JP4482844B2 - Wafer cleaning method - Google Patents

Wafer cleaning method Download PDF

Info

Publication number
JP4482844B2
JP4482844B2 JP2000162206A JP2000162206A JP4482844B2 JP 4482844 B2 JP4482844 B2 JP 4482844B2 JP 2000162206 A JP2000162206 A JP 2000162206A JP 2000162206 A JP2000162206 A JP 2000162206A JP 4482844 B2 JP4482844 B2 JP 4482844B2
Authority
JP
Japan
Prior art keywords
wafer
cleaning
hydrogen
ultrapure water
dissolved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000162206A
Other languages
Japanese (ja)
Other versions
JP2001345301A (en
Inventor
和巳 塚本
博志 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2000162206A priority Critical patent/JP4482844B2/en
Publication of JP2001345301A publication Critical patent/JP2001345301A/en
Application granted granted Critical
Publication of JP4482844B2 publication Critical patent/JP4482844B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、電子材料の洗浄方法に関する。さらに詳しくは、本発明は、CMP(化学機械研磨、Chemical Mechanical Polishing)後の電子材料の表面に付着した金属不純物及び残留した研磨剤などの微粒子を、ウェット洗浄により同時に、かつ、効果的に除去することができる電子材料の洗浄方法に関する。
【0002】
【従来の技術】
従来は、半導体産業の洗浄工程においては、RCA洗浄と呼ばれるウェット洗浄が主流であった。RCA洗浄は、硫酸と過酸化水素水の混合液(SPM)を120〜150℃に加熱して用いたり、アンモニアと過酸化水素水の混合液(APM)を60〜80℃に加温して用いたり、あるいは、塩酸と過酸化水素水の混合液(HPM)を60〜80℃に加温して用いたりする洗浄方法である。この洗浄方法を採用した場合の多大な薬液コスト、リンス用の超純水のコスト、廃液処理コスト、薬品蒸気を排気し新たに清浄空気を作る空調コストなどを低減し、さらに水の大量使用、薬品の大量廃棄、排ガスの放出などの環境への負荷を低減するために、近年ウェット洗浄工程の見直しが進められている。
また、近年の半導体産業では、集積度の向上のためにウェハ上に配線を集積させることが行われている。多層配線を行うために酸化膜(絶縁膜)を平坦化する必要があり、そのための手法としてCMPが半導体デバイス製造工程に採用されてきている。このCMP工程では、水酸化カリウム(KOH)水溶液などのカリウムを含む溶液に、シリカ(SiO2)などの研磨粒子を分散させた研磨液を用いて研磨する。ところが、化学気相堆積法(CVD、Chemical Vapor Deposition)などで堆積した酸化膜を、前述の研磨液を用いて研磨すると、カリウム(K)がウェハ上に残留しやすいという問題が明らかになってきた。カリウムがウェハ上に残留すると、デバイス特性に影響を与えるために、洗浄で取り除く必要がある。また、研磨剤の微粒子もウェハ上に残留するために、洗浄により除去する必要がある。
これまでのCMP後の洗浄では、カリウムなどの金属除去と微粒子除去を行うために、複数の洗浄工程を経るのが一般的であった。例を挙げると、
(1)超純水リンス → ブラシスクラブ洗浄 → APM+超音波 → 超純水リンス → HF → 超純水リンス → 乾燥、
(2)温超純水 → APM+超音波 → 第一超純水リンス → 第二超純水リンス→ 乾燥、
(3)ブラシスクラブ洗浄 → HF → 超純水リンス → 乾燥
などの洗浄工程である。
(1)、(2)の方法では、大量の薬液を使用すること、薬品蒸気が出ること、すすぐために大量の超純水を使用すること、生産性が低いこと、洗浄工程が多いことなどの問題がある。また、(1)、(3)の方法では、毒物取締法で規制されているフッ酸廃液が発生するために、廃液処理に莫大なコストがかかるなどの問題がある。
【0003】
【発明が解決しようとする課題】
本発明は、CMP後の洗浄工程において、濃厚な薬液や毒物指定を受けている薬品を使うことなく、金属及び微粒子を同時に、短時間で、安価に、効果的に被洗浄物から除去することができる汎用性の高い電子材料の洗浄方法を提供することを目的としてなされたものである。
【0004】
【課題を解決するための手段】
本発明者らは、上記の課題を解決すべく鋭意研究を重ねた結果、45℃以上に加温した温超純水で洗浄することにより、CVD酸化膜上に付着したカリウムを容易に除去することができ、さらに、超純水に水素などのガスを溶解することにより、カリウムなどの金属不純物と微粒子を同時に除去し得ることを見いだし、この知見に基づいて本発明を完成するに至った。
