, at least one selected from high-purity tetraalkoxysilane and tetraalkoxysilane polymer is used as a silicon source to generate carbon by heating. A high-purity organic compound as a carbon source, a silicon carbide generation step of obtaining a silicon carbide powder by heating and firing a mixture obtained by homogeneously mixing these, and the obtained silicon carbide powder, A temperature of 1700 ° C. or higher and lower than 2000 ° C., and a post-treatment step of performing at least one heating treatment at a temperature of 2000 ° C. to 2100 ° C. for 5 to 20 minutes while maintaining the temperature. To obtain a silicon carbide powder in which the content of each impurity element is 0.5 ppm or less, the production of a high-purity silicon carbide powder. It is possible to use the law and the like. Since the silicon carbide powder thus obtained has a non-uniform size, it is processed by pulverization and classification so as to meet the above particle size.

【0021】炭化ケイ素粉末を製造する工程において窒
素を導入する場合は、まずケイ素源と、炭素源と、窒素
源からなる有機物質と、重合又は架橋触媒と、を均質に
混合するが、前述の如く、フェノール樹脂等の炭素源
と、ヘキサメチレンテトラミン等の窒素源からなる有機
物質と、トルエンスルホン酸等の重合又は架橋触媒と
を、エタノール等の溶媒に溶解する際に、テトラエトキ
シシランのオリゴマー等のケイ素源と十分に混合するこ
とが好ましい。
In the case of introducing nitrogen in the step of producing silicon carbide powder, first, a silicon source, a carbon source, an organic substance composed of a nitrogen source, and a polymerization or crosslinking catalyst are homogeneously mixed. As described above, when a carbon source such as a phenol resin, an organic substance consisting of a nitrogen source such as hexamethylenetetramine, and a polymerization or crosslinking catalyst such as toluenesulfonic acid are dissolved in a solvent such as ethanol, an oligomer of tetraethoxysilane. It is preferable to thoroughly mix it with a silicon source such as.

【0022】前記高純度炭化ケイ素粉末として、(1)
液状のケイ素化合物と、加熱により炭素を生成する液状
の有機化合物と、重合又は架橋触媒と、を均一に混合し
て得られた混合物を固化することにより固化物を得る固
化工程と、(2)得られた固化物を非酸化性雰囲気下で
加熱炭化した後、さらに非酸化性雰囲気下で焼結する焼
結工程と、を有する製造方法により得られた炭化ケイ素
粉末を用いることが好ましい。
As the high-purity silicon carbide powder, (1)
A solidification step of obtaining a solidified product by solidifying a mixture obtained by uniformly mixing a liquid silicon compound, a liquid organic compound which produces carbon by heating, and a polymerization or crosslinking catalyst; and (2) It is preferable to use a silicon carbide powder obtained by a manufacturing method having a sintering step in which the obtained solidified product is heated and carbonized in a non-oxidizing atmosphere and then sintered in a non-oxidizing atmosphere.

【0023】(溶媒)前記洗浄液の溶媒として、被洗浄
体の逆汚染が好適に防止できる観点から、好ましくは純
水が用いられる。前記純水として、蒸留水、イオン交換
水等が用いられる。前記純水としては、純度が100p
pt以下のレベルで、かつ比抵抗が16〜18MΩのも
のが好ましく、純度が10ppt未満のものであればよ
り好ましい。以上説明した洗浄液は高純度が要求される
部材の洗浄液として好適に使用される。具体的には、被
洗浄体表面の残留不純物濃度が100ppm以下、好ま
しくは10ppm以下であることが所望される被洗浄体
の洗浄に使用される。例えば、半導体各種部材及び電子
部品に使用し得る高密度・高純度の部材、ダミーウェハ
等の洗浄に好適に使用される。最も好ましくは後に説明
する炭化ケイ素焼結体の洗浄方法における洗浄液、即ち
炭化ケイ素焼結体用洗浄液として使用される。
(Solvent) As the solvent of the cleaning liquid, pure water is preferably used from the viewpoint that reverse contamination of the object to be cleaned can be suitably prevented. Distilled water, ion-exchanged water, or the like is used as the pure water. The pure water has a purity of 100 p.
It is preferably a level of pt or less and a specific resistance of 16 to 18 MΩ, and more preferably a purity of less than 10 ppt. The cleaning liquid described above is suitably used as a cleaning liquid for members requiring high purity. Specifically, it is used for cleaning an object to be cleaned, where the residual impurity concentration on the surface of the object to be cleaned is desired to be 100 ppm or less, preferably 10 ppm or less. For example, it is preferably used for cleaning various high-density and high-purity members that can be used for various semiconductor members and electronic parts, and dummy wafers. Most preferably, it is used as a cleaning liquid in a method for cleaning a silicon carbide sintered body described later, that is, a cleaning liquid for a silicon carbide sintered body.

