JPH05208897A - Production of silicon carbide single crystal substrate - Google Patents

Production of silicon carbide single crystal substrate

Info

Publication number
JPH05208897A
JPH05208897A JP3720992A JP3720992A JPH05208897A JP H05208897 A JPH05208897 A JP H05208897A JP 3720992 A JP3720992 A JP 3720992A JP 3720992 A JP3720992 A JP 3720992A JP H05208897 A JPH05208897 A JP H05208897A
Authority
JP
Japan
Prior art keywords
silicon carbide
crystal
base
single crystal
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3720992A
Other languages
Japanese (ja)
Inventor
Yasuhiro Maeda
泰宏 前田
Seiichi Taniguchi
斉一 谷口
Momohachi Fukuda
百八 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP3720992A priority Critical patent/JPH05208897A/en
Publication of JPH05208897A publication Critical patent/JPH05208897A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To produce a silicon carbide single crystal having high purity, uniform crystal orientation and excellent quality while preventing the contamination of the growing part of the single crystal by the diffusion of impurities from a seed crystal. CONSTITUTION:An SiC film 12 formed on an Si base 11 by epitaxial growth is used as a seed crystal for growing a silicon carbide single crystal. The substrate 10 for growth is placed in a crystal-growing furnace in a state holding a graphite base 20 on the substrate. A fused reaction part 13 is formed by the reaction of the Si base 11 with the graphite base 20 in the course of raising the temperature to the sublimation temperature range of the silicon carbide raw material and exclusively the SiC film 12 acting as a seed crystal is left after the reaction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体デバイス等の機
能材料として有用な炭化ケイ素単結晶を製造するときに
使用される単結晶成長用基板の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a single crystal growth substrate used when producing a silicon carbide single crystal useful as a functional material for semiconductor devices and the like.

【0002】[0002]

【従来の技術】炭化ケイ素単結晶は、従来から昇華法で
製造されており、半導体デバイスを始めとする高機能材
料として各種分野での用途が期待されている。昇華法で
は、炭化ケイ素粉末原料を2000〜2500℃の高温
に加熱して昇華させることから、ルツボ,ヒータ等の結
晶成長に必要な部材を黒鉛製としている。
2. Description of the Related Art A silicon carbide single crystal has been conventionally produced by a sublimation method and is expected to be used in various fields as a highly functional material such as a semiconductor device. In the sublimation method, the silicon carbide powder raw material is heated to a high temperature of 2000 to 2500 ° C. to be sublimated. Therefore, the crucible, the heater and the like necessary for crystal growth are made of graphite.

【0003】たとえば、炭化ケイ素粉末原料を収容した
黒鉛ルツボの蓋に原料粉末と対向させて種結晶を取り付
け、2000〜2500℃に加熱することにより黒鉛ル
ツボ内の原料粉末を昇華させる方式がある。昇華した炭
化ケイ素は、種結晶の結晶方位に揃った方位で凝縮・成
長し、単結晶となる。このとき、成長した単結晶に不純
物が混入することを防止するため、減圧から常圧までの
範囲で圧力が調節される真空槽内に黒鉛ルツボを配置
し、真空槽に高純度の不活性ガスを導入することによっ
て装置内部を浄化している。
For example, there is a method in which a seed crystal is attached to a lid of a graphite crucible containing a silicon carbide powder raw material so as to face the raw material powder, and the raw material powder in the graphite crucible is sublimated by heating at 2000 to 2500 ° C. Sublimated silicon carbide condenses and grows in the crystallographic orientation of the seed crystal to become a single crystal. At this time, in order to prevent impurities from mixing into the grown single crystal, a graphite crucible is placed in a vacuum chamber where the pressure is adjusted in the range from reduced pressure to normal pressure, and a high-purity inert gas is placed in the vacuum chamber. The inside of the device is cleaned by introducing.

【0004】また、底部に種結晶を取り付けた黒鉛ルツ
ボの内部に多孔質の黒鉛製中空円筒を配置し、黒鉛ルツ
ボの内壁面と中空円筒との間に炭化ケイ素粉末原料を充
填し、高温加熱によって炭化ケイ素粉末原料を昇華させ
る方式も採用されている。昇華した炭化ケイ素は、中空
円筒を透過し、ルツボ底部にある種結晶の上に凝縮・成
長する。
In addition, a porous hollow graphite cylinder is placed inside a graphite crucible having a seed crystal attached to the bottom thereof, and a silicon carbide powder raw material is filled between the inner wall surface of the graphite crucible and the hollow cylinder to heat it at a high temperature. The method of sublimating the silicon carbide powder raw material is also adopted. The sublimed silicon carbide passes through the hollow cylinder and is condensed and grown on the seed crystal at the bottom of the crucible.

