JP2001345301A - Method of cleaning electronic material - Google Patents

Method of cleaning electronic material

Info

Publication number
JP2001345301A
JP2001345301A JP2000162206A JP2000162206A JP2001345301A JP 2001345301 A JP2001345301 A JP 2001345301A JP 2000162206 A JP2000162206 A JP 2000162206A JP 2000162206 A JP2000162206 A JP 2000162206A JP 2001345301 A JP2001345301 A JP 2001345301A
Authority
JP
Japan
Prior art keywords
cleaning
wafer
hydrogen
electronic material
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000162206A
Other languages
Japanese (ja)
Other versions
JP4482844B2 (en
Inventor
Kazumi Tsukamoto
和巳 塚本
Hiroshi Morita
博志 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2000162206A priority Critical patent/JP4482844B2/en
Publication of JP2001345301A publication Critical patent/JP2001345301A/en
Application granted granted Critical
Publication of JP4482844B2 publication Critical patent/JP4482844B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Mechanical Treatment Of Semiconductor (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Cleaning By Liquid Or Steam (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of cleaning an electronic material of highly general purpose by which both metals and fine particles can be effectively removed from an object to be cleaned in a short time and at a low cost, without using a dense chemical liquid or chemicals designated as poisonous substance during a cleaning step after CMP. SOLUTION: This method is used for cleaning an electronic material to which CMP is applied in advance, and a cleaning liquid is ultrapure water of 45 deg.C or higher in which hydrogen, an oxygen or a rare gas is melted. The cleaning liquid is used to clean the electronic material while irradiating an ultrasonic wave of 10 kHz to 3 MHz to the cleaning liquid.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電子材料の洗浄方
法に関する。さらに詳しくは、本発明は、CMP(化学
機械研磨、Chemical Mechanical P
olishing)後の電子材料の表面に付着した金属
不純物及び残留した研磨剤などの微粒子を、ウェット洗
浄により同時に、かつ、効果的に除去することができる
電子材料の洗浄方法に関する。
The present invention relates to a method for cleaning electronic materials. More specifically, the present invention relates to CMP (Chemical Mechanical Polishing, Chemical Mechanical P
The present invention relates to a method for cleaning an electronic material, which can remove metal impurities and fine particles such as a residual abrasive adhered to the surface of the electronic material after the polishing simultaneously and effectively by wet cleaning.

【0002】[0002]

【従来の技術】従来は、半導体産業の洗浄工程において
は、RCA洗浄と呼ばれるウェット洗浄が主流であっ
た。RCA洗浄は、硫酸と過酸化水素水の混合液(SP
M)を120〜150℃に加熱して用いたり、アンモニ
アと過酸化水素水の混合液(APM)を60〜80℃に
加温して用いたり、あるいは、塩酸と過酸化水素水の混
合液(HPM)を60〜80℃に加温して用いたりする
洗浄方法である。この洗浄方法を採用した場合の多大な
薬液コスト、リンス用の超純水のコスト、廃液処理コス
ト、薬品蒸気を排気し新たに清浄空気を作る空調コスト
などを低減し、さらに水の大量使用、薬品の大量廃棄、
排ガスの放出などの環境への負荷を低減するために、近
年ウェット洗浄工程の見直しが進められている。また、
近年の半導体産業では、集積度の向上のためにウェハ上
に配線を集積させることが行われている。多層配線を行
うために酸化膜(絶縁膜)を平坦化する必要があり、そ
のための手法としてCMPが半導体デバイス製造工程に
採用されてきている。このCMP工程では、水酸化カリ
ウム(KOH)水溶液などのカリウムを含む溶液に、シ
リカ(SiO2)などの研磨粒子を分散させた研磨液を
用いて研磨する。ところが、化学気相堆積法(CVD、
Chemical Vapor Deposition)
などで堆積した酸化膜を、前述の研磨液を用いて研磨す
ると、カリウム(K)がウェハ上に残留しやすいという
問題が明らかになってきた。カリウムがウェハ上に残留
すると、デバイス特性に影響を与えるために、洗浄で取
り除く必要がある。また、研磨剤の微粒子もウェハ上に
残留するために、洗浄により除去する必要がある。これ
までのCMP後の洗浄では、カリウムなどの金属除去と
微粒子除去を行うために、複数の洗浄工程を経るのが一
般的であった。例を挙げると、(1)超純水リンス → ブ
ラシスクラブ洗浄 → APM+超音波 → 超純水リンス
→ HF → 超純水リンス → 乾燥、(2)温超純水 →
APM+超音波 → 第一超純水リンス → 第二超純水リ
ンス→ 乾燥、(3)ブラシスクラブ洗浄 → HF → 超
純水リンス → 乾燥などの洗浄工程である。(1)、(2)
の方法では、大量の薬液を使用すること、薬品蒸気が出
ること、すすぐために大量の超純水を使用すること、生
産性が低いこと、洗浄工程が多いことなどの問題があ
る。また、(1)、(3)の方法では、毒物取締法で規制さ
れているフッ酸廃液が発生するために、廃液処理に莫大
なコストがかかるなどの問題がある。
2. Description of the Related Art Conventionally, in the cleaning process of the semiconductor industry, wet cleaning called RCA cleaning has been mainly used. RCA cleaning is performed using a mixture of sulfuric acid and hydrogen peroxide (SP
M) is heated to 120 to 150 ° C., a mixture of ammonia and hydrogen peroxide (APM) is heated to 60 to 80 ° C., or a mixture of hydrochloric acid and hydrogen peroxide is used. This is a cleaning method in which (HPM) is heated to 60 to 80 ° C. and used. If this cleaning method is adopted, the cost of chemicals, the cost of ultrapure water for rinsing, the cost of waste liquid treatment, the cost of air conditioning that exhausts chemical vapors and creates clean air, etc. are reduced, and the use of large amounts of water is reduced. Mass disposal of chemicals,
In order to reduce the load on the environment such as emission of exhaust gas, the wet cleaning process has recently been reviewed. Also,
In recent years, in the semiconductor industry, wiring is integrated on a wafer in order to improve the degree of integration. It is necessary to planarize an oxide film (insulating film) in order to perform multilayer wiring, and CMP has been adopted in a semiconductor device manufacturing process as a technique for that. In this CMP step, polishing is performed using a polishing liquid in which polishing particles such as silica (SiO 2 ) are dispersed in a solution containing potassium such as an aqueous potassium hydroxide (KOH) solution. However, chemical vapor deposition (CVD,
Chemical Vapor Deposition
When the oxide film deposited by the above method is polished using the above-mentioned polishing liquid, the problem that potassium (K) tends to remain on the wafer has become apparent. If potassium remains on the wafer, it must be removed by cleaning because it affects device characteristics. Further, since fine particles of the abrasive remain on the wafer, they need to be removed by cleaning. Conventional cleaning after CMP generally involves a plurality of cleaning steps in order to remove metals such as potassium and fine particles. For example, (1) ultrapure water rinse → brush scrub cleaning → APM + ultrasonic → ultrapure water rinse → HF → ultrapure water rinse → drying, (2) warm ultrapure water →
APM + ultrasonic wave → first ultrapure water rinse → second ultrapure water rinse → drying, (3) brush scrub cleaning → HF → ultrapure water rinse → drying etc. (1), (2)
The method of (1) has a problem that a large amount of a chemical solution is used, a large amount of chemical vapor is generated, a large amount of ultrapure water is used for rinsing, productivity is low, and a number of cleaning steps are required. Further, the methods (1) and (3) have a problem that a huge cost is required for waste liquid treatment because a hydrofluoric acid waste liquid regulated by the Poison Control Law is generated.