【0024】次に、前記高純度炭化ケイ素粉体を含有す
る洗浄液を用いる炭化ケイ素粉体の洗浄方法について説
明する。前記洗浄方法の第1の態様としては、被洗浄体
である炭化ケイ素焼結体を、前記高純度炭化ケイ素粉体
を含有する洗浄液に浸漬する方法が挙げられる。
Next, a method of cleaning the silicon carbide powder using the cleaning liquid containing the high-purity silicon carbide powder will be described. As a first aspect of the cleaning method, there is a method of immersing a silicon carbide sintered body, which is an object to be cleaned, in a cleaning liquid containing the high-purity silicon carbide powder.

【0025】この場合、炭化ケイ素焼結体を浸漬する時
間は、2分〜60分が好ましく、5分〜30分がより好
ましく、10分〜20分がさらに好ましい。また、前記
洗浄液に浸漬する方法において、常に新しい洗浄液によ
って洗浄されるように、オーバーフロー方式で行っても
よく、さらに、この方式とカスケード方式とを組み合わ
せて行ってもよい。さらに、好ましくは、炭化ケイ素焼
結体の洗浄効果及びプロセスの簡略化の観点から、周波
数24Hz以上の超音波を照射しながら処理することが
好ましい。
In this case, the time for immersing the silicon carbide sintered body is preferably 2 minutes to 60 minutes, more preferably 5 minutes to 30 minutes, still more preferably 10 minutes to 20 minutes. Further, in the method of immersing in the cleaning solution, the overflow method may be used so that the cleaning solution is always cleaned with a new cleaning solution, and further, this method and the cascade method may be combined. Furthermore, from the viewpoint of the cleaning effect of the silicon carbide sintered body and simplification of the process, it is preferable to perform the treatment while irradiating the ultrasonic wave with a frequency of 24 Hz or more.

【0026】本発明の炭化ケイ素焼結体の洗浄方法にお
いて、「超音波を照射しながら洗浄する」とは、被洗浄
物を超音波振動させながら洗浄すること、洗浄液に超音
波周波数をスイープさせながら洗浄すること、さらに、
後に説明するフラッシングや、スクラブする際に用いら
れる洗浄装置の一部を超音波振動させながら洗浄するこ
とや、超音波が照射された洗浄液で洗浄することが含ま
れる。
In the method of cleaning a silicon carbide sintered body of the present invention, "cleaning while irradiating with ultrasonic waves" means cleaning the object to be cleaned while ultrasonically vibrating it, and causing the cleaning liquid to sweep the ultrasonic frequency. While washing,
This includes flushing, which will be described later, and cleaning while a part of the cleaning device used for scrubbing is ultrasonically vibrated, and cleaning with a cleaning liquid irradiated with ultrasonic waves.

【0027】(照射する超音波)前記照射する超音波の
周波数は、好ましくは24kHz以上38Hz以下であ
る。38kHzを超えると、洗浄液が周りに散飛した
り、洗浄液の液温が設定以上に上昇する場合があるので
好ましくない。また、この周波数が、24kHz未満で
あると、洗浄効果が不十分となるため好ましくない。
(Ultrasonic wave for irradiation) The frequency of the ultrasonic wave for irradiation is preferably 24 kHz or more and 38 Hz or less. If the frequency exceeds 38 kHz, the cleaning liquid may be scattered around and the liquid temperature of the cleaning liquid may rise above a set value, which is not preferable. Also, if this frequency is less than 24 kHz, the cleaning effect becomes insufficient, which is not preferable.