【0005】[0005]

【発明が解決しようとする課題】結晶成長した炭化ケイ
素単結晶には、格子欠陥や特性変化に影響を与える不純
物が混入し易い。混入不純物は、原料粉末に由来するも
の,黒鉛ルツボに由来するもの、種結晶に由来するもの
等がある。なかでも、種結晶に由来するものが最も大き
な影響を与える。
Impurities that affect lattice defects and characteristic changes are likely to be mixed in the silicon carbide single crystal that has grown. The mixed impurities include those derived from the raw material powder, those derived from the graphite crucible, and those derived from the seed crystal. Among them, those derived from seed crystals have the greatest influence.

【0006】種結晶は、SiO2 をCで還元することに
よって従来から作製されており、数%以上の不純物を含
むことが通常である。このような種結晶から炭化ケイ素
単結晶を成長させるとき、結晶成長部分に種結晶の不純
物が熱拡散等によって混入する。混入した不純物は、炭
化ケイ素単結晶に格子欠陥を与え、また半導体デバイス
等として使用されるときの特性にも悪影響を与える。
The seed crystal has been conventionally produced by reducing SiO 2 with C, and usually contains several percent or more of impurities. When growing a silicon carbide single crystal from such a seed crystal, impurities of the seed crystal are mixed into the crystal growth portion by thermal diffusion or the like. The mixed impurities give a lattice defect to the silicon carbide single crystal and also have an adverse effect on the characteristics when used as a semiconductor device or the like.

【0007】本発明は、このような問題を解消すべく案
出されたものであり、エピタキシャル成長によって得ら
れたSiC堆積膜を種結晶とすることにより、種結晶か
ら熱拡散する不純物によって結晶成長部分が汚染される
ことを防止し、高純度,高品質の炭化ケイ素単結晶を製
造することを目的とする。
The present invention has been devised to solve such a problem. By using a SiC deposited film obtained by epitaxial growth as a seed crystal, the crystal growth portion is caused by impurities that thermally diffuse from the seed crystal. The purpose of the present invention is to prevent the contamination of carbon and to produce a high-purity, high-quality silicon carbide single crystal.

【0008】[0008]

【課題を解決するための手段】本発明の炭化ケイ素単結
晶成長用基板製造方法は、その目的を達成するため、エ
ピタキシャル成長によってSiC膜をSi板の表面に形
成し、Siベース側が黒鉛製基体に接触するように前記
Si基板を前記黒鉛製基体に載置し、炭化ケイ素原料の
昇華温度域に至る昇温過程で前記Siベースを前記黒鉛
製基体と融合一体化し、前記SiC膜を種結晶として残
すことを特徴とする。
In order to achieve the object, the method for producing a substrate for growing a silicon carbide single crystal of the present invention has an SiC film formed on the surface of a Si plate by epitaxial growth so that the Si base side is a graphite substrate. The Si substrate is placed on the graphite base so as to be in contact with the graphite base, and the Si base is fused and integrated with the graphite base during the temperature rising process of the silicon carbide raw material to reach the sublimation temperature range, and the SiC film is used as a seed crystal. Characterized by leaving.

【0009】[0009]

【作 用】エピタキシャル成長法は、基板表面に結晶性
膜を成長させるのに適した方法であり、高純度の機能性
膜が形成される。本発明においては、このエピタキシャ
ル成長法を利用して基板にSiCの種結晶を作り込む。
形成された種結晶は、結晶方位が制御された高純度のも
のであり、その上に成長する炭化ケイ素単結晶に対し不
純物供給源となることがない。
[Operation] The epitaxial growth method is a method suitable for growing a crystalline film on the substrate surface, and a highly pure functional film is formed. In the present invention, a seed crystal of SiC is formed on the substrate by utilizing this epitaxial growth method.
The seed crystal thus formed is of high purity in which the crystal orientation is controlled and does not serve as an impurity supply source for the silicon carbide single crystal grown thereon.