すなわち、本発明は、
(1)CMPを行った後のウェハの洗浄方法であって、飽和溶解度の50%以上の水素を溶解した60℃以上の超純水を洗浄液とし、この洗浄液にアンモニアを添加し、pHを7以上に調整して、10kHz〜3MHzの超音波を照射しながら洗浄することによって、ウェハ上の微粒子をレーザー散乱異物検査装置で測定したウェハ上の微粒子数を6インチウェハ当たり17個以下にまで除去するとともに、ウェハ上のカリウムを、全反射蛍光X線分析装置で測定した洗浄後のウェハ上のカリウム濃度が3.11×10 10 原子/cm 2 以下にまで除去することを特徴とするウェハの洗浄方法、
を提供するものである。
【0005】
【発明の実施の形態】
本発明の電子材料の洗浄方法は、CMPを行った後の電子材料の洗浄方法であって、水素、酸素又は希ガスを溶解した45℃以上の超純水を洗浄液として洗浄する。この温度が45℃未満では十分な洗浄効果が得られない。洗浄効果の点から、60℃以上であることが好ましく、80℃以上であることがより好ましい。本発明方法は、CVD酸化膜工程を経た後にCMPを行った半導体基板の洗浄に特に好適に適用することができる。CVD酸化膜としては、例えば、P−TEOS(Plasma enhanced tetraethylorthoslicate)酸化膜、BPSG(Boron−doped phospho−silicate Glass)酸化膜、NSG(Non−doped silicate Glass)酸化膜、TMS(Plasma enhanced tetramethoxysilane)酸化膜などを挙げることができる。電子材料のCMPには、水酸化カリウムなどのアルカリと、シリカ、セリア、アルミナなどの微粒子を含有する研磨液が用いられるので、CMP後の電子材料の表面には、研磨液に由来するカリウムなどの金属不純物と、シリカなどの微粒子が付着している。水素、酸素又は希ガスを溶解した超純水の温度が45℃以上であると、電子材料の表面に付着した金属不純物を効果的に除去することができる。
【0006】
本発明方法において、水素、酸素又は希ガスを溶解した45℃以上の超純水の製造方法に特に制限はなく、例えば、45℃以上に加温された温超純水に水素、酸素又は希ガスを溶解することができ、あるいは、水素、酸素又は希ガスを溶解した超純水を45℃以上に加温することもできる。本発明方法において、洗浄液中における水素、酸素又は希ガスの濃度に特に制限はないが、溶存ガス濃度が、洗浄液の温度における飽和溶解度の50%以上であることが好ましく、75%以上であることがより好ましい。ちなみに、60℃における水への飽和溶解度は、水素1.43mg/L、酸素27.9mg/L、ヘリウム1.59mg/L、ネオン8.51mg/L、アルゴン37.0mg/L、クリプトン123mg/L、キセノン293mg/Lである。水素、酸素又は希ガスは、1種を単独で超純水に溶解することができ、あるいは、2種以上を組み合わせて超純水に溶解することもできる。
本発明方法に用いる水素、酸素又は希ガスを溶解した超純水の製造方法に特に制限はないが、あらかじめ超純水を脱気して溶存気体の飽和度を下げ、水中の気体溶解キャパシティーに空きを作ったのち、水素、酸素又は希ガスを溶解することが好ましい。水素、酸素又は希ガスの溶解に際しては、気体透過膜モジュールを多段に用いて溶存気体の除去及び水素、酸素又は希ガスの溶解を行うことができる。例えば、気体透過膜モジュールを2段に設け、前段の気体透過膜モジュールを用いて全溶存気体を対象とする減圧膜脱気を行い、後段の気体透過膜モジュールを用いて水素、酸素又は希ガスを溶解することができる。気体透過膜モジュールを2段に設けて、全溶存気体を対象とする減圧膜脱気と水素、酸素又は希ガスの溶解を2段に行うことにより、水素、酸素又は希ガスを無駄に放出することなく、ほぼ定量的に超純水に溶解することができる。
【0007】
本発明方法においては、水素、酸素又は希ガスを溶解した超純水に、アルカリを添加することにより、pHを7以上に調整して使用することができる。アルカリを添加することにより、ウェハ表面に付着した研磨剤などの微粒子の除去効果と再付着防止効果を高めることができる。pH調整に使用するアルカリには特に制限はなく、例えば、アンモニア、水酸化ナトリウム、水酸化カリウム、水酸化テトラメチルアンモニウム(TMAH)などを挙げることができる。これらの中で、高純度アンモニア水及び水酸化テトラメチルアンモニウムを好適に使用することができる。
本発明方法において、CMPを行った後の電子材料を、水素、酸素又は希ガスを溶解した超純水を洗浄液として洗浄する方法に特に制限はなく、例えば、洗浄液を満たした水槽に電子材料を浸漬してバッチ式処理を行うことができ、あるいは、電子材料をスピンナーやローダー上に載せ、洗浄液を電子材料の中心から半径方向に注いで処理する枚葉式洗浄を行うこともできる。
本発明方法においては、水素、酸素又は希ガスを溶解した45℃以上の超純水を洗浄液として電子材料を洗浄する際に、超音波を照射することが必要である。超音波を照射することにより、研磨剤などの微粒子の除去効果を高めることができる。照射する超音波は、周波数10kHz〜3MHzであり、好ましくは、0.8MHz〜1.6MHzである。超音波の周波数が10kHz未満であると、キャビテーション効果により、極めて微細な加工が施された電子材料に損傷を与えるおそれがある。超音波の周波数が3MHzを超えると、キャビテーションが起きず、洗浄効果が認められない。