【0028】前記照射する超音波の強度(出力)は、好
ましくは500W/cm2以上であり、より好ましくは
900W/cm2以上、さらに好ましくは1kW/cm2
以上であるが、3kW/cm2を超えると、洗浄液が周
りに散飛したり、洗浄液の液温が設定以上に上昇する場
合があるので好ましくない。また、この周波数が、50
0W/cm2未満であると、洗浄効果が不十分となるた
め好ましくない。
The ultrasonic intensity that the irradiation (output) is preferably 500 W / cm 2 or more, more preferably 900 W / cm 2 or more, more preferably 1 kW / cm 2
Although the above is the case, when it exceeds 3 kW / cm 2 , the cleaning liquid may be scattered around and the liquid temperature of the cleaning liquid may rise above a set value, which is not preferable. Also, this frequency is 50
If it is less than 0 W / cm 2 , the cleaning effect becomes insufficient, which is not preferable.

【0029】前記照射する超音波を発生させる超音波発
生装置としては、上記周波数、強度等の条件を満たす超
音波を発生させる装置であれば、特に制限はないが、無
機酸水溶液に浸漬する工程で使用する場合には、間接照
射方式が好ましく、その他の工程で使用する場合には、
直接照射方式が好ましい。
The ultrasonic wave generator for generating the ultrasonic wave for irradiation is not particularly limited as long as it is an apparatus for generating an ultrasonic wave satisfying the above-mentioned frequency, intensity and the like, but a step of immersing in an inorganic acid aqueous solution. When used in, indirect irradiation method is preferred, when used in other steps,
The direct irradiation method is preferable.

【0030】前記洗浄方法の第2の態様としては、炭化
ケイ素焼結体を、高純度炭化ケイ素粉体を含有する洗浄
液を用いてフラッシングする洗浄方法が挙げられる。
A second aspect of the cleaning method is a cleaning method in which a silicon carbide sintered body is flushed with a cleaning liquid containing high-purity silicon carbide powder.

【0031】この場合、洗浄液として前記高純度炭化ケ
イ素粉体を含有する洗浄液を使用することを除いて、従
来公知の方法に従ってフラッシングすることができる。
その際、超音波を照射しながら洗浄することが好まし
い。前記洗浄方法の第3の態様としては、炭化ケイ素焼
結体を、高純度炭化ケイ素粉体を含有する洗浄液を用い
てスクラブする洗浄方法が挙げられる。
In this case, flushing can be carried out according to a conventionally known method except that a cleaning liquid containing the high-purity silicon carbide powder is used as the cleaning liquid.
In that case, it is preferable to wash while irradiating ultrasonic waves. A third aspect of the cleaning method is a cleaning method in which a silicon carbide sintered body is scrubbed with a cleaning liquid containing high-purity silicon carbide powder.

【0032】この場合、洗浄液として前記高純度炭化ケ
イ素粉体を含有する洗浄液を使用することを除いて、従
来公知の方法に従ってスクラブすることができる。その
際、超音波を照射しながら洗浄することが好ましい。 (被洗浄体)本発明の炭化ケイ素焼結体の洗浄方法おい
て、被洗浄体としての炭化ケイ素焼結体は、半導体各種
部材及び電子部品に使用し得る高密度、高純度のもので
あれば、特に限定しないが、例えば、非金属助剤を用い
てホットプレス焼結した炭化ケイ素焼結体、本願出願人
が先に出願した特願平10−67565号に記載の炭化
ケイ素焼結体等が挙げられる。
In this case, scrubbing can be carried out according to a conventionally known method except that a cleaning liquid containing the high-purity silicon carbide powder is used as the cleaning liquid. In that case, it is preferable to wash while irradiating ultrasonic waves. (Object to be cleaned) In the method for cleaning a silicon carbide sintered body of the present invention, the silicon carbide sintered body as the object to be cleaned may be of high density and high purity which can be used for various semiconductor members and electronic parts. For example, although not particularly limited, for example, a silicon carbide sintered body hot-sintered using a non-metal auxiliary agent, a silicon carbide sintered body described in Japanese Patent Application No. 10-67565 previously filed by the applicant of the present application. Etc.