【0010】しかも、エピタキシャル成長法で作り込ま
れるSiCの種結晶は、Si板と同一の形状にすること
ができる。そのため、大口径のSi板の広い面積にわた
りSiCの種結晶を作り込むとき、大口径の炭化ケイ素
単結晶を成長させるのに適した単結晶成長用基板が得ら
れる。
Moreover, the SiC seed crystal formed by the epitaxial growth method can have the same shape as the Si plate. Therefore, when a SiC seed crystal is formed over a large area of a large-diameter Si plate, a single-crystal growth substrate suitable for growing a large-diameter silicon carbide single crystal can be obtained.

【0011】種結晶が作り込まれる基板としては、高純
度のSi板が使用される。Si板の純度は、不純物の影
響を排除する上から99.9999%以上のものが好ま
しい。このような高純度Si板は、たとえば半導体デバ
イス製造用として市販されている。
A high-purity Si plate is used as the substrate on which the seed crystal is formed. The purity of the Si plate is preferably 99.9999% or more in order to eliminate the influence of impurities. Such high-purity Si plate is commercially available, for example, for manufacturing semiconductor devices.

【0012】高純度Si板の上にCVD法等によってS
iCをエピタキシャル成長させ、SiC層を形成する。
たとえば、高純度プロパン,メタン等のシラン系ガスを
原料とし、Si板の結晶面に応じて立方晶又は六方晶の
SiC結晶が成長する。エピタキシャル成長自体は、従
来から知られている一般的な方法を採用することができ
る。
S is formed on the high-purity Si plate by the CVD method or the like.
iC is epitaxially grown to form a SiC layer.
For example, using a silane-based gas such as high-purity propane or methane as a raw material, cubic or hexagonal SiC crystals grow in accordance with the crystal plane of the Si plate. For the epitaxial growth itself, a general method known in the related art can be adopted.

【0013】種結晶が作り込まれた基板10を、図1に
示すように、表面が平滑化された高純度黒鉛の基体20
上に載置する。このとき、Siベース11上にエピタキ
シャル成長によって堆積したSiC膜12が種結晶とな
るように、Siベース11を黒鉛製基体20に接触させ
る。そして、結晶成長炉30の内部に配置する。
As shown in FIG. 1, a substrate 10 having a seed crystal formed therein is formed into a high-purity graphite substrate 20 having a smooth surface.
Place on top. At this time, the Si base 11 is brought into contact with the graphite base 20 so that the SiC film 12 deposited on the Si base 11 by epitaxial growth serves as a seed crystal. Then, it is placed inside the crystal growth furnace 30.

【0014】結晶成長炉30は、炉内を不活性雰囲気に
維持するため、Arガスを導入する配管31が開口して
いる。また、真空装置(図示せず)に接続された排気管
32を介して真空引きされ、所定の真空度に維持され
る。更に、原料粉末を加熱昇華させる円筒状のヒータ3
3が、炉内に配置されている。
In the crystal growth furnace 30, a pipe 31 for introducing Ar gas is opened in order to maintain the inside of the furnace in an inert atmosphere. Further, a vacuum is drawn through an exhaust pipe 32 connected to a vacuum device (not shown), and a predetermined degree of vacuum is maintained. Further, a cylindrical heater 3 for heating and sublimating the raw material powder
3 is arranged in the furnace.

【0015】種結晶が作り込まれた基板10は、黒鉛製
基体20と共に、円筒状のヒータ33で取り囲まれた結
晶成長炉30の底部中央に配置される。そして、基板1
0の上部に、ルツボ40を配置する。ルツボ部40は、
多孔質の底壁41をもち、内部に粉末状又は粒状の炭化
ケイ素原料42を収容している。
The substrate 10 in which the seed crystal is formed is arranged at the center of the bottom of the crystal growth furnace 30 surrounded by the cylindrical heater 33 together with the graphite substrate 20. And the substrate 1
The crucible 40 is placed on the upper part of 0. The crucible part 40 is
It has a porous bottom wall 41 and contains a powdery or granular silicon carbide raw material 42 therein.

【0016】結晶成長炉30の内部では、SiC膜12
の上に成長している単結晶の表面に清浄なArガスが常
に到達するように、Arガスが上方から下方に向けて流
される。これにより、種結晶及び成長過程にある単結晶
の表面は、常に清浄な状態に維持される。
Inside the crystal growth furnace 30, the SiC film 12 is formed.
Ar gas is caused to flow downward from above so that clean Ar gas always reaches the surface of the single crystal growing on the top surface. As a result, the surfaces of the seed crystal and the single crystal in the growing process are always kept clean.