本発明の電子材料の洗浄方法によれば、CMPを行った後の電子材料の表面に付着しているカリウムなどの金属不純物と残留研磨剤などの微粒子を、1工程の洗浄により同時に短時間で除去することができる。
【0008】
【実施例】
以下に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。
なお、実施例及び比較例においては、CVD酸化膜付きウェハとして、P−TEOS膜付き6インチウェハを用いた。CMP工程後及び洗浄後のウェハ上のカリウム濃度は、全反射蛍光X線分析装置[(株)リガク、TXRF3750]を用いて測定した。微粒子数は、レーザー散乱異物検査装置[トプコン(株)、WM−1500]を用い、粒径0.20μm以上の微粒子を計数した。ウェハの洗浄には、スピン洗浄機[(株)カナメックス、WSC−200MS]を用い、超音波付与ノズル[本多電子(株)、パルスジェットW−357P25−AHPF]により1.0MHzの超音波を照射した。
比較例5
温超純水供給装置[栗田工業(株)]より供給された60℃の温超純水を原水として、膜溶解方式の水素水製造装置[栗田工業(株)]で水素を溶解し、溶存水素濃度1.2mg/Lの水素水を製造し、スピン洗浄機へ送水して、超音波を照射しながらウェハに噴射洗浄した。洗浄前のウェハ上のカリウム濃度は43.2×1010原子/cm2であり、微粒子数は測定上限値の5,500個/ウェハを超えていた。洗浄液流量1L/分、洗浄時間30秒の洗浄により、ウェハ上のカリウム濃度は7.21×1010原子/cm2、微粒子数は57個/ウェハとなった。
比較例6
温度60℃、溶存水素濃度1.2mg/Lの水素水に、アンモニア1mg/Lを添加してpHを9.4に調整した洗浄液を用い、比較例5と同様にして洗浄を行った。
ウェハ上のカリウム濃度は、49.1×1010原子/cm2から9.33×1010原子/cm2に減少し、微粒子数は5,500個/ウェハ以上から36個/ウェハに減少した。
比較例7
洗浄時間を60秒とした以外は、比較例5と同様にして洗浄を行った。
ウェハ上のカリウム濃度は、40.2×1010原子/cm2から検出下限値の3.11×1010原子/cm2以下に減少し、微粒子数は5,500個/ウェハ以上から21個/ウェハに減少した。
実施例4
洗浄時間を60秒とした以外は、比較例6と同様にして洗浄を行った。
ウェハ上のカリウム濃度は、41.3×1010原子/cm2から3.11×1010原子/cm2以下に減少し、微粒子数は5,500個/ウェハ以上から17個/ウェハに減少した。
【0009】
比較例8
温超純水の温度を80℃とし、溶存水素濃度0.8mg/Lの水素水を製造した以外は、比較例5と同様にして洗浄を行った。
ウェハ上のカリウム濃度は、45.4×1010原子/cm2から検出下限値の3.11×1010原子/cm2以下に減少し、微粒子数は測定上限値の5,500個/ウェハ以上から29個/ウェハに減少した。
実施例6
水素水に、アンモニア1mg/Lを添加してpHを9.4に調整した以外は、比較例8と同様にして洗浄を行った。
ウェハ上のカリウム濃度は、42.2×1010原子/cm2から3.11×1010原子/cm2以下に減少し、微粒子数は5,500個/ウェハ以上から9個/ウェハに減少した。
比較例9
洗浄時間を60秒とした以外は、比較例8と同様にして洗浄を行った。
ウェハ上のカリウム濃度は、43.8×1010原子/cm2から3.11×1010原子/cm2以下に減少し、微粒子数は5,500個/ウェハ以上から16個/ウェハに減少した。
実施例8
洗浄時間を60秒とした以外は、実施例6と同様にして洗浄を行った。
ウェハ上のカリウム濃度は、46.5×1010原子/cm2から3.11×1010原子/cm2以下に減少し、微粒子数は5,500個/ウェハ以上から5個/ウェハに減少した。
【0010】
比較例1
超純水製造装置[栗田工業(株)]より供給された25℃の超純水を原水として、膜溶解方式の水素水製造装置[栗田工業(株)]で水素を溶解し、溶存水素濃度1.2mg/Lの水素水を製造し、スピン洗浄機へ送水して、超音波を照射しながらウェハに流量1L/分で噴射し、60秒間洗浄した。ウェハ上のカリウム濃度は46.7×1010原子/cm2から38.1×1010原子/cm2に減少し、微粒子数は測定上限値の5,500個/ウェハ以上から77個/ウェハに減少した。
比較例2
温度25℃、溶存水素濃度1.2mg/Lの水素水に、アンモニア1mg/Lを添加してpHを9.4に調整した洗浄液を用い、比較例1と同様にして洗浄を行った。
ウェハ上のカリウム濃度は、44.1×1010原子/cm2から37.5×1010原子/cm2に減少し、微粒子数は5,500個/ウェハ以上から45個/ウェハに減少した。
比較例3
温超純水供給装置[栗田工業(株)]より供給された80℃の温超純水をスピン洗浄機へ送水し、超音波を照射しながらウェハに流量1L/分で噴射し、60秒間洗浄した。ウェハ上のカリウム濃度は41.2×1010原子/cm2から検出下限値の3.11×1010原子/cm2以下に減少したが、微粒子数は洗浄前後ともに測定上限値の5,500個/ウェハ以上であった。
比較例4
80℃の温超純水にアンモニア1mg/Lを添加してpHを9.4に調整した以外は、比較例3と同様にして洗浄を行った。ウェハ上のカリウム濃度は45.7×1010原子/cm2から3.11×1010原子/cm2以下に減少したが、微粒子数は洗浄前後ともに測定上限値の5,500個/ウェハ以上であった。
実施例4、6、8、比較例5〜9、及び比較例1〜4の結果を、第1表に示す。
【0011】
【表1】