【0033】以上説明した本発明の洗浄方法によれば、
簡易に炭化ケイ素焼結体の洗浄を行うことが可能とな
る。また、洗浄材料として炭化ケイ素焼結体の製造に用
いられる材料、即ち、炭化ケイ素粉体が使用されること
より、炭化ケイ素焼結体の製造及び洗浄における材料供
給及び材料管理の一元化が図られる。そのため、本発明
は、作業工程の簡略化や、炭化ケイ素焼結体の製造コス
トの削減に寄与するものと期待される。
According to the cleaning method of the present invention described above,
It is possible to easily wash the silicon carbide sintered body. Further, since the material used for manufacturing the silicon carbide sintered body, that is, the silicon carbide powder is used as the cleaning material, the material supply and the material management in the manufacturing and cleaning of the silicon carbide sintered body can be unified. . Therefore, the present invention is expected to contribute to simplification of the working process and reduction of the manufacturing cost of the silicon carbide sintered body.

【0034】さらに、本発明によれば、従来の洗浄方法
に用いられていた薬液、特に有機溶剤の使用量を大幅に
削減できることから、排気や廃液処理の手間が省けると
共に廃液量の削減が図られる。また、洗浄に用いる純水
のリサイクル率も向上するため純粋使用量の最小化も図
ることが可能となる。そのため、本発明は、環境負荷軽
減に寄与するものと期待される。
Further, according to the present invention, since the amount of the chemical liquid used in the conventional cleaning method, particularly the amount of the organic solvent used, can be greatly reduced, the labor of exhausting and treating the waste liquid can be saved and the amount of the waste liquid can be reduced. To be Further, since the recycling rate of pure water used for cleaning is improved, it is possible to minimize the amount of pure use. Therefore, the present invention is expected to contribute to reducing the environmental load.

【0035】本発明の炭化ケイ素焼結体の洗浄方法によ
って得られた炭化ケイ素焼結体は、半導体各種部材及び
電子部品等に好適に使用することができるが、半導体各
種部材としては、ダミーウェハ、ヒーター、プラズマエ
ッチング電極、イオン注入装置ターゲット等の高純度及
びパーティクルフリーが望まれる部材が挙げられる。
The silicon carbide sintered body obtained by the method for cleaning a silicon carbide sintered body of the present invention can be suitably used for various semiconductor members, electronic parts and the like. As various semiconductor members, dummy wafers, Members such as heaters, plasma etching electrodes, and targets for ion implanters, which are desired to have high purity and particle-free, are mentioned.

【0036】以上本発明の洗浄液及び洗浄方法について
いくつかの実施態様を挙げて説明してきたが、本発明は
前記実施態様に限定されない。例えば、前記洗浄液の実
施態様において、洗浄液の溶媒として純水を用いたが、
被洗浄体の逆汚染が防止できるものであれば特に純水に
限定されることなく、例えば通常の水を溶媒として用い
てもよい。
Although the cleaning liquid and the cleaning method of the present invention have been described with reference to some embodiments, the present invention is not limited to the above embodiments. For example, in the embodiment of the cleaning liquid, pure water was used as the solvent for the cleaning liquid,
The water is not particularly limited to pure water as long as it can prevent reverse contamination of the object to be cleaned, and for example, ordinary water may be used as a solvent.

【0037】また、前記洗浄液に、所望により、被洗浄
体の逆汚染を生じないない程度の量で界面活性剤等の添
加剤を加えてもかまわない。界面活性剤を加えると高純
度炭化ケイ素粉体の分散性が向上する。
If desired, an additive such as a surfactant may be added to the cleaning liquid in an amount that does not cause reverse contamination of the object to be cleaned. Addition of a surfactant improves the dispersibility of the high-purity silicon carbide powder.