【0017】炭化ケイ素原料42が昇華し、結晶成長す
る温度は、2200〜2500℃である。Siの融点が
1413℃であることから、基板10のSiベース11
は、結晶成長温度域に到達する過程で溶融し始める。こ
の過程で、基板10の周辺に、図2(a)に示すように
1 <T2 <T3 の温度差が付くように、結晶成長炉3
0内部の温度勾配を設定している。この温度差は、ルツ
ボ移動・回転軸34を上下動させて黒鉛製基体20の部
分をヒータ33の中央部分に移動することによって得ら
れる。そのため、Siベース11の溶融は、黒鉛製基体
20との接触部分から開始され、SiC膜12に向かっ
て進行する。
The temperature at which the silicon carbide raw material 42 sublimes and the crystals grow is 2200 to 2500 ° C. Since the melting point of Si is 1413 ° C., the Si base 11 of the substrate 10
Starts to melt in the process of reaching the crystal growth temperature range. In this process, the crystal growth furnace 3 is provided so that a temperature difference of T 1 <T 2 <T 3 is applied around the substrate 10 as shown in FIG.
The temperature gradient inside 0 is set. This temperature difference is obtained by moving the crucible moving / rotating shaft 34 up and down to move the portion of the graphite base 20 to the central portion of the heater 33. Therefore, the melting of the Si base 11 is started from the contact portion with the graphite base 20, and proceeds toward the SiC film 12.

【0018】Siは、溶融し始めると同時に、下部に接
触している黒鉛製基体20と反応し、黒鉛製基体20の
内部に拡散・浸透する。その結果、Siベース11と黒
鉛製基体20との界面に、融合反応部13が形成され
る。Siベース11が完全に溶融すると、融合反応部1
3の上にSiC膜12が残る。その後、ルツボ移動・回
転軸34の操作でルツボ40及び黒鉛製基体20を下方
に移動し、残留したSiC膜12を炭化ケイ素原料42
から昇華したSiCを結晶成長させるときの種結晶とし
て使用する。
Simultaneously with the start of melting, Si reacts with the graphite base 20 in contact with the lower part, and diffuses and permeates into the graphite base 20. As a result, the fusion reaction part 13 is formed at the interface between the Si base 11 and the graphite base 20. When the Si base 11 is completely melted, the fusion reaction part 1
The SiC film 12 remains on the upper surface of the metal film 3. Then, the crucible 40 and the graphite substrate 20 are moved downward by operating the crucible moving / rotating shaft 34 to remove the remaining SiC film 12 from the silicon carbide raw material 42.
It is used as a seed crystal for crystal growth of SiC sublimated from.

【0019】Siベース11を黒鉛製基体20と融合さ
せた融合反応部13は、基本的にはSiCであり、融合
反応過程で種結晶となるSiC膜12を固持する。ま
た、黒鉛製基体20からSiC膜12への不純物の混入
は、融合反応部13によって阻止される。
The fusion reaction part 13 in which the Si base 11 is fused with the graphite substrate 20 is basically SiC and holds the SiC film 12 which becomes a seed crystal in the fusion reaction process. Further, the fusion reaction part 13 prevents the impurities from being mixed into the SiC film 12 from the graphite base 20.

【0020】結晶成長炉30の炉内温度が結晶成長温度
域2200〜2500℃に到達すると、炭化ケイ素原料
42の昇華が始まる。昇華したSiCが種結晶部分に接
触すると、図2(c)に示すようにSiC膜12を種結
晶として炭化ケイ素単結晶14が成長する。SiC膜1
2は、エピタキシャル成長によって作られたものである
から、結晶方位が揃っている。そのため、SiC膜12
の上に形成された炭化ケイ素単結晶14も、優れた結晶
構造,結晶方位をもつものとなる。また、種結晶である
SiC膜12が高純度のものであるため、不純物による
汚染がなく、結晶方位や格子定数等が安定した高純度の
炭化ケイ素単結晶14が得られる。
When the temperature inside the crystal growth furnace 30 reaches the crystal growth temperature range 2200 to 2500 ° C., the sublimation of the silicon carbide raw material 42 starts. When sublimated SiC comes into contact with the seed crystal portion, silicon carbide single crystal 14 grows using SiC film 12 as a seed crystal, as shown in FIG. SiC film 1
Since No. 2 was produced by epitaxial growth, its crystal orientations are aligned. Therefore, the SiC film 12
The silicon carbide single crystal 14 formed on the above also has an excellent crystal structure and crystal orientation. Further, since the SiC film 12 as the seed crystal is of high purity, contamination of impurities is prevented, and a high-purity silicon carbide single crystal 14 having stable crystal orientation, lattice constant, etc. can be obtained.

【0021】[0021]

【実施例】直径4インチのSi板(純度99.9999
%)上に、エピタキシャル成長によって厚み20μmの
SiC膜12を形成した。このとき、水素をキャリアガ
スとしてモノシランガス及びプロパンガスを使用したC
VDによってSiC膜12をエピタキシャル成長させ
た。最初、(100)の結晶面を持つSi板をCVD反
応管内に配置し、1500℃の温度に加熱した後、水素
をキャリアガスとしてモノシランガス及びプロパンガス
を3リットル/分の流量で導入し、5〜10時間にわた
り蒸着反応を継続させた。
EXAMPLE A Si plate having a diameter of 4 inches (purity 99.9999)
%), A SiC film 12 having a thickness of 20 μm was formed by epitaxial growth. At this time, C using monosilane gas and propane gas as hydrogen as carrier gas
The SiC film 12 was epitaxially grown by VD. First, a Si plate having a (100) crystal plane is placed in a CVD reaction tube, heated to a temperature of 1500 ° C., and then monosilane gas and propane gas are introduced at a flow rate of 3 liters / minute using hydrogen as a carrier gas. The vapor deposition reaction was continued for 10 hours.

【0022】SiC膜12が形成された基板10を、S
iベース11が黒鉛製基体20に接するように、黒鉛製
基体20に重ねた。そして、炭化ケイ素原料42が収容
されたルツボ40を基板10の上方に配置し、結晶成長
炉30の内部にセットした。雰囲気圧10トールに維持
しながら、結晶成長炉30に流量500ml/分でAr
ガスを供給した。そして、ルツボ40周辺を温度230
0℃に加熱させて炭化ケイ素の昇華を行わせ、温度22
00℃に維持したSiC膜12を種結晶とする結晶成長
を行わせた。
The substrate 10 on which the SiC film 12 is formed is
The i base 11 was placed on the graphite base 20 so that the i base 11 was in contact with the graphite base 20. Then, the crucible 40 containing the silicon carbide raw material 42 was placed above the substrate 10 and set in the crystal growth furnace 30. Ar at a flow rate of 500 ml / min in the crystal growth furnace 30 while maintaining the atmospheric pressure at 10 Torr.
Gas was supplied. The temperature around the crucible 40 is 230
It is heated to 0 ° C. to sublimate silicon carbide, and the temperature is set to 22.
Crystal growth was performed using the SiC film 12 maintained at 00 ° C. as a seed crystal.

【0023】得られた炭化ケイ素単結晶14は、当初の
Si板11と同じ径をもっていた。また、不純物による
汚染がなく、結晶構造,結晶方位等に優れた高純度,高
品質のものであった。
The obtained silicon carbide single crystal 14 had the same diameter as the original Si plate 11. In addition, there was no contamination by impurities, and the product was of high purity and high quality with an excellent crystal structure, crystal orientation and the like.

【0024】[0024]

【発明の効果】以上に説明したように、本発明によると
き、エピタキシャル成長によって結晶方位が制御された
SiC膜を種結晶として使用することにより、欠陥のな
い高純度炭化ケイ素単結晶が得られる。また、種結晶の
形状,大きさ等は使用するSi板,エピタキシャル成長
条件等によって自由に調整することができるため、大口
径の炭化ケイ素単結晶も容易に製造される。
As described above, according to the present invention, a defect-free high-purity silicon carbide single crystal can be obtained by using a SiC film whose crystal orientation is controlled by epitaxial growth as a seed crystal. Further, since the shape and size of the seed crystal can be freely adjusted depending on the Si plate used, epitaxial growth conditions, etc., a large-diameter silicon carbide single crystal can be easily manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明を具体的に説明するための図FIG. 1 is a diagram for specifically explaining the present invention.

【図2】 種結晶を作り込んだSiベースが黒鉛製基体
と反応する過程を示す図
FIG. 2 is a diagram showing a process in which a Si base having a seed crystal formed therein reacts with a graphite substrate.

【符号の説明】[Explanation of symbols]

10 基板 11 Siベース 1
2 SiC膜 13 融合反応部 14 炭化ケイ素単結晶 2
0 黒鉛製基体 30 結晶成長炉 34 ルツボ移動・回転軸 4
0 ルツボ 42 炭化ケイ素原料
10 substrate 11 Si base 1
2 SiC film 13 Fusion reaction part 14 Silicon carbide single crystal 2
0 Graphite substrate 30 Crystal growth furnace 34 Crucible moving / rotating shaft 4
0 Crucible 42 Raw material for silicon carbide

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 エピタキシャル成長によってSiC膜を
Si板の表面に形成し、Siベース側が黒鉛製基体に接
触するように前記Si基板を前記黒鉛製基体に載置し、
炭化ケイ素原料の昇華温度域に至る昇温過程で前記Si
ベースを前記黒鉛製基体と融合一体化し、前記SiC膜
を種結晶として残すことを特徴とする炭化ケイ素単結晶
成長用基板の製造方法。
1. A SiC film is formed on a surface of a Si plate by epitaxial growth, and the Si substrate is placed on the graphite base so that the Si base side contacts the graphite base.
In the process of raising the temperature of the silicon carbide raw material to reach the sublimation temperature range, the Si
A method for manufacturing a substrate for growing a silicon carbide single crystal, characterized in that a base is fused and integrated with the graphite base, and the SiC film is left as a seed crystal.
JP3720992A 1992-01-28 1992-01-28 Production of silicon carbide single crystal substrate Withdrawn JPH05208897A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3720992A JPH05208897A (en) 1992-01-28 1992-01-28 Production of silicon carbide single crystal substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3720992A JPH05208897A (en) 1992-01-28 1992-01-28 Production of silicon carbide single crystal substrate

Publications (1)

Publication Number Publication Date
JPH05208897A true JPH05208897A (en) 1993-08-20

Family

ID=12491207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3720992A Withdrawn JPH05208897A (en) 1992-01-28 1992-01-28 Production of silicon carbide single crystal substrate

Country Status (1)

Country Link
JP (1) JPH05208897A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6110279A (en) * 1996-03-29 2000-08-29 Denso Corporation Method of producing single-crystal silicon carbide
JP2008019166A (en) * 2004-02-04 2008-01-31 Matsushita Electric Ind Co Ltd Method of fixing seed crystal and method of manufacturing single crystal using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6110279A (en) * 1996-03-29 2000-08-29 Denso Corporation Method of producing single-crystal silicon carbide
JP2008019166A (en) * 2004-02-04 2008-01-31 Matsushita Electric Ind Co Ltd Method of fixing seed crystal and method of manufacturing single crystal using the same

Similar Documents

Publication Publication Date Title
JP5093974B2 (en) Single crystal manufacturing apparatus and manufacturing method by vapor phase epitaxy
US4147572A (en) Method for epitaxial production of semiconductor silicon carbide utilizing a close-space sublimation deposition technique
US7695565B2 (en) Sublimation chamber for phase controlled sublimation
US6821340B2 (en) Method of manufacturing silicon carbide, silicon carbide, composite material, and semiconductor element
JP4733485B2 (en) Method for producing seed crystal for silicon carbide single crystal growth, seed crystal for silicon carbide single crystal growth, method for producing silicon carbide single crystal, and silicon carbide single crystal
JPH05208900A (en) Apparatus for growing silicon carbide single crystal
JP2000302600A (en) Method for growing large-sized single-polytype silicon carbide single crystal
JP2003511337A (en) Method and apparatus for growing silicon carbide crystal
JPS5948792B2 (en) Silicon carbide crystal growth method
JP3637157B2 (en) Method for producing silicon carbide single crystal and seed crystal used therefor
JP3505597B2 (en) Silicon carbide single crystal
JPH06128094A (en) Production of silicon carbide single crystal
JP2006503781A (en) Formation of single crystal silicon carbide
JP3590464B2 (en) Method for producing 4H type single crystal silicon carbide
JPH05208897A (en) Production of silicon carbide single crystal substrate
US4614672A (en) Liquid phase epitaxy (LPE) of silicon carbide
JP3657036B2 (en) Silicon carbide thin film and method for manufacturing silicon carbide thin film laminated substrate
JPH0412096A (en) Method for growing 6h-type and 4h-type silicon carbide single crystal
JP4309509B2 (en) Method for producing crucible for single crystal growth comprising pyrolytic graphite
JPH0645519B2 (en) Method for growing p-type SiC single crystal
JPH06298600A (en) Method of growing sic single crystal
JPH06183897A (en) Method for growing silicon carbide single crystal
JP4222630B2 (en) Method for epitaxially growing objects and apparatus for performing such growth
JPH06191998A (en) Method for growing silicon carbide single crystal and device for growing the same
JPH1179896A (en) Production of silicon carbide single crystal

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990408