Figure 0004482844
【0012】
第1表に見られるように、水素を溶解した60℃又は80℃の温超純水を洗浄液として洗浄した実施例4、6、8、比較例5〜9においては、ウェハ上のカリウムと微粒子がともに除去されているのに対して、水素を溶解した25℃の超純水を洗浄液とした比較例1〜2では、微粒子は除去されているがカリウムの除去率が極めて低く、水素を溶解していない80℃の温超純水を洗浄液とした比較例3〜4では、カリウムは除去されているが、微粒子が除去されていない。
また、実施例4、6、8、比較例5〜9の結果から、洗浄時に超音波を照射することにより、微粒子の除去率が向上すること、アンモニアを添加してpHを9.4に調整することによっても、微粒子の除去率が向上すること、洗浄時間を30秒から60秒に延長することによっても、微粒子の除去率が向上すること、水温を高めることにより、カリウムの除去率と微粒子の除去率がともに向上することが分かる。
比較例1〜4の結果から、温超純水を洗浄液として洗浄したのち水素水を洗浄液として洗浄する、あるいは、水素水を洗浄液として洗浄したのち温超純水を洗浄液として洗浄することにより、ウェハ上のカリウムと微粒子の両方を除去し得ることが推定されるが、このような洗浄方法によれば、本発明方法の2倍の水量と2倍の洗浄時間を必要とするので得策ではない。
【0013】
【発明の効果】
本発明の電子材料の洗浄方法によれば、CMPを行った後の電子材料の表面に付着しているカリウムなどの金属不純物と残留する研磨剤などの微粒子を、1工程の洗浄により同時に短時間で除去することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for cleaning an electronic material. More specifically, the present invention effectively and simultaneously removes metallic impurities adhering to the surface of an electronic material after CMP (Chemical Mechanical Polishing) and fine particles such as remaining abrasives by wet cleaning. The present invention relates to a method for cleaning an electronic material.
[0002]
[Prior art]
Conventionally, wet cleaning called RCA cleaning has been the mainstream in the cleaning process of the semiconductor industry. For RCA cleaning, a mixed solution of sulfuric acid and hydrogen peroxide solution (SPM) is heated to 120 to 150 ° C, or a mixed solution of ammonia and hydrogen peroxide solution (APM) is heated to 60 to 80 ° C. This is a cleaning method in which a mixed liquid (HPM) of hydrochloric acid and hydrogen peroxide water is heated to 60 to 80 ° C. and used. When this cleaning method is adopted, the cost of chemicals, the cost of rinsing ultrapure water, the cost of waste liquid treatment, the cost of air conditioning to exhaust chemical vapor and create new clean air, etc. are further reduced. In recent years, the wet cleaning process has been reviewed in order to reduce the burden on the environment such as mass disposal of chemicals and emission of exhaust gas.
In the recent semiconductor industry, wiring is integrated on a wafer in order to improve the degree of integration. In order to perform multilayer wiring, it is necessary to planarize an oxide film (insulating film), and CMP has been adopted in a semiconductor device manufacturing process as a technique for that purpose. In this CMP step, polishing is performed using a polishing liquid in which polishing particles such as silica (SiO 2 ) are dispersed in a solution containing potassium such as a potassium hydroxide (KOH) aqueous solution. However, when an oxide film deposited by chemical vapor deposition (CVD) or the like is polished using the above-described polishing liquid, the problem that potassium (K) tends to remain on the wafer has become apparent. It was. If potassium remains on the wafer, it must be removed by cleaning to affect device characteristics. Further, since the fine particles of the abrasive also remain on the wafer, it is necessary to remove them by cleaning.
Conventional cleaning after CMP generally involves a plurality of cleaning steps to remove metals such as potassium and fine particles. For example,
(1) Ultrapure water rinse → Brush scrub cleaning → APM + Ultrasonic → Ultrapure water rinse → HF → Ultrapure water rinse → Drying
(2) Warm ultrapure water → APM + Ultrasonic wave → First ultrapure water rinse → Second ultrapure water rinse → Drying,
(3) Cleaning process such as brush scrub cleaning → HF → ultrapure water rinse → drying.
In the methods (1) and (2), a large amount of chemical solution is used, chemical vapor is emitted, a large amount of ultrapure water is used for rinsing, productivity is low, and there are many cleaning processes. There's a problem. Further, the methods (1) and (3) have a problem that a waste liquid treatment is enormous cost because a waste liquid of hydrofluoric acid regulated by the Poison Control Law is generated.
[0003]
[Problems to be solved by the invention]
The present invention can effectively remove metals and fine particles from an object to be cleaned in a short time, in a short time, without using a concentrated chemical solution or a chemical designated as a poison in the cleaning process after CMP. The purpose of the present invention is to provide a highly versatile cleaning method for electronic materials.
[0004]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors can easily remove potassium adhering to the CVD oxide film by washing with warm ultrapure water heated to 45 ° C. or higher. In addition, it has been found that metal impurities such as potassium and fine particles can be simultaneously removed by dissolving a gas such as hydrogen in ultrapure water, and the present invention has been completed based on this finding.
That is, the present invention
(1) A method for cleaning a wafer after performing CMP, wherein ultrapure water at 60 ° C. or higher in which hydrogen having a saturation solubility of 50% or more is dissolved is used as a cleaning liquid, and ammonia is added to the cleaning liquid to adjust the pH to 7 It was adjusted to above, by washing with ultrasonic irradiation of 10KHz~3MHz, removing the number of particles on the wafer was measured microparticles on the wafer by a laser scattering foreign matter inspection device up to 17 or less per 6-inch wafer as well as, of the wafer, and removing until the potassium on the wafer, the potassium concentration on the wafer after cleaning was measured 3.11 × 10 10 atoms / cm 2 or less in total reflection X-ray fluorescence spectrometer Cleaning method,
Is to provide.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
The electronic material cleaning method of the present invention is a cleaning method of an electronic material after performing CMP, in which ultrapure water at 45 ° C. or higher in which hydrogen, oxygen, or a rare gas is dissolved is used as a cleaning liquid. If this temperature is less than 45 ° C., a sufficient cleaning effect cannot be obtained. In view of the cleaning effect, the temperature is preferably 60 ° C. or higher, and more preferably 80 ° C. or higher. The method of the present invention can be particularly suitably applied to the cleaning of a semiconductor substrate subjected to CMP after the CVD oxide film process. As the CVD oxide film, for example, P-TEOS (Plasma enhanced tetrathyrosilicate) oxide film, BPSG (Boron-doped phospho-silicate glass) oxide film, NSG (Non-doped silicon glass thick oxide film, TM c) A film etc. can be mentioned. Since CMP of an electronic material uses a polishing liquid containing alkali such as potassium hydroxide and fine particles such as silica, ceria, alumina, etc., the surface of the electronic material after CMP has potassium derived from the polishing liquid. Metal impurities and fine particles such as silica are attached. When the temperature of ultrapure water in which hydrogen, oxygen, or a rare gas is dissolved is 45 ° C. or higher, metal impurities attached to the surface of the electronic material can be effectively removed.