【0038】一方、本発明の炭化ケイ素焼結体の洗浄方
法にあっては洗浄効果の面では特に必要でないが、前記
各工程間に、高純度炭化ケイ素粉末を含有する洗浄液を
除く従来公知の洗浄水に浸漬する工程を行ってもよい。
この洗浄水に浸漬する工程を行うと、シリコンウェハ並
みの純度レベルが得られる。前記従来公知の洗浄水とし
ては、純水、蒸留水、イオン交換水等挙げられるが、洗
浄水に浸漬する工程による被洗浄体の逆汚染を防止する
観点から、純水が好ましい。前記純水としては、純度が
100ppt以下のレベルで、且つ比抵抗が16〜18
MΩのものが好ましく、純度が10ppt未満のもので
あればより好ましい。前記従来公知の洗浄水に浸漬する
工程において、炭化ケイ素焼結体を浸漬する時間は、2
分〜60分が好ましく、5分〜30分がより好ましく、
10分〜20分がさらに好ましい。前記従来公知の洗浄
水に浸漬する工程は、常に新しい洗浄水によって洗浄さ
れるように、オーバーフロー方式で行ってもよく、さら
に、この方式とカスケード方式とを組み合わせて行って
もよい。
On the other hand, in the method for cleaning a silicon carbide sintered body of the present invention, it is not particularly necessary in terms of cleaning effect, but between the steps described above, a conventionally known cleaning liquid except a cleaning liquid containing high-purity silicon carbide powder is used. You may perform the process of immersing in wash water.
By performing the step of immersing in the cleaning water, a purity level comparable to that of a silicon wafer can be obtained. Examples of the conventionally known cleaning water include pure water, distilled water, ion-exchanged water, and the like, and pure water is preferable from the viewpoint of preventing reverse contamination of the object to be cleaned in the step of immersing in the cleaning water. The pure water has a purity of 100 ppt or less and a specific resistance of 16-18.
MΩ is preferable, and purity of less than 10 ppt is more preferable. In the step of immersing in the conventionally known cleaning water, the time for immersing the silicon carbide sintered body is 2
Minutes to 60 minutes are preferred, 5 minutes to 30 minutes are more preferred,
It is more preferably 10 minutes to 20 minutes. The above-mentioned conventionally known step of immersing in washing water may be performed by an overflow method so that it is always washed with fresh washing water, or by a combination of this method and a cascade method.

【0039】[0039]

【実施例】以下に実施例及び比較例を示して本発明につ
いて具体的に説明するが、本発明が以下の実施例に限定
されるものでないことは言うまでもない。 〔実施例1〕まず、平均粒径0.1〜2.0μmの高純
度炭化ケイ素粉末((株)ブリヂストン社製、商品名ピ
ュアベータ)を洗浄液の全重量基準で約70重量%含有
する洗浄液を調製した。そして、被洗浄体(炭化ケイ素
焼結体)として、片面は粗研磨、もう一方の面は鏡面で
ある、40×40×2tの平板の表面に予め約1mm厚
のワックス(マツヤニ)を塗布したものを使用した。そ
の平版の表面に前記洗浄液を濡らした後、ブラシを用い
て前記被洗浄体の表面を手で軽く約3分間ブラッシング
した。このような作業を被洗浄体の両面に行った。その
後、被洗浄体を純水で洗浄し乾燥させた後に表面清浄度
(不純物付着量)の測定を行った。その際、不純物付着
量として、鏡面に付着したFe,Niの付着量を測定し
た。前記表面清浄度(不純物付着量)の測定は、全反射
蛍光X線分析装置(「Total Reflectio
n X−Ray Fluorescencemeter
(TXRF)」)で分析した。なお、全反射蛍光X線分
析装置で分析する際、シリコンにおける相対感度係数を
使用した。
EXAMPLES The present invention will be specifically described below with reference to Examples and Comparative Examples, but it goes without saying that the present invention is not limited to the following Examples. [Example 1] First, a cleaning liquid containing high-purity silicon carbide powder having an average particle diameter of 0.1 to 2.0 µm (trade name: Pure Beta, manufactured by Bridgestone Corporation) in an amount of about 70% by weight based on the total weight of the cleaning liquid. Was prepared. Then, as an object to be cleaned (sintered silicon carbide), a wax (Matsuya) having a thickness of about 1 mm was previously applied to the surface of a flat plate of 40 × 40 × 2t, one surface of which was roughly polished and the other surface was a mirror surface. I used one. After the surface of the lithographic plate was wet with the cleaning liquid, the surface of the body to be cleaned was lightly brushed by hand for about 3 minutes using a brush. Such an operation was performed on both sides of the object to be cleaned. After that, the object to be cleaned was washed with pure water and dried, and then the surface cleanliness (impurity adhesion amount) was measured. At that time, the amount of Fe and Ni adhering to the mirror surface was measured as the amount of adhering impurities. The surface cleanliness (impurity adhesion amount) is measured by a total reflection X-ray fluorescence analyzer (“Total Reflection”).
n X-Ray Fluorescencemeter
(TXRF) ”). The relative sensitivity coefficient of silicon was used when analyzing with a total reflection X-ray fluorescence analyzer.