【0003】[0003]

【発明が解決しようとする課題】本発明は、CMP後の
洗浄工程において、濃厚な薬液や毒物指定を受けている
薬品を使うことなく、金属及び微粒子を同時に、短時間
で、安価に、効果的に被洗浄物から除去することができ
る汎用性の高い電子材料の洗浄方法を提供することを目
的としてなされたものである。
DISCLOSURE OF THE INVENTION The present invention is an object of the present invention is to provide a method for cleaning metal and fine particles simultaneously, in a short time, at low cost, without using a concentrated chemical solution or a chemical which has been designated as a toxicant in a cleaning step after CMP. An object of the present invention is to provide a highly versatile method for cleaning electronic materials that can be removed from an object to be cleaned.

【0004】[0004]

【課題を解決するための手段】本発明者らは、上記の課
題を解決すべく鋭意研究を重ねた結果、45℃以上に加
温した温超純水で洗浄することにより、CVD酸化膜上
に付着したカリウムを容易に除去することができ、さら
に、超純水に水素などのガスを溶解することにより、カ
リウムなどの金属不純物と微粒子を同時に除去し得るこ
とを見いだし、この知見に基づいて本発明を完成するに
至った。すなわち、本発明は、(1)CMPを行った後
の電子材料の洗浄方法であって、水素、酸素又は希ガス
を溶解した45℃以上の超純水を洗浄液とし、この洗浄
液に10kHz〜3MHzの超音波を照射しながら洗浄するこ
とを特徴とする電子材料の洗浄方法、及び、(2)洗浄
液にアルカリが添加されている第1項記載の電子材料の
洗浄方法、を提供するものである。さらに、本発明の好
ましい態様として、(3)水素、酸素又は希ガスの溶存
ガス濃度が、飽和溶解度の50%以上である第1項記載
の電子材料の洗浄方法、及び、(4)アルカリが、アン
モニア又は水酸化テトラメチルアンモニウムである第2
項記載の電子材料の洗浄方法、を挙げることができる。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, they have been found to adhere to the CVD oxide film by cleaning with warm ultrapure water heated to 45 ° C. or more. It has been found that potassium can be easily removed, and furthermore, by dissolving a gas such as hydrogen in ultrapure water, metal impurities such as potassium and fine particles can be removed at the same time. Was completed. That is, the present invention relates to (1) a method for cleaning an electronic material after performing CMP, wherein ultrapure water at 45 ° C. or higher in which hydrogen, oxygen, or a rare gas is dissolved is used as a cleaning liquid, and the cleaning liquid has a frequency of 10 kHz to 3 MHz. And (2) the method for cleaning an electronic material according to claim 1, wherein an alkali is added to the cleaning solution. . Further, as preferred embodiments of the present invention, (3) the method for cleaning an electronic material according to (1), wherein the dissolved gas concentration of hydrogen, oxygen, or a rare gas is 50% or more of the saturation solubility; , Ammonia or tetramethylammonium hydroxide
And a method for cleaning an electronic material described in the section.

【0005】[0005]