[0006]
In the method of the present invention, there is no particular limitation on the method for producing ultrapure water at 45 ° C. or higher in which hydrogen, oxygen or a rare gas is dissolved. For example, hydrogen, oxygen or a rare gas is added to warm ultrapure water heated to 45 ° C. or higher. It can be dissolved, or ultrapure water in which hydrogen, oxygen, or a rare gas is dissolved can be heated to 45 ° C. or higher. In the method of the present invention, the concentration of hydrogen, oxygen or a rare gas in the cleaning liquid is not particularly limited, but the dissolved gas concentration is preferably 50% or more of the saturation solubility at the temperature of the cleaning liquid, and is 75% or more. Is more preferable. By the way, the saturated solubility in water at 60 ° C. is as follows: hydrogen 1.43 mg / L, oxygen 27.9 mg / L, helium 1.59 mg / L, neon 8.51 mg / L, argon 37.0 mg / L, krypton 123 mg / L L, xenon 293 mg / L. One kind of hydrogen, oxygen, or a rare gas can be dissolved in ultrapure water alone, or a combination of two or more kinds can be dissolved in ultrapure water.
Although there is no particular limitation on the method for producing ultrapure water in which hydrogen, oxygen or a rare gas is used in the method of the present invention, the purity of dissolved gas is lowered by degassing ultrapure water in advance, and the gas dissolution capacity in water. It is preferable to dissolve hydrogen, oxygen, or a rare gas after creating a space. When dissolving hydrogen, oxygen, or a rare gas, the gas permeable membrane module can be used in multiple stages to remove the dissolved gas and dissolve the hydrogen, oxygen, or the rare gas. For example, gas permeable membrane modules are provided in two stages, decompression membrane deaeration for all dissolved gas is performed using the former gas permeable membrane module, and hydrogen, oxygen or rare gas is used using the latter gas permeable membrane module. Can be dissolved. Gas permeable membrane modules are provided in two stages, and decompression membrane degassing for all dissolved gases and dissolution of hydrogen, oxygen, or rare gas are performed in two stages, thereby releasing hydrogen, oxygen, or rare gas in vain. And can be dissolved in ultrapure water almost quantitatively.
[0007]
In the method of the present invention, the pH can be adjusted to 7 or more by adding alkali to ultrapure water in which hydrogen, oxygen or a rare gas is dissolved. By adding alkali, the effect of removing fine particles such as abrasives adhering to the wafer surface and the effect of preventing re-adhesion can be enhanced. There is no restriction | limiting in particular in the alkali used for pH adjustment, For example, ammonia, sodium hydroxide, potassium hydroxide, tetramethylammonium hydroxide (TMAH) etc. can be mentioned. Among these, high-purity ammonia water and tetramethylammonium hydroxide can be preferably used.
In the method of the present invention, there is no particular limitation on the method of cleaning the electronic material after performing CMP using ultrapure water in which hydrogen, oxygen, or a rare gas is dissolved. For example, the electronic material is placed in a water tank filled with the cleaning solution. The batch type treatment can be performed by dipping, or the single wafer cleaning can be performed in which the electronic material is placed on a spinner or a loader and the cleaning liquid is poured from the center of the electronic material in the radial direction.
In the method of the present invention, it is necessary to irradiate ultrasonic waves when cleaning an electronic material using ultrapure water at 45 ° C. or higher in which hydrogen, oxygen or a rare gas is dissolved as a cleaning liquid. Irradiation with ultrasonic waves can enhance the effect of removing fine particles such as abrasives. The ultrasonic wave to be irradiated has a frequency of 10 kHz to 3 MHz, preferably 0.8 MHz to 1.6 MHz. If the frequency of the ultrasonic wave is less than 10 kHz, there is a risk of damaging an electronic material that has been subjected to extremely fine processing due to the cavitation effect. When the ultrasonic frequency exceeds 3 MHz, cavitation does not occur and the cleaning effect is not recognized.
According to the electronic material cleaning method of the present invention, metal impurities such as potassium and fine particles such as residual abrasives adhering to the surface of the electronic material after CMP are simultaneously removed in a short time by one-step cleaning. Can be removed.
[0008]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
In the examples and comparative examples, a 6-inch wafer with a P-TEOS film was used as a wafer with a CVD oxide film. The potassium concentration on the wafer after the CMP process and after the cleaning was measured using a total reflection X-ray fluorescence analyzer [Rigaku Corporation, TXRF3750]. The number of fine particles was counted using a laser scattering particle inspection apparatus [Topcon Co., Ltd., WM-1500] with a particle diameter of 0.20 μm or more. For cleaning the wafer, a spin cleaning machine [Kanamex Corp., WSC-200MS] was used, and an ultrasonic application nozzle [Honda Electronics Co., Ltd., pulse jet W-357P25-AHPF] was used for 1.0 MHz ultrasonic waves. Was irradiated.
Comparative Example 5
Using ultra-pure water at 60 ° C. supplied from a warm ultrapure water supply device [Kurita Kogyo Co., Ltd.] as raw water, hydrogen is dissolved in a membrane-dissolved hydrogen water production device [Kurita Kogyo Co., Ltd.], and the dissolved hydrogen concentration is 1. 2 mg / L of hydrogen water was produced, sent to a spin cleaning machine, and spray-cleaned on the wafer while irradiating ultrasonic waves. The potassium concentration on the wafer before cleaning was 43.2 × 10 10 atoms / cm 2 , and the number of fine particles exceeded the upper limit of 5,500 particles / wafer. By cleaning with a cleaning liquid flow rate of 1 L / min and a cleaning time of 30 seconds, the potassium concentration on the wafer was 7.21 × 10 10 atoms / cm 2 and the number of fine particles was 57 / wafer.
Comparative Example 6
Washing was carried out in the same manner as in Comparative Example 5 using a washing solution prepared by adding 1 mg / L of ammonia to hydrogen water having a temperature of 60 ° C. and a dissolved hydrogen concentration of 1.2 mg / L to adjust the pH to 9.4.
The potassium concentration on the wafer decreased from 49.1 × 10 10 atoms / cm 2 to 9.33 × 10 10 atoms / cm 2 , and the number of particles decreased from over 5,500 / wafer to 36 / wafer. .
Comparative Example 7
Cleaning was performed in the same manner as in Comparative Example 5 except that the cleaning time was 60 seconds.
The potassium concentration on the wafer decreases from 40.2 × 10 10 atoms / cm 2 to the lower limit of detection of 3.11 × 10 10 atoms / cm 2 , and the number of particles is from 5,500 / wafer to 21 / Reduced to wafer.
Example 4
Cleaning was performed in the same manner as in Comparative Example 6 except that the cleaning time was 60 seconds.
The potassium concentration on the wafer decreased from 41.3 × 10 10 atoms / cm 2 to 3.11 × 10 10 atoms / cm 2 and the number of particles decreased from 5,500 to more than 17 / wafer. did.
[0009]
Comparative Example 8
Washing was performed in the same manner as in Comparative Example 5 except that the temperature of the warm ultrapure water was 80 ° C. and hydrogen water having a dissolved hydrogen concentration of 0.8 mg / L was produced.
The potassium concentration on the wafer decreases from 45.4 × 10 10 atoms / cm 2 to the lower detection limit of 3.11 × 10 10 atoms / cm 2 , and the number of fine particles is 5,500 / wafer, the upper limit of measurement. From the above, it decreased to 29 / wafer.
Example 6
Washing was performed in the same manner as in Comparative Example 8 except that 1 mg / L of ammonia was added to hydrogen water to adjust the pH to 9.4.
The potassium concentration on the wafer decreases from 42.2 × 10 10 atoms / cm 2 to 3.11 × 10 10 atoms / cm 2 and the number of particles decreases from 5,500 to more than 9 / wafer. did.
Comparative Example 9
Cleaning was performed in the same manner as in Comparative Example 8 except that the cleaning time was 60 seconds.
The potassium concentration on the wafer decreased from 43.8 × 10 10 atoms / cm 2 to 3.11 × 10 10 atoms / cm 2 and the number of particles decreased from 5,500 to 16 / wafer. did.
Example 8
Cleaning was performed in the same manner as in Example 6 except that the cleaning time was 60 seconds.
The potassium concentration on the wafer is reduced from 46.5 × 10 10 atoms / cm 2 to 3.11 × 10 10 atoms / cm 2 and the number of particles is reduced from 5,500 wafers to 5 wafers / wafer. did.
[0010]
Comparative Example 1
Using ultrapure water at 25 ° C supplied from ultrapure water production equipment [Kurita Kogyo Co., Ltd.] as raw water, hydrogen is dissolved in a membrane dissolution type hydrogen water production equipment [Kurita Kogyo Co., Ltd.] and dissolved hydrogen concentration 1.2 mg / L of hydrogen water was produced, supplied to a spin cleaning machine, sprayed onto the wafer at a flow rate of 1 L / min while being irradiated with ultrasonic waves, and cleaned for 60 seconds. The potassium concentration on the wafer decreases from 46.7 × 10 10 atoms / cm 2 to 38.1 × 10 10 atoms / cm 2 , and the number of particles is from the upper limit of 5,500 particles / wafer to 77 / wafer. Decreased.
Comparative Example 2
Washing was carried out in the same manner as in Comparative Example 1 using a washing liquid prepared by adding 1 mg / L of ammonia to hydrogen water having a temperature of 25 ° C. and a dissolved hydrogen concentration of 1.2 mg / L to adjust the pH to 9.4.
The potassium concentration on the wafer decreased from 44.1 × 10 10 atoms / cm 2 to 37.5 × 10 10 atoms / cm 2 , and the number of particles decreased from over 5,500 / wafer to 45 / wafer. .
Comparative Example 3
Warm ultrapure water supplied from a warm ultrapure water supply apparatus [Kurita Kogyo Co., Ltd.] was supplied to a spin cleaning machine, sprayed onto the wafer at a flow rate of 1 L / min while being irradiated with ultrasonic waves, and cleaned for 60 seconds. The potassium concentration on the wafer decreased from 41.2 × 10 10 atoms / cm 2 to below the lower limit of detection of 3.11 × 10 10 atoms / cm 2 , but the number of fine particles was measured at an upper limit of 5,500 before and after cleaning. More than pieces / wafer.
Comparative Example 4
Washing was performed in the same manner as in Comparative Example 3 except that ammonia was added to 1 mg / L of warm ultrapure water at 80 ° C. to adjust the pH to 9.4. Although the potassium concentration on the wafer decreased from 45.7 × 10 10 atoms / cm 2 to 3.11 × 10 10 atoms / cm 2 or less, the number of fine particles before and after cleaning was over 5,500 / wafer above the upper limit of measurement. Met.
The results of Examples 4, 6, and 8, Comparative Examples 5 to 9, and Comparative Examples 1 to 4 are shown in Table 1.
[0011]
[Table 1]
Figure 0004482844
[0012]
As can be seen from Table 1, in Examples 4, 6, 8 and Comparative Examples 5 to 9 where hot ultrapure water at 60 ° C. or 80 ° C. in which hydrogen was dissolved was used as a cleaning liquid, both potassium and fine particles on the wafer were In Comparative Examples 1 and 2 in which ultrapure water at 25 ° C. in which hydrogen was dissolved was used as a cleaning liquid, fine particles were removed, but the potassium removal rate was extremely low, and hydrogen was dissolved. In Comparative Examples 3 to 4 where 80 ° C. warm ultrapure water was used as the cleaning liquid, potassium was removed, but fine particles were not removed.
Further, from the results of Examples 4, 6, 8 and Comparative Examples 5 to 9 , the removal rate of fine particles is improved by irradiating ultrasonic waves at the time of washing, and the pH is adjusted to 9.4 by adding ammonia. By improving the removal rate of fine particles, extending the washing time from 30 seconds to 60 seconds, improving the removal rate of fine particles, increasing the water temperature, the removal rate of potassium and the fine particles It can be seen that the removal rate of both improves.
From the results of Comparative Examples 1 to 4, by washing warm ultrapure water as a cleaning solution and then washing hydrogen water as a washing solution, or washing hydrogen water as a washing solution and then washing warm ultrapure water as a washing solution, It is estimated that both fine particles can be removed, but such a cleaning method is not a good idea because it requires twice as much water and twice as much cleaning time as the method of the present invention.
[0013]
【The invention's effect】
According to the electronic material cleaning method of the present invention, metal impurities such as potassium adhering to the surface of the electronic material after CMP and the remaining fine particles such as abrasives are simultaneously removed in a short time by one-step cleaning. Can be removed.

Claims (1)

CMPを行った後のウェハの洗浄方法であって、飽和溶解度の50%以上の水素を溶解した60℃以上の超純水を洗浄液とし、この洗浄液にアンモニアを添加し、pHを7以上に調整して、10kHz〜3MHzの超音波を照射しながら洗浄することによって、ウェハ上の微粒子をレーザー散乱異物検査装置で測定したウェハ上の微粒子数を6インチウェハ当たり17個以下にまで除去するとともに、ウェハ上のカリウムを、全反射蛍光X線分析装置で測定した洗浄後のウェハ上のカリウム濃度が3.11×10 10 原子/cm 2 以下にまで除去することを特徴とするウェハの洗浄方法。A method for cleaning a wafer after performing CMP, using ultrapure water at 60 ° C. or higher in which hydrogen having a saturation solubility of 50% or more is dissolved as a cleaning liquid, adding ammonia to the cleaning liquid, and adjusting the pH to 7 or higher. to, by washing with ultrasonic irradiation of 10KHz~3MHz, to remove the number of fine particles on the wafer was measured microparticles on the wafer by a laser scattering foreign matter inspection device up to 17 or less per 6-inch wafer, A method for cleaning a wafer , comprising removing potassium on the wafer to a potassium concentration of 3.11 × 10 10 atoms / cm 2 or less after cleaning as measured by a total reflection X-ray fluorescence spectrometer .
JP2000162206A 2000-05-31 2000-05-31 Wafer cleaning method Expired - Lifetime JP4482844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000162206A JP4482844B2 (en) 2000-05-31 2000-05-31 Wafer cleaning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000162206A JP4482844B2 (en) 2000-05-31 2000-05-31 Wafer cleaning method

Publications (2)

Publication Number Publication Date
JP2001345301A JP2001345301A (en) 2001-12-14
JP4482844B2 true JP4482844B2 (en) 2010-06-16

Family

ID=18666134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000162206A Expired - Lifetime JP4482844B2 (en) 2000-05-31 2000-05-31 Wafer cleaning method

Country Status (1)

Country Link
JP (1) JP4482844B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9561982B2 (en) 2013-04-30 2017-02-07 Corning Incorporated Method of cleaning glass substrates

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005051101A (en) * 2003-07-30 2005-02-24 Ses Co Ltd Method of cleaning substrate
JP2005051099A (en) * 2003-07-30 2005-02-24 Ses Co Ltd Method of cleaning substrate
JP2007180420A (en) * 2005-12-28 2007-07-12 Fujitsu Ltd Method of manufacturing semiconductor device and magnetic head
JP5130740B2 (en) * 2007-02-23 2013-01-30 富士通株式会社 Manufacturing method of semiconductor device and apparatus used for the method
JP2009260020A (en) 2008-04-16 2009-11-05 Kurita Water Ind Ltd Cleaning water for electronic material, method of cleaning electronic material, and system for supplying water containing dissolved gas
JP5585076B2 (en) * 2009-12-24 2014-09-10 栗田工業株式会社 Cleaning method
JP2014022599A (en) * 2012-07-19 2014-02-03 Kurita Water Ind Ltd Cleaning method of electronic material
CN105449036B (en) * 2015-12-03 2017-10-03 通威太阳能(合肥)有限公司 Reworking treatment method for poor screen printing sheet
US20220089981A1 (en) * 2019-03-26 2022-03-24 Fujimi Incorporated Composition for surface treatment, method for producing the same, surface treatment method, and method for producing semiconductor substrate
JP7233998B2 (en) * 2019-03-26 2023-03-07 株式会社フジミインコーポレーテッド Surface treatment composition, method for producing same, method for surface treatment, and method for producing semiconductor substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9561982B2 (en) 2013-04-30 2017-02-07 Corning Incorporated Method of cleaning glass substrates

Also Published As

Publication number Publication date
JP2001345301A (en) 2001-12-14

Similar Documents

Publication Publication Date Title
JP3409849B2 (en) Manufacturing equipment for cleaning liquid for cleaning electronic components
TWI447799B (en) Method of cleaning substrates and substrate cleaner
TWI405621B (en) Cleaning liquid and cleaning method for electronic material
JP3185753B2 (en) Method for manufacturing semiconductor device
JP2001015474A (en) Method and device for degassing demineralized water for ultrasonically cleaning semiconductor wafer
JPH10112454A (en) Method of cleaning semiconductor board
JP4482844B2 (en) Wafer cleaning method
JP3296405B2 (en) Cleaning method and cleaning device for electronic component members
US5964953A (en) Post-etching alkaline treatment process
JP2005093869A (en) Method of regenerating silicon wafer, and regenerated wafer
JP3940967B2 (en) Method for producing cleaning water for electronic material and method for cleaning electronic material
JP2005150768A (en) Cleaning method and cleaning method of electronic component
WO2011086876A1 (en) Surface cleaning method for silicon wafer
US20040266191A1 (en) Process for the wet-chemical surface treatment of a semiconductor wafer
JP2001185529A (en) Method of wet chemical surface treatment for semiconductor wafer
KR20090030204A (en) Process for cleaning a semiconductor wafer
JP4752117B2 (en) Method for removing particles on a semiconductor wafer
JPS6072233A (en) Washing device for semiconductor wafer
JP2004296463A (en) Cleaning method and cleaning device
JP4683314B2 (en) Cleaning method for silicon substrate for semiconductor
JP3595681B2 (en) Manufacturing method of epitaxial wafer
JP6020626B2 (en) Device Ge substrate cleaning method, cleaning water supply device and cleaning device
JPH1071375A (en) Washing method
JP2002001243A (en) Method for cleaning electronic material
JP3615951B2 (en) Substrate cleaning method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100226

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100311

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4