【0040】〔実施例2〕 平均粒径1〜2μmの高純
度炭化ケイ素粉末((株)ブリヂストン社製、商品名ピ
ュアベータ)を使用したことを除いて、実施例1と同様
に処理した後、表面清浄度の測定を行った。
Example 2 After the same treatment as in Example 1 except that a high-purity silicon carbide powder having an average particle size of 1 to 2 μm (manufactured by Bridgestone Corporation, trade name Pure Beta) was used. The surface cleanliness was measured.

【0041】〔比較例1〕 炭化ケイ素粉末を含有しな
い洗浄液、即ち沸硝酸液{水/HF/HNO(15/
2.5/2.5)(体積比)}を使用したことを除い
て、実施例1と同様に処理した後、表面清浄度の測定を
行った。
Comparative Example 1 A cleaning solution containing no silicon carbide powder, that is, a boiling nitric acid solution {water / HF / HNO 3 (15 /
2.5 / 2.5) (volume ratio)} was used, and the surface cleanliness was measured after the same treatment as in Example 1.

【0042】実施例1及び2及び比較例1の条件におい
て洗浄した後の被洗浄体の表面清浄度をまとめて表1に
示す。
Table 1 summarizes the surface cleanliness of the objects to be cleaned after cleaning under the conditions of Examples 1 and 2 and Comparative Example 1.

【0043】[0043]

【表1】 表1より、本発明(実施例1及び2)によれば、炭化ケ
イ素焼結体表面上の不純物が好適に取り除かれることが
確認された。尚、本発明の理解を容易にする目的から、
半導体部品等を製造する際に主たる不純物となるFe,
Niの濃度の測定結果のみを記載したが、本発明によれ
ばその他の不純物もFeやNiと同様に好適に除去され
ることが確認された。
[Table 1] From Table 1, it was confirmed that according to the present invention (Examples 1 and 2), the impurities on the surface of the silicon carbide sintered body were preferably removed. In order to facilitate understanding of the present invention,
Fe, which is the main impurity when manufacturing semiconductor parts,
Although only the measurement results of the concentration of Ni are described, it was confirmed that other impurities are preferably removed similarly to Fe and Ni according to the present invention.

【0044】[0044]

【発明の効果】本発明によれば、新たな設備投資を行う
ことなく既存の設備を用いて簡易に炭化ケイ素焼結体の
洗浄を行うことができる。また、本発明によれば、作業
工程の簡略化や炭化ケイ素焼結体の製造コストを削減す
ることができる。さらに、本発明によれば、環境負荷を
軽減することができる。
According to the present invention, it is possible to easily wash a silicon carbide sintered body using existing equipment without investing new equipment. Further, according to the present invention, it is possible to simplify the working process and reduce the manufacturing cost of the silicon carbide sintered body. Furthermore, according to the present invention, the environmental load can be reduced.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 炭化ケイ素焼結体を、高純度炭化ケイ素
粉体を含有する洗浄液で洗浄することを特徴とする炭化
ケイ素焼結体の洗浄方法。
1. A method of cleaning a silicon carbide sintered body, which comprises cleaning the silicon carbide sintered body with a cleaning liquid containing high-purity silicon carbide powder.
【請求項2】 炭化ケイ素焼結体を、高純度炭化ケイ素
粉体を含有する洗浄液に浸漬することを特徴とする請求
項1に記載の炭化ケイ素焼結体の洗浄方法。
2. The method for cleaning a silicon carbide sintered body according to claim 1, wherein the silicon carbide sintered body is immersed in a cleaning liquid containing high-purity silicon carbide powder.
【請求項3】 炭化ケイ素焼結体を、高純度炭化ケイ素
粉体を含有する洗浄液を用いてフラッシングすることを
特徴とする請求項1に記載の炭化ケイ素焼結体の洗浄方
法。
3. The method for cleaning a silicon carbide sintered body according to claim 1, wherein the silicon carbide sintered body is flushed with a cleaning liquid containing high-purity silicon carbide powder.
【請求項4】 炭化ケイ素焼結体を、高純度炭化ケイ素
粉体を含有する洗浄液を用いてスクラブすることを特徴
とする請求項1に記載の炭化ケイ素焼結体の洗浄方法。
4. The method for cleaning a silicon carbide sintered body according to claim 1, wherein the silicon carbide sintered body is scrubbed with a cleaning liquid containing high-purity silicon carbide powder.
【請求項5】 周波数24kHz以上の超音波を照射し
ながら洗浄することを特徴とする請求項1〜4に記載の
炭化ケイ素焼結体の洗浄方法。
5. The method for cleaning a silicon carbide sintered body according to claim 1, wherein the cleaning is performed while irradiating an ultrasonic wave having a frequency of 24 kHz or more.
【請求項6】 前記高純度炭化ケイ素粉体を含有する洗
浄液として、媒体としての純水に高純度炭化ケイ素粉体
を前記洗浄液の全重量基準で50重量%以上含む洗浄液
を使用することを特徴とする請求項1〜5に記載の炭化
ケイ素焼結体の洗浄方法。
6. The cleaning liquid containing the high-purity silicon carbide powder is a cleaning liquid containing 50% by weight or more of high-purity silicon carbide powder in pure water as a medium, based on the total weight of the cleaning liquid. The method for cleaning a silicon carbide sintered body according to claim 1.
【請求項7】 媒体としての純水に、高純度炭化ケイ素
粉体が洗浄液の全重量基準で50重量%以上含まれてい
ることを特徴とする洗浄液。
7. A cleaning liquid, wherein pure water as a medium contains high-purity silicon carbide powder in an amount of 50% by weight or more based on the total weight of the cleaning liquid.
JP2001343399A 2001-11-08 2001-11-08 Cleaning method for sintered silicon carbide Expired - Fee Related JP4198349B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001343399A JP4198349B2 (en) 2001-11-08 2001-11-08 Cleaning method for sintered silicon carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001343399A JP4198349B2 (en) 2001-11-08 2001-11-08 Cleaning method for sintered silicon carbide