【発明の実施の形態】本発明の電子材料の洗浄方法は、
CMPを行った後の電子材料の洗浄方法であって、水
素、酸素又は希ガスを溶解した45℃以上の超純水を洗
浄液として洗浄する。この温度が45℃未満では十分な
洗浄効果が得られない。洗浄効果の点から、60℃以上
であることが好ましく、80℃以上であることがより好
ましい。本発明方法は、CVD酸化膜工程を経た後にC
MPを行った半導体基板の洗浄に特に好適に適用するこ
とができる。CVD酸化膜としては、例えば、P−TE
OS(Plasma enhanced tetraet
hylorthoslicate)酸化膜、BPSG
(Boron−doped phospho−sili
cate Glass)酸化膜、NSG(Non−do
ped silicate Glass)酸化膜、TMS
(Plasma enhanced tetrameth
oxysilane)酸化膜などを挙げることができ
る。電子材料のCMPには、水酸化カリウムなどのアル
カリと、シリカ、セリア、アルミナなどの微粒子を含有
する研磨液が用いられるので、CMP後の電子材料の表
面には、研磨液に由来するカリウムなどの金属不純物
と、シリカなどの微粒子が付着している。水素、酸素又
は希ガスを溶解した超純水の温度が45℃以上である
と、電子材料の表面に付着した金属不純物を効果的に除
去することができる。
BEST MODE FOR CARRYING OUT THE INVENTION A method for cleaning an electronic material according to the present invention comprises:
This is a method of cleaning an electronic material after performing CMP, in which ultrapure water at 45 ° C. or higher in which hydrogen, oxygen, or a rare gas is dissolved is used as a cleaning liquid. If the temperature is lower than 45 ° C., a sufficient cleaning effect cannot be obtained. From the viewpoint of the cleaning effect, the temperature is preferably 60 ° C. or higher, more preferably 80 ° C. or higher. According to the method of the present invention, the C
It can be particularly suitably applied to cleaning of a semiconductor substrate on which MP has been performed. As the CVD oxide film, for example, P-TE
OS (Plasma enhanced tetraet)
hyorthoslicate) oxide film, BPSG
(Boron-doped phospho-sili
Cat Glass (Oxide), NSG (Non-do)
ped silica glass) Oxide film, TMS
(Plasma enhanced tetrametry
oxysilane) oxide film and the like. Since a polishing liquid containing an alkali such as potassium hydroxide and fine particles such as silica, ceria, and alumina is used for the CMP of the electronic material, the surface of the electronic material after the CMP contains potassium derived from the polishing liquid. Metal impurities and fine particles such as silica. When the temperature of ultrapure water in which hydrogen, oxygen, or a rare gas is dissolved is 45 ° C. or higher, metal impurities attached to the surface of the electronic material can be effectively removed.

【0006】本発明方法において、水素、酸素又は希ガ
スを溶解した45℃以上の超純水の製造方法に特に制限
はなく、例えば、45℃以上に加温された温超純水に水
素、酸素又は希ガスを溶解することができ、あるいは、
水素、酸素又は希ガスを溶解した超純水を45℃以上に
加温することもできる。本発明方法において、洗浄液中
における水素、酸素又は希ガスの濃度に特に制限はない
が、溶存ガス濃度が、洗浄液の温度における飽和溶解度
の50%以上であることが好ましく、75%以上である
ことがより好ましい。ちなみに、60℃における水への
飽和溶解度は、水素1.43mg/L、酸素27.9mg/
L、ヘリウム1.59mg/L、ネオン8.51mg/L、ア
ルゴン37.0mg/L、クリプトン123mg/L、キセ
ノン293mg/Lである。水素、酸素又は希ガスは、1
種を単独で超純水に溶解することができ、あるいは、2
種以上を組み合わせて超純水に溶解することもできる。
本発明方法に用いる水素、酸素又は希ガスを溶解した超
純水の製造方法に特に制限はないが、あらかじめ超純水
を脱気して溶存気体の飽和度を下げ、水中の気体溶解キ
ャパシティーに空きを作ったのち、水素、酸素又は希ガ
スを溶解することが好ましい。水素、酸素又は希ガスの
溶解に際しては、気体透過膜モジュールを多段に用いて
溶存気体の除去及び水素、酸素又は希ガスの溶解を行う
ことができる。例えば、気体透過膜モジュールを2段に
設け、前段の気体透過膜モジュールを用いて全溶存気体
を対象とする減圧膜脱気を行い、後段の気体透過膜モジ
ュールを用いて水素、酸素又は希ガスを溶解することが
できる。気体透過膜モジュールを2段に設けて、全溶存
気体を対象とする減圧膜脱気と水素、酸素又は希ガスの
溶解を2段に行うことにより、水素、酸素又は希ガスを
無駄に放出することなく、ほぼ定量的に超純水に溶解す
ることができる。
In the method of the present invention, there is no particular limitation on the method for producing ultrapure water at 45 ° C. or higher in which hydrogen, oxygen or a rare gas is dissolved. For example, hydrogen, oxygen or Noble gas can be dissolved, or
Ultrapure water in which hydrogen, oxygen, or a rare gas is dissolved can be heated to 45 ° C. or higher. In the method of the present invention, the concentration of hydrogen, oxygen or a rare gas in the cleaning solution is not particularly limited, but the dissolved gas concentration is preferably 50% or more of the saturation solubility at the temperature of the cleaning solution, and is preferably 75% or more. Is more preferred. Incidentally, the saturated solubility in water at 60 ° C. was 1.43 mg / L for hydrogen and 27.9 mg / oxygen for oxygen.
L, helium 1.59 mg / L, neon 8.51 mg / L, argon 37.0 mg / L, krypton 123 mg / L, xenon 293 mg / L. Hydrogen, oxygen or noble gas is 1
The seed alone can be dissolved in ultrapure water, or
A combination of more than one species can be dissolved in ultrapure water.
There is no particular limitation on the method of producing ultrapure water in which hydrogen, oxygen or a rare gas is dissolved used in the method of the present invention, but the ultrapure water is degassed in advance to reduce the degree of saturation of the dissolved gas, and the gas dissolution capacity in water is reduced. It is preferable to dissolve hydrogen, oxygen or a rare gas after making an empty space. When dissolving hydrogen, oxygen, or a rare gas, gas-permeable membrane modules can be used in multiple stages to remove dissolved gas and dissolve hydrogen, oxygen, or a rare gas. For example, a gas permeable membrane module is provided in two stages, a reduced-pressure membrane degassing is performed on all dissolved gases using the gas permeable membrane module in the preceding stage, and hydrogen, oxygen or a rare gas is used in the gas permeable membrane module in the subsequent stage. Can be dissolved. A gas permeable membrane module is provided in two stages, and decompression membrane degassing for all dissolved gases and dissolution of hydrogen, oxygen, or a rare gas are performed in two stages, so that hydrogen, oxygen, or a rare gas is wastefully released. Without being dissolved, it can be almost quantitatively dissolved in ultrapure water.

【0007】本発明方法においては、水素、酸素又は希
ガスを溶解した超純水に、アルカリを添加することによ
り、pHを7以上に調整して使用することができる。アル
カリを添加することにより、ウェハ表面に付着した研磨
剤などの微粒子の除去効果と再付着防止効果を高めるこ
とができる。pH調整に使用するアルカリには特に制限は
なく、例えば、アンモニア、水酸化ナトリウム、水酸化
カリウム、水酸化テトラメチルアンモニウム(TMA
H)などを挙げることができる。これらの中で、高純度
アンモニア水及び水酸化テトラメチルアンモニウムを好
適に使用することができる。本発明方法において、CM
Pを行った後の電子材料を、水素、酸素又は希ガスを溶
解した超純水を洗浄液として洗浄する方法に特に制限は
なく、例えば、洗浄液を満たした水槽に電子材料を浸漬
してバッチ式処理を行うことができ、あるいは、電子材
料をスピンナーやローダー上に載せ、洗浄液を電子材料
の中心から半径方向に注いで処理する枚葉式洗浄を行う
こともできる。本発明方法においては、水素、酸素又は
希ガスを溶解した45℃以上の超純水を洗浄液として電
子材料を洗浄する際に、超音波を照射することが必要で
ある。超音波を照射することにより、研磨剤などの微粒
子の除去効果を高めることができる。照射する超音波
は、周波数10kHz〜3MHzであり、好ましくは、0.8M
Hz〜1.6MHzである。超音波の周波数が10kHz未満で
あると、キャビテーション効果により、極めて微細な加
工が施された電子材料に損傷を与えるおそれがある。超
音波の周波数が3MHzを超えると、キャビテーションが
起きず、洗浄効果が認められない。本発明の電子材料の
洗浄方法によれば、CMPを行った後の電子材料の表面
に付着しているカリウムなどの金属不純物と残留研磨剤
などの微粒子を、1工程の洗浄により同時に短時間で除
去することができる。
In the method of the present invention, the pH can be adjusted to 7 or more by adding an alkali to ultrapure water in which hydrogen, oxygen or a rare gas is dissolved. By adding the alkali, the effect of removing fine particles such as abrasives attached to the wafer surface and the effect of preventing re-adhesion can be enhanced. The alkali used for pH adjustment is not particularly limited. For example, ammonia, sodium hydroxide, potassium hydroxide, tetramethylammonium hydroxide (TMA
H) and the like. Among them, high-purity aqueous ammonia and tetramethylammonium hydroxide can be preferably used. In the method of the present invention, the CM
There is no particular limitation on the method of cleaning the electronic material after performing P with ultrapure water in which hydrogen, oxygen or a rare gas is dissolved as a cleaning liquid. For example, a method in which the electronic material is immersed in a water tank filled with the cleaning liquid and batch-cleaned. Processing can be performed, or single-wafer cleaning in which an electronic material is placed on a spinner or a loader and a cleaning liquid is poured in a radial direction from the center of the electronic material to perform the processing can be performed. In the method of the present invention, it is necessary to irradiate ultrasonic waves when cleaning an electronic material using ultrapure water at 45 ° C. or higher in which hydrogen, oxygen or a rare gas is dissolved as a cleaning liquid. Irradiation of ultrasonic waves can enhance the effect of removing fine particles such as abrasives. The ultrasonic wave to be irradiated has a frequency of 10 kHz to 3 MHz, preferably 0.8 M
Hz to 1.6 MHz. If the frequency of the ultrasonic wave is less than 10 kHz, there is a possibility that the cavitation effect may damage an extremely finely processed electronic material. When the frequency of the ultrasonic wave exceeds 3 MHz, cavitation does not occur and the cleaning effect is not recognized. According to the method for cleaning an electronic material of the present invention, metal impurities such as potassium and fine particles such as a residual abrasive adhered to the surface of the electronic material after the CMP are simultaneously performed in a short time by one-step cleaning. Can be removed.

【0008】[0008]

【実施例】以下に、実施例を挙げて本発明をさらに詳細
に説明するが、本発明はこれらの実施例によりなんら限
定されるものではない。なお、実施例及び比較例におい
ては、CVD酸化膜付きウェハとして、P−TEOS膜
付き6インチウェハを用いた。CMP工程後及び洗浄後
のウェハ上のカリウム濃度は、全反射蛍光X線分析装置
[(株)リガク、TXRF3750]を用いて測定した。
微粒子数は、レーザー散乱異物検査装置[トプコン
(株)、WM−1500]を用い、粒径0.20μm以上
の微粒子を計数した。ウェハの洗浄には、スピン洗浄機
[(株)カナメックス、WSC−200MS]を用い、超
音波付与ノズル[本多電子(株)、パルスジェットW−3
57P25−AHPF]により1.0MHzの超音波を照射
した。 実施例1 温超純水供給装置[栗田工業(株)]より供給された60
℃の温超純水を原水として、膜溶解方式の水素水製造装
置[栗田工業(株)]で水素を溶解し、溶存水素濃度1.
2mg/Lの水素水を製造し、スピン洗浄機へ送水して、
超音波を照射しながらウェハに噴射洗浄した。洗浄前の
ウェハ上のカリウム濃度は43.2×1010原子/cm2
あり、微粒子数は測定上限値の5,500個/ウェハを
超えていた。洗浄液流量1L/分、洗浄時間30秒の洗
浄により、ウェハ上のカリウム濃度は7.21×1010
原子/cm2、微粒子数は57個/ウェハとなった。 実施例2 温度60℃、溶存水素濃度1.2mg/Lの水素水に、ア
ンモニア1mg/Lを添加してpHを9.4に調整した洗浄
液を用い、実施例1と同様にして洗浄を行った。ウェハ
上のカリウム濃度は、49.1×1010原子/cm2から
9.33×1010原子/cm2に減少し、微粒子数は5,5
00個/ウェハ以上から36個/ウェハに減少した。 実施例3 洗浄時間を60秒とした以外は、実施例1と同様にして
洗浄を行った。ウェハ上のカリウム濃度は、40.2×
1010原子/cm2から検出下限値の3.11×1010原子
/cm2以下に減少し、微粒子数は5,500個/ウェハ以
上から21個/ウェハに減少した。 実施例4 洗浄時間を60秒とした以外は、実施例2と同様にして
洗浄を行った。ウェハ上のカリウム濃度は、41.3×1
10原子/cm2から3.11×1010原子/cm2以下に減
少し、微粒子数は5,500個/ウェハ以上から17個
/ウェハに減少した。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, which should not be construed as limiting the present invention. In Examples and Comparative Examples, a 6-inch wafer with a P-TEOS film was used as the wafer with a CVD oxide film. The potassium concentration on the wafer after the CMP step and after the cleaning was measured using a total reflection X-ray fluorescence analyzer [Rigaku Corporation, TXRF3750].
The number of fine particles can be measured using a laser scattering particle inspection device [Topcon
Using WM-1500], the fine particles having a particle size of 0.20 μm or more were counted. For cleaning the wafer, a spin cleaning machine [Kanamex Corporation, WSC-200MS] was used, and an ultrasonic wave application nozzle [Honda Electronics Co., Ltd., Pulse Jet W-3]
57P25-AHPF] to irradiate an ultrasonic wave of 1.0 MHz. Example 1 60 supplied from a hot ultrapure water supply device [Kurita Kogyo Co., Ltd.]
Using ultra-pure water at a temperature of ℃ as raw water, hydrogen is dissolved in a hydrogen water production system using a membrane dissolution method [Kurita Kogyo Co., Ltd.], and the dissolved hydrogen concentration is 1.
Produce 2 mg / L hydrogen water, send it to the spin washer,
The wafer was spray-cleaned while being irradiated with ultrasonic waves. The potassium concentration on the wafer before cleaning was 43.2 × 10 10 atoms / cm 2 , and the number of fine particles exceeded the upper limit of measurement of 5,500 particles / wafer. By cleaning with a cleaning liquid flow rate of 1 L / min and a cleaning time of 30 seconds, the potassium concentration on the wafer is 7.21 × 10 10
The number of atoms / cm 2 and the number of fine particles were 57 / wafer. Example 2 Washing was carried out in the same manner as in Example 1 using a washing solution adjusted to pH 9.4 by adding 1 mg / L of ammonia to hydrogen water having a temperature of 60 ° C. and a dissolved hydrogen concentration of 1.2 mg / L. Was. The potassium concentration on the wafer was reduced from 49.1 × 10 10 atoms / cm 2 to 9.33 × 10 10 atoms / cm 2 and the number of fine particles was 5.5
It was reduced from more than 00 wafers / wafer to 36 wafers / wafer. Example 3 The cleaning was performed in the same manner as in Example 1 except that the cleaning time was set to 60 seconds. The potassium concentration on the wafer is 40.2 ×
The number of particles decreased from 10 10 atoms / cm 2 to the lower limit of detection of 3.11 × 10 10 atoms / cm 2 or less, and the number of fine particles decreased from 5,500 particles / wafer or more to 21 particles / wafer. Example 4 The cleaning was performed in the same manner as in Example 2 except that the cleaning time was changed to 60 seconds. The potassium concentration on the wafer was 41.3 × 1
The particle number was reduced from 0 10 atoms / cm 2 to 3.11 × 10 10 atoms / cm 2 or less, and the number of fine particles was reduced from 5,500 particles / wafer or more to 17 particles / wafer.

【0009】実施例5 温超純水の温度を80℃とし、溶存水素濃度0.8mg/
Lの水素水を製造した以外は、実施例1と同様にして洗
浄を行った。ウェハ上のカリウム濃度は、45.4×1
10原子/cm2から検出下限値の3.11×1010原子/
cm2以下に減少し、微粒子数は測定上限値の5,500個
/ウェハ以上から29個/ウェハに減少した。 実施例6 水素水に、アンモニア1mg/Lを添加してpHを9.4に
調整した以外は、実施例5と同様にして洗浄を行った。
ウェハ上のカリウム濃度は、42.2×1010原子/cm2
から3.11×1010原子/cm2以下に減少し、微粒子数
は5,500個/ウェハ以上から9個/ウェハに減少し
た。 実施例7 洗浄時間を60秒とした以外は、実施例5と同様にして
洗浄を行った。ウェハ上のカリウム濃度は、43.8×
1010原子/cm2から3.11×1010原子/cm2以下に
減少し、微粒子数は5,500個/ウェハ以上から16
個/ウェハに減少した。 実施例8 洗浄時間を60秒とした以外は、実施例6と同様にして
洗浄を行った。ウェハ上のカリウム濃度は、46.5×1
10原子/cm2から3.11×1010原子/cm2以下に減
少し、微粒子数は5,500個/ウェハ以上から5個/
ウェハに減少した。
Example 5 The temperature of ultra pure water was set to 80 ° C., and the dissolved hydrogen concentration was 0.8 mg /
The cleaning was performed in the same manner as in Example 1 except that L hydrogen water was produced. The potassium concentration on the wafer was 45.4 × 1
From 0 10 atoms / cm 2 to the lower limit of detection, 3.11 × 10 10 atoms / cm 2
cm 2 or less, and the number of fine particles was reduced from the upper limit of measurement of 5,500 particles / wafer to 29 particles / wafer. Example 6 Washing was performed in the same manner as in Example 5 except that the pH was adjusted to 9.4 by adding 1 mg / L of ammonia to hydrogen water.
The potassium concentration on the wafer is 42.2 × 10 10 atoms / cm 2
From 3.11 × 10 10 atoms / cm 2 or less, and the number of fine particles decreased from more than 5,500 / wafer to 9 / wafer. Example 7 The cleaning was performed in the same manner as in Example 5, except that the cleaning time was changed to 60 seconds. The potassium concentration on the wafer was 43.8 ×
It is reduced from 10 10 atoms / cm 2 to 3.11 × 10 10 atoms / cm 2 or less, and the number of fine particles is increased from 5,500 particles / wafer or more to 16
Reduced to pieces / wafer. Example 8 The cleaning was performed in the same manner as in Example 6, except that the cleaning time was 60 seconds. The potassium concentration on the wafer was 46.5 × 1
From 0 10 atoms / cm 2 to 3.11 × 10 10 atoms / cm 2 or less, and the number of fine particles is from 5,500 / wafer or more to 5 /
Reduced to wafer.

【0010】比較例1 超純水製造装置[栗田工業(株)]より供給された25℃
の超純水を原水として、膜溶解方式の水素水製造装置
[栗田工業(株)]で水素を溶解し、溶存水素濃度1.2m
g/Lの水素水を製造し、スピン洗浄機へ送水して、超
音波を照射しながらウェハに流量1L/分で噴射し、6
0秒間洗浄した。ウェハ上のカリウム濃度は46.7×
1010原子/cm2から38.1×1010原子/cm2に減少
し、微粒子数は測定上限値の5,500個/ウェハ以上
から77個/ウェハに減少した。 比較例2 温度25℃、溶存水素濃度1.2mg/Lの水素水に、ア
ンモニア1mg/Lを添加してpHを9.4に調整した洗浄
液を用い、比較例1と同様にして洗浄を行った。ウェハ
上のカリウム濃度は、44.1×1010原子/cm2から3
7.5×1010原子/cm2に減少し、微粒子数は5,50
0個/ウェハ以上から45個/ウェハに減少した。 比較例3 温超純水供給装置[栗田工業(株)]より供給された80
℃の温超純水をスピン洗浄機へ送水し、超音波を照射し
ながらウェハに流量1L/分で噴射し、60秒間洗浄し
た。ウェハ上のカリウム濃度は41.2×1010原子/c
m2から検出下限値の3.11×1010原子/cm2以下に減
少したが、微粒子数は洗浄前後ともに測定上限値の5,
500個/ウェハ以上であった。 比較例4 80℃の温超純水にアンモニア1mg/Lを添加してpHを
9.4に調整した以外は、比較例3と同様にして洗浄を
行った。ウェハ上のカリウム濃度は45.7×1010
子/cm2から3.11×1010原子/cm2以下に減少した
が、微粒子数は洗浄前後ともに測定上限値の5,500
個/ウェハ以上であった。実施例1〜8及び比較例1〜
4の結果を、第1表に示す。
Comparative Example 1 25 ° C. supplied from an ultrapure water production system [Kurita Kogyo Co., Ltd.]
Hydrogen is dissolved in ultra-pure water as raw water using a membrane-dissolved hydrogen water production system [Kurita Kogyo Co., Ltd.], and the dissolved hydrogen concentration is 1.2 m.
g / L of hydrogen water is produced, fed to a spin washer, and sprayed onto the wafer at a flow rate of 1 L / min while irradiating ultrasonic waves.
Washed for 0 seconds. Potassium concentration on wafer is 46.7x
The particle number was reduced from 10 10 atoms / cm 2 to 38.1 × 10 10 atoms / cm 2 , and the number of fine particles was reduced from the measurement upper limit of 5,500 or more / wafer to 77 / wafer. Comparative Example 2 Washing was carried out in the same manner as in Comparative Example 1 using a cleaning solution adjusted to pH 9.4 by adding ammonia 1 mg / L to hydrogen water having a temperature of 25 ° C. and a dissolved hydrogen concentration of 1.2 mg / L. Was. The potassium concentration on the wafer should be between 44.1 × 10 10 atoms / cm 2 and 3
7.5 × 10 10 atoms / cm 2 and the number of fine particles is 5,50
The number decreased from 0 / wafer to 45 / wafer. Comparative Example 3 80 supplied from a hot ultrapure water supply device [Kurita Kogyo Co., Ltd.]
Ultra-pure water at a temperature of 0 ° C. was fed to a spin washer, and was sprayed onto the wafer at a flow rate of 1 L / min while irradiating ultrasonic waves to wash for 60 seconds. Potassium concentration on wafer is 41.2 × 10 10 atoms / c
was reduced from m 2 to 3.11 × 10 10 atoms / cm 2 or less of the detection limit, 5 of both the measurement upper limit number of fine particles before and after washing,
More than 500 wafers / wafer. Comparative Example 4 Washing was performed in the same manner as in Comparative Example 3 except that the pH was adjusted to 9.4 by adding 1 mg / L of ammonia to 80 ° C. ultrapure water. Although the potassium concentration on the wafer was reduced from 45.7 × 10 10 atoms / cm 2 to 3.11 × 10 10 atoms / cm 2 or less, the number of fine particles before and after cleaning was 5,500, which is the upper limit of the measurement.
Pcs / wafer or more. Examples 1 to 8 and Comparative Examples 1 to
Table 1 shows the results of No. 4.

【0011】[0011]

【表1】 [Table 1]

【0012】第1表に見られるように、水素を溶解した
60℃又は80℃の温超純水を洗浄液として洗浄した実
施例1〜8においては、ウェハ上のカリウムと微粒子が
ともに除去されているのに対して、水素を溶解した25
℃の超純水を洗浄液とした比較例1〜2では、微粒子は
除去されているがカリウムの除去率が極めて低く、水素
を溶解していない80℃の温超純水を洗浄液とした比較
例3〜4では、カリウムは除去されているが、微粒子が
除去されていない。また、実施例1〜8の結果から、洗
浄時に超音波を照射することにより、微粒子の除去率が
向上すること、アンモニアを添加してpHを9.4に調整
することによっても、微粒子の除去率が向上すること、
洗浄時間を30秒から60秒に延長することによって
も、微粒子の除去率が向上すること、水温を高めること
により、カリウムの除去率と微粒子の除去率がともに向
上することが分かる。比較例1〜4の結果から、温超純
水を洗浄液として洗浄したのち水素水を洗浄液として洗
浄する、あるいは、水素水を洗浄液として洗浄したのち
温超純水を洗浄液として洗浄することにより、ウェハ上
のカリウムと微粒子の両方を除去し得ることが推定され
るが、このような洗浄方法によれば、本発明方法の2倍
の水量と2倍の洗浄時間を必要とするので得策ではな
い。
As shown in Table 1, in Examples 1 to 8 in which hot ultrapure water at 60 ° C. or 80 ° C. in which hydrogen was dissolved was used as a cleaning liquid, potassium and fine particles on the wafer were both removed. To which hydrogen was dissolved
In Comparative Examples 1 and 2 using ultrapure water at a temperature of 80 ° C. as cleaning liquids, fine particles were removed but the removal rate of potassium was extremely low, and Comparative Examples 3 and 4 using warm ultrapure water at 80 ° C. in which hydrogen was not dissolved were used. In No. 4, potassium was removed, but fine particles were not removed. Further, from the results of Examples 1 to 8, it is found that the removal rate of fine particles can be improved by irradiating ultrasonic waves during cleaning, and the removal of fine particles can also be achieved by adjusting the pH to 9.4 by adding ammonia. Rate is improved,
It can be seen that extending the washing time from 30 seconds to 60 seconds also improves the removal rate of fine particles, and increasing the water temperature improves both the removal rate of potassium and the removal rate of fine particles. From the results of Comparative Examples 1 to 4, by washing with hot ultrapure water as a washing liquid and then washing with hydrogen water as a washing liquid, or washing with hydrogen water as a washing liquid and washing with hot ultrapure water as a washing liquid, potassium on the wafer was removed. It is presumed that both of the fine particles can be removed, but such a washing method is not advantageous because it requires twice the amount of water and twice the washing time as the method of the present invention.

【0013】[0013]

【発明の効果】本発明の電子材料の洗浄方法によれば、
CMPを行った後の電子材料の表面に付着しているカリ
ウムなどの金属不純物と残留する研磨剤などの微粒子
を、1工程の洗浄により同時に短時間で除去することが
できる。
According to the method for cleaning an electronic material of the present invention,
Metal impurities such as potassium and fine particles such as abrasive remaining on the surface of the electronic material after the CMP can be simultaneously removed in a short time by one-step cleaning.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B08B 3/12 B08B 3/12 A ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B08B 3/12 B08B 3/12 A

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】CMPを行った後の電子材料の洗浄方法で
あって、水素、酸素又は希ガスを溶解した45℃以上の
超純水を洗浄液とし、この洗浄液に10kHz〜3MHzの超
音波を照射しながら洗浄することを特徴とする電子材料
の洗浄方法。
1. A method of cleaning an electronic material after performing CMP, wherein ultrapure water of 45 ° C. or higher in which hydrogen, oxygen or a rare gas is dissolved is used as a cleaning liquid, and ultrasonic waves of 10 kHz to 3 MHz are applied to the cleaning liquid. A method for cleaning electronic materials, wherein the cleaning is performed while irradiating.
【請求項2】洗浄液にアルカリが添加されている請求項
1記載の電子材料の洗浄方法。
2. The method for cleaning an electronic material according to claim 1, wherein an alkali is added to the cleaning liquid.
JP2000162206A 2000-05-31 2000-05-31 Wafer cleaning method Expired - Lifetime JP4482844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000162206A JP4482844B2 (en) 2000-05-31 2000-05-31 Wafer cleaning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000162206A JP4482844B2 (en) 2000-05-31 2000-05-31 Wafer cleaning method

Publications (2)

Publication Number Publication Date
JP2001345301A true JP2001345301A (en) 2001-12-14
JP4482844B2 JP4482844B2 (en) 2010-06-16

Family

ID=18666134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000162206A Expired - Lifetime JP4482844B2 (en) 2000-05-31 2000-05-31 Wafer cleaning method

Country Status (1)

Country Link
JP (1) JP4482844B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005051101A (en) * 2003-07-30 2005-02-24 Ses Co Ltd Method of cleaning substrate
JP2005051099A (en) * 2003-07-30 2005-02-24 Ses Co Ltd Method of cleaning substrate
CN1992197A (en) * 2005-12-28 2007-07-04 富士通株式会社 Method for fabricating semiconductor device and method for fabricating magnetic head
JP2008210880A (en) * 2007-02-23 2008-09-11 Fujitsu Ltd Manufacturing method of semiconductor device, and apparatus used for the method
JP2009260020A (en) * 2008-04-16 2009-11-05 Kurita Water Ind Ltd Cleaning water for electronic material, method of cleaning electronic material, and system for supplying water containing dissolved gas
WO2011078144A1 (en) * 2009-12-24 2011-06-30 栗田工業株式会社 Cleaning method
JP2014022599A (en) * 2012-07-19 2014-02-03 Kurita Water Ind Ltd Cleaning method of electronic material
CN105449036A (en) * 2015-12-03 2016-03-30 通威太阳能(合肥)有限公司 Reworking treatment method for poor screen printing sheet
JPWO2020194978A1 (en) * 2019-03-26 2020-10-01
JP2020158616A (en) * 2019-03-26 2020-10-01 株式会社フジミインコーポレーテッド Surface treatment composition, method for producing the same, surface treatment method, and method for producing semiconductor substrate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9561982B2 (en) 2013-04-30 2017-02-07 Corning Incorporated Method of cleaning glass substrates

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005051099A (en) * 2003-07-30 2005-02-24 Ses Co Ltd Method of cleaning substrate
JP2005051101A (en) * 2003-07-30 2005-02-24 Ses Co Ltd Method of cleaning substrate
CN1992197A (en) * 2005-12-28 2007-07-04 富士通株式会社 Method for fabricating semiconductor device and method for fabricating magnetic head
JP2007180420A (en) * 2005-12-28 2007-07-12 Fujitsu Ltd Method of manufacturing semiconductor device and magnetic head
JP2008210880A (en) * 2007-02-23 2008-09-11 Fujitsu Ltd Manufacturing method of semiconductor device, and apparatus used for the method
US8999069B2 (en) 2008-04-16 2015-04-07 Kurita Water Industries Ltd. Method for producing cleaning water for an electronic material
JP2009260020A (en) * 2008-04-16 2009-11-05 Kurita Water Ind Ltd Cleaning water for electronic material, method of cleaning electronic material, and system for supplying water containing dissolved gas
WO2011078144A1 (en) * 2009-12-24 2011-06-30 栗田工業株式会社 Cleaning method
KR101720500B1 (en) 2009-12-24 2017-03-28 쿠리타 고교 가부시키가이샤 Cleaning method
KR20120099056A (en) * 2009-12-24 2012-09-06 쿠리타 고교 가부시키가이샤 Cleaning method
US20120325927A1 (en) * 2009-12-24 2012-12-27 Kurita Water Industries Ltd. Cleaning method
CN102129957A (en) * 2009-12-24 2011-07-20 栗田工业株式会社 Cleaning method
JP2011134864A (en) * 2009-12-24 2011-07-07 Kurita Water Ind Ltd Cleaning method
US9129797B2 (en) 2009-12-24 2015-09-08 Kurita Water Industries Ltd. Cleaning method
TWI503181B (en) * 2009-12-24 2015-10-11 Kurita Water Ind Ltd Wash the method
JP2014022599A (en) * 2012-07-19 2014-02-03 Kurita Water Ind Ltd Cleaning method of electronic material
CN105449036A (en) * 2015-12-03 2016-03-30 通威太阳能(合肥)有限公司 Reworking treatment method for poor screen printing sheet
JPWO2020194978A1 (en) * 2019-03-26 2020-10-01
WO2020194978A1 (en) * 2019-03-26 2020-10-01 株式会社フジミインコーポレーテッド Surface treatment composition, method for manufacturing same, surface treatment method, and method for manufacturing semiconductor substrate
JP2020158616A (en) * 2019-03-26 2020-10-01 株式会社フジミインコーポレーテッド Surface treatment composition, method for producing the same, surface treatment method, and method for producing semiconductor substrate
US20220089981A1 (en) * 2019-03-26 2022-03-24 Fujimi Incorporated Composition for surface treatment, method for producing the same, surface treatment method, and method for producing semiconductor substrate
JP7233998B2 (en) 2019-03-26 2023-03-07 株式会社フジミインコーポレーテッド Surface treatment composition, method for producing same, method for surface treatment, and method for producing semiconductor substrate
JP7322137B2 (en) 2019-03-26 2023-08-07 株式会社フジミインコーポレーテッド Surface treatment composition, method for producing same, method for surface treatment, and method for producing semiconductor substrate
US12012575B2 (en) 2019-03-26 2024-06-18 Fujimi Incorporated Composition for surface treatment, method for producing the same, surface treatment method, and method for producing semiconductor substrate

Also Published As

Publication number Publication date
JP4482844B2 (en) 2010-06-16

Similar Documents

Publication Publication Date Title
TWI447799B (en) Method of cleaning substrates and substrate cleaner
JP3185753B2 (en) Method for manufacturing semiconductor device
TWI405621B (en) Cleaning liquid and cleaning method for electronic material
JP2002543976A (en) Method for cleaning microelectronic substrates using ultra-dilute cleaning solution
JPH08187474A (en) Washing method
JP2001015474A (en) Method and device for degassing demineralized water for ultrasonically cleaning semiconductor wafer
KR100437429B1 (en) Cleaning water for electronic material and cleaning method of electronic material
JP4088810B2 (en) Substrate cleaning apparatus and substrate cleaning method
JP4482844B2 (en) Wafer cleaning method
JP2002261062A (en) Method and device for removing particle on semiconductor wafer
JPH1022246A (en) Cleaning method
WO2011086876A1 (en) Surface cleaning method for silicon wafer
JP2005150768A (en) Cleaning method and cleaning method of electronic component
JP3358180B2 (en) Wet chemical surface treatment of semiconductor wafers.
JPH1129794A (en) Cleaning water for electronic material its reparation, and cleaning of electronic material
KR20090030204A (en) Process for cleaning a semiconductor wafer
JP2005019999A (en) Wet chemical surface treatment method of semiconductor wafer
JP4752117B2 (en) Method for removing particles on a semiconductor wafer
JPS6072233A (en) Washing device for semiconductor wafer
JP2004296463A (en) Cleaning method and cleaning device
JPH1071375A (en) Washing method
JP6020626B2 (en) Device Ge substrate cleaning method, cleaning water supply device and cleaning device
JP4051693B2 (en) Cleaning method for electronic materials
JP3595681B2 (en) Manufacturing method of epitaxial wafer
JP3375052B2 (en) Cleaning water for electronic materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100226

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100311

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4