Publications (2)

Publication Number Publication Date
JP2003146757A true JP2003146757A (en) 2003-05-21
JP4198349B2 JP4198349B2 (en) 2008-12-17

Family

ID=19157101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001343399A Expired - Fee Related JP4198349B2 (en) 2001-11-08 2001-11-08 Cleaning method for sintered silicon carbide

Country Status (1)

Country Link
JP (1) JP4198349B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007145665A (en) * 2005-11-29 2007-06-14 Tokai Konetsu Kogyo Co Ltd METHOD FOR PRODUCING POROUS SiC SINTERED COMPACT
JP2010013331A (en) * 2008-07-04 2010-01-21 Bridgestone Corp Purification method of ceramic member and manufacturing method of very pure ceramic member
JP2014143322A (en) * 2013-01-24 2014-08-07 Disco Abrasive Syst Ltd Cleaning device and cleaning method
KR20150138121A (en) * 2014-05-30 2015-12-09 전자부품연구원 Method for manufacturing nanopowder through grinding silicon carbide by chemical-physical hybrid method and the nanopowder

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06114742A (en) * 1992-10-09 1994-04-26 Asahi Glass Co Ltd Polishing pad and polishing method using this pad
JPH06300907A (en) * 1993-04-16 1994-10-28 Nippon Steel Corp Parts for optical purpose and x-ray formed by using silicon carbide sintered compact and their production
JPH081115A (en) * 1994-06-23 1996-01-09 Sankoole Kk Cleaning of precision parts
JPH0885051A (en) * 1994-09-14 1996-04-02 Komatsu Electron Metals Co Ltd Chamfered part polishing method for semiconductor silicon substrate
JPH0948605A (en) * 1995-05-31 1997-02-18 Bridgestone Corp Production of extremely pure powdery silicon carbide for producing silicon carbide single crystal and single crystal
JPH09299893A (en) * 1996-05-14 1997-11-25 Kao Corp Cleaning method
JPH11506570A (en) * 1996-04-01 1999-06-08 サン―ゴバン インダストリアル セラミックス,インコーポレイティド Tape cast silicon carbide dummy wafer
JP2000169233A (en) * 1998-12-08 2000-06-20 Bridgestone Corp Wet cleaning of silicon carbide sintered product
JP2000173968A (en) * 1998-12-08 2000-06-23 Bridgestone Corp Electrolytic cleaning method for silicon carbide sintered body
JP2001240849A (en) * 2000-02-28 2001-09-04 Fuji Photo Film Co Ltd Grinding liquid

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06114742A (en) * 1992-10-09 1994-04-26 Asahi Glass Co Ltd Polishing pad and polishing method using this pad
JPH06300907A (en) * 1993-04-16 1994-10-28 Nippon Steel Corp Parts for optical purpose and x-ray formed by using silicon carbide sintered compact and their production
JPH081115A (en) * 1994-06-23 1996-01-09 Sankoole Kk Cleaning of precision parts
JPH0885051A (en) * 1994-09-14 1996-04-02 Komatsu Electron Metals Co Ltd Chamfered part polishing method for semiconductor silicon substrate
JPH0948605A (en) * 1995-05-31 1997-02-18 Bridgestone Corp Production of extremely pure powdery silicon carbide for producing silicon carbide single crystal and single crystal
JPH11506570A (en) * 1996-04-01 1999-06-08 サン―ゴバン インダストリアル セラミックス,インコーポレイティド Tape cast silicon carbide dummy wafer
JPH09299893A (en) * 1996-05-14 1997-11-25 Kao Corp Cleaning method
JP2000169233A (en) * 1998-12-08 2000-06-20 Bridgestone Corp Wet cleaning of silicon carbide sintered product
JP2000173968A (en) * 1998-12-08 2000-06-23 Bridgestone Corp Electrolytic cleaning method for silicon carbide sintered body
JP2001240849A (en) * 2000-02-28 2001-09-04 Fuji Photo Film Co Ltd Grinding liquid

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007145665A (en) * 2005-11-29 2007-06-14 Tokai Konetsu Kogyo Co Ltd METHOD FOR PRODUCING POROUS SiC SINTERED COMPACT
JP2010013331A (en) * 2008-07-04 2010-01-21 Bridgestone Corp Purification method of ceramic member and manufacturing method of very pure ceramic member
JP2014143322A (en) * 2013-01-24 2014-08-07 Disco Abrasive Syst Ltd Cleaning device and cleaning method
KR20150138121A (en) * 2014-05-30 2015-12-09 전자부품연구원 Method for manufacturing nanopowder through grinding silicon carbide by chemical-physical hybrid method and the nanopowder
KR101936865B1 (en) * 2014-05-30 2019-01-11 전자부품연구원 Method for manufacturing nanopowder through grinding silicon carbide by chemical-physical hybrid method and the nanopowder

Also Published As

Publication number Publication date
JP4198349B2 (en) 2008-12-17

Similar Documents

Publication Publication Date Title
JP2857042B2 (en) Cleaning liquid for silicon semiconductor and silicon oxide
JP3046208B2 (en) Cleaning liquid for silicon wafer and silicon oxide
JP2000133631A (en) Selective corrosion composition for silicon nitride film and method therefor
JP4554435B2 (en) Polycrystalline silicon cleaning method
US6419757B2 (en) Method for cleaning sintered silicon carbide in wet condition
JPH10251695A (en) Detergent composition for use in cleaning wafer for manufacturing semiconductor device and cleaning method
US6532977B2 (en) Cleaning vessel and silicon carbide sintered body used therefor
JP4198349B2 (en) Cleaning method for sintered silicon carbide
JP4437847B2 (en) Method for producing sintered silicon carbide
JP4188473B2 (en) Wet cleaning method for sintered silicon carbide
JP4482844B2 (en) Wafer cleaning method
JP3686910B2 (en) Etching method of silicon wafer
TW201126592A (en) Cleaning method of surface of silicon wafer
TW202403029A (en) Cleaning solution and wafer cleaning method
JP2003055050A (en) Yttrium oxide member
JP3274810B2 (en) Method for cleaning sand-blasted semiconductor wafer and semiconductor wafer cleaned by this method
JP2021082828A (en) Method for reducing metallic contamination on surface of substrate
JP5777962B2 (en) Method for producing diamond film
JP4166883B2 (en) Electrolytic cleaning method for sintered silicon carbide
CN111978863A (en) Super-oleophobic organic coating and preparation method thereof
JP3781106B2 (en) Method for manufacturing silicon substrate for solar cell
JPH0878376A (en) Method of cleaning semiconductor treating jigs
JP2002280316A (en) Wafer and manufacturing method therefor
JP3378426B2 (en) Cleaning method for semiconductor wafer surface
JP2002029843A (en) Protective member for plasma treatment apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081001

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4198349

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees