JPH06128094A - Production of silicon carbide single crystal - Google Patents

Production of silicon carbide single crystal

Info

Publication number
JPH06128094A
JPH06128094A JP30610092A JP30610092A JPH06128094A JP H06128094 A JPH06128094 A JP H06128094A JP 30610092 A JP30610092 A JP 30610092A JP 30610092 A JP30610092 A JP 30610092A JP H06128094 A JPH06128094 A JP H06128094A
Authority
JP
Japan
Prior art keywords
silicon carbide
gas
single crystal
sublimation
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP30610092A
Other languages
Japanese (ja)
Inventor
Yasuhiro Maeda
泰宏 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP30610092A priority Critical patent/JPH06128094A/en
Publication of JPH06128094A publication Critical patent/JPH06128094A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To produce a high-quality silicon carbide single crystal free from contamination of an Si particle or a carbon particle according to the sublimation method. CONSTITUTION:Powdery silicon carbide raw material 2 in a crucible 1 is heated by using a heater 5 so as to be sublimated. A carbon component gas such as propane is introduced into a crystal growth zone at the initial stage of sublimation and a silicon component gas such as silane is introduced at the latter stage. Thereby, variation in the sublimated gas composition generated from the powdery silicon carbide raw material 2 with passage of time can be canceled. The sublimated gas is allowed to grow as a silicon carbide single crystal 6 on a seed crystal set to a lower cover 3. Since the crystal grows from the sublimated gas having a composition controlled to a constant value, the obtained silicon carbide single crystal 6 is free from contamination of an Si particle or a carbon particle. Accordingly, a stoichiometrically pure and high-quality product can be produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、品質が安定した長尺の
炭化ケイ素単結晶を昇華法によって製造する方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a long silicon carbide single crystal of stable quality by a sublimation method.

【0002】[0002]

【従来の技術】炭化ケイ素単結晶は、広いエネルギー禁
制帯幅をもち、熱的及び化学的にも安定した性質を示す
半導体材料であることから、従来のケイ素質半導体材料
に置き換わる材料として注目されている。現在のとこ
ろ、炭化ケイ素単結晶は、炭化ケイ素粉末を原料とした
昇華法によって作製されている。昇華法においては、図
1に示すように、黒鉛製のルツボ1上部に炭化ケイ素の
原料粉末2を入れ、下部に種結晶を取り付けた下蓋3を
配置する。或いは、ルツボ1の上蓋に種結晶を張り付
け、下部に原料粉末2を配置することもある。通常、1
バッチ当り20〜30g程度の原料粉末2が使用されて
いる。
2. Description of the Related Art Since a silicon carbide single crystal is a semiconductor material having a wide energy bandgap and being thermally and chemically stable, it has attracted attention as a material replacing conventional silicon-based semiconductor materials. ing. At present, silicon carbide single crystals are produced by a sublimation method using silicon carbide powder as a raw material. In the sublimation method, as shown in FIG. 1, a raw material powder 2 of silicon carbide is put in an upper portion of a graphite crucible 1 and a lower lid 3 having a seed crystal is placed in a lower portion thereof. Alternatively, a seed crystal may be attached to the upper lid of the crucible 1 and the raw material powder 2 may be placed below. Usually 1
About 20 to 30 g of raw material powder 2 is used per batch.

【0003】ルツボ1の上部に原料粉末2を配置する場
合、ルツボ1の内部を多孔質の黒鉛板4で仕切り、黒鉛
板4の上に原料粉末2を装入する。そして、ルツボ1を
取り巻くヒータ5により、種結晶側が原料粉末2側より
も低くした温度勾配を付けて原料粉末2を加熱する。ヒ
ータ5としては、抵抗加熱方式,高周波誘導加熱方式等
が採用されている。
When arranging the raw material powder 2 on the upper part of the crucible 1, the inside of the crucible 1 is partitioned by a porous graphite plate 4, and the raw material powder 2 is charged on the graphite plate 4. Then, the heater 5 surrounding the crucible 1 heats the raw material powder 2 with a temperature gradient such that the seed crystal side is lower than the raw material powder 2 side. As the heater 5, a resistance heating method, a high frequency induction heating method, or the like is adopted.

【0004】原料粉末2は、ヒータ5で2400℃近傍
の高温に加熱されることにより昇華し、Si,Si2
C,SiC2 ,SiC等の昇華ガスになる。昇華ガス
は、温度勾配が付けられているルツボ1の内部を流下
し、下蓋3に取り付けられている種結晶の上に降り注
ぐ。昇華ガスは、種結晶近傍が200℃近傍の温度に保
持されているので、炭化ケイ素単結晶6として約0.5
〜2mm/時の成長速度で種結晶の上に成長する。
The raw material powder 2 is sublimated by being heated by the heater 5 to a high temperature near 2400 ° C., and Si, Si 2
It becomes a sublimation gas such as C, SiC 2 , or SiC. The sublimation gas flows down inside the crucible 1 having a temperature gradient, and falls on the seed crystal attached to the lower lid 3. Since the sublimation gas is maintained at a temperature near 200 ° C. near the seed crystal, the sublimation gas is about 0.5 as the silicon carbide single crystal 6.
Grow on seed crystals at a growth rate of ~ 2 mm / hr.

【0005】[0005]

【発明が解決しようとする課題】原料粉末2が昇華し、
単結晶として成長する過程で、昇華ガスの組成に変動が
生じ易い。大きな変動要因の一つに、昇華反応の不均一
性に由来するものがある。炭化ケイ素の昇華反応は、ル
ツボ1に収容されている原料粉末2の量に比例した量の
昇華ガス成分を発生させるものではなく、昇華の初期に
Siが過剰な蒸気となり、次いでCが過剰な蒸気にな
る。
The raw material powder 2 is sublimated,
In the process of growing as a single crystal, the composition of the sublimation gas tends to change. One of the major fluctuation factors is due to the nonuniformity of the sublimation reaction. The sublimation reaction of silicon carbide does not generate a sublimation gas component in an amount proportional to the amount of the raw material powder 2 contained in the crucible 1, but Si becomes excessive vapor at the initial stage of sublimation, and then C becomes excessive. It becomes steam.

【0006】このような昇華ガスの成分変動は、当然の
ことながら単結晶の成長過程に悪影響を及ぼす。たとえ
ば、Si粒子の析出やCの取り込み等が結晶面で発生
し、得られた炭化ケイ素単結晶に結晶欠陥,転位等が導
入される原因となる。したがって、化学量論的に純粋で
高品質の単結晶を成長させるためには、常に組成が一定
した蒸気が結晶成長面に降り注ぐようにすることが必要
である。
Naturally, such fluctuations in the components of the sublimation gas adversely affect the growth process of the single crystal. For example, precipitation of Si particles, incorporation of C, and the like occur on the crystal plane, which causes crystal defects, dislocations, and the like to be introduced into the obtained silicon carbide single crystal. Therefore, in order to grow a stoichiometrically pure and high-quality single crystal, it is necessary that vapor having a constant composition always pours onto the crystal growth surface.

【0007】本発明は、このような要求に応えるべく案
出されたものであり、炭化ケイ素原料粉末からの昇華ガ
スとは別個にケイ素成分ガス及び/又は炭素成分ガスを
結晶成長域に送り込むことにより、安定した条件下で高
品質の炭化ケイ素単結晶を成長させることを目的とす
る。
The present invention has been devised in order to meet such a requirement, and sends the silicon component gas and / or the carbon component gas to the crystal growth region separately from the sublimation gas from the silicon carbide raw material powder. Aims to grow a high-quality silicon carbide single crystal under stable conditions.

【0008】[0008]

【課題を解決するための手段】本発明の炭化ケイ素単結
晶製造方法は、その目的を達成するため、炭化ケイ素原
料を昇華させ種結晶の上に炭化ケイ素単結晶を成長させ
る際、昇華反応の経過に伴った昇華ガスの経時的な成分
変動を相殺するケイ素成分ガス及び/又は炭素成分ガス
を成長反応域に導入することを特徴とする。ケイ素成分
ガスとしては、シランSiH4 ,Si26 ,テトラメ
チルシランSi (CH3)4 ,テトラエチルシランSi
(C25)4 テトラノルマルプロピルシランSi (n−
37)4 ,テトラブチルシランSi (C49)4 等が
使用される。炭素成分ガスとしては、メタンCH4 ,エ
タンC26 ,プロパンC38 ,アセチレンC22
等の炭化水素系ガスが使用される。ケイ素成分ガスや炭
素成分ガスは、アルゴン等の不活性ガスをキャリアとし
て成長反応域に導入される。
In order to achieve the object, the method for producing a silicon carbide single crystal according to the present invention, in order to achieve the object, when a silicon carbide single crystal is grown on a seed crystal by sublimation reaction, a sublimation reaction It is characterized in that a silicon component gas and / or a carbon component gas, which offsets the time-dependent component fluctuations of the sublimation gas, are introduced into the growth reaction zone. As the silicon component gas, silane SiH 4 , Si 2 H 6 , tetramethylsilane Si (CH 3 ) 4 , tetraethylsilane Si
(C 2 H 5 ) 4 Tetranormal Propylsilane Si (n-
C 3 H 7) 4, tetrabutyl silane Si (C 4 H 9) 4 and the like are used. As the carbon component gas, methane CH 4 , ethane C 2 H 6 , propane C 3 H 8 , acetylene C 2 H 2
Hydrocarbon-based gas such as is used. The silicon component gas and the carbon component gas are introduced into the growth reaction region using an inert gas such as argon as a carrier.

【0009】昇華法を実施する設備の基本的な構造は、
図2に示すように、断熱性ライニングが施されたチャン
バー7内にルツボ1及びヒータ5をセットし、減圧排気
及び不活性ガス導入によりチャンバー7内を適当な減圧
下に保持する。本発明においては、チャンバー7の外部
からルツボ1の内部に通じたガス供給管8を設け、ガス
供給管8を介してケイ素成分ガス及び/又は炭素成分ガ
スをルツボ1の内部に送り込む。ガス供給管8として
は、チャンバー7内の2000℃を超える高温雰囲気に
曝されることから、黒鉛質,タングステン等の耐高温材
料で作ることが好ましい。
The basic structure of equipment for carrying out the sublimation method is as follows:
As shown in FIG. 2, the crucible 1 and the heater 5 are set in a chamber 7 provided with a heat insulating lining, and the chamber 7 is maintained under an appropriate reduced pressure by evacuation and introduction of an inert gas. In the present invention, a gas supply pipe 8 communicating from the outside of the chamber 7 to the inside of the crucible 1 is provided, and the silicon component gas and / or the carbon component gas is fed into the crucible 1 via the gas supply pipe 8. The gas supply pipe 8 is preferably made of a high temperature resistant material such as graphite or tungsten because it is exposed to a high temperature atmosphere of more than 2000 ° C. in the chamber 7.

【0010】ガス供給管8は、図2では、炭化ケイ素原
料粉末2の上方でルツボ1内に開口している。しかし、
本発明はこれに拘束されるものではなく、たとえばルツ
ボ1の下部に炭化ケイ素原料粉末2を配置する場合、ル
ツボ1内の下方にガス供給管8を開口させる。
In FIG. 2, the gas supply pipe 8 is opened in the crucible 1 above the silicon carbide raw material powder 2. But,
The present invention is not limited to this, and for example, when the silicon carbide raw material powder 2 is arranged below the crucible 1, the gas supply pipe 8 is opened below the crucible 1.

【0011】ガス供給管8とルツボ2の上蓋9との間の
シールが問題となる場合、ガス供給管8及び上蓋9を一
体成形することができる。ガス供給管8がチャンバー7
を貫通する部分を水冷フランジ等で断熱するとき、チャ
ンバー7外側のガス供給管8には、半導体工業用配管と
して通常使用されているステンレス鋼管,石英管等を用
いることができる。
When the seal between the gas supply pipe 8 and the upper lid 9 of the crucible 2 poses a problem, the gas supply pipe 8 and the upper lid 9 can be integrally formed. Gas supply pipe 8 is chamber 7
When the portion passing through is insulated with a water cooling flange or the like, the gas supply pipe 8 outside the chamber 7 may be a stainless steel pipe, a quartz pipe or the like which is usually used as a semiconductor industrial pipe.

【0012】ヒータ5による加熱でルツボ2が所定温度
に到達すると、炭化ケイ素原料粉末2の昇華が始まり、
昇華ガスが発生する。昇華ガスは、ルツボ2内を流下し
て下蓋3に取り付けた種結晶の上に降り注ぎ、単結晶6
として成長する。この昇華の進行に応じて、キャリアガ
スと共に炭素成分ガスをルツボ1内に導入する。昇華の
継続に従って、原料粉末2に炭素が過剰に残留し始め
る。この状態になったとき、炭素成分ガスの供給を停止
し、ケイ素成分ガスの供給を開始する。そして、所定時
間経過後に加熱を停止し、結晶成長を終了させる。
When the crucible 2 reaches a predetermined temperature by heating by the heater 5, the silicon carbide raw material powder 2 starts to sublime,
Sublimation gas is generated. The sublimation gas flows down in the crucible 2 and is poured onto the seed crystal attached to the lower lid 3 to form a single crystal 6
To grow as. As the sublimation progresses, a carbon component gas is introduced into the crucible 1 together with the carrier gas. As the sublimation continues, carbon starts to remain excessively in the raw material powder 2. When this state is reached, the supply of the carbon component gas is stopped and the supply of the silicon component gas is started. Then, after a lapse of a predetermined time, the heating is stopped and the crystal growth is completed.

【0013】炭素成分ガス及びケイ素成分ガスの流量,
導入時間等は、使用する炭化ケイ素原料粉末について過
去に蓄積したデータに基づき制御することができる。な
お、炭素成分ガス及びケイ素成分ガスは、原料粉末2の
昇華温度,昇華速度等の条件に応じて、双方同時に或い
は異なる流量比で導入してもよい。たとえば、未反応の
炭素分が多い原料粉末を使用するとき、ケイ素成分ガス
の導入と同時期に適量の炭素成分ガスを導入する。
Flow rates of carbon component gas and silicon component gas,
The introduction time and the like can be controlled based on the data accumulated in the past regarding the silicon carbide raw material powder to be used. The carbon component gas and the silicon component gas may be introduced simultaneously or at different flow rate ratios depending on the conditions such as the sublimation temperature and the sublimation rate of the raw material powder 2. For example, when using a raw material powder containing a large amount of unreacted carbon, an appropriate amount of carbon component gas is introduced at the same time as the introduction of the silicon component gas.

【0014】[0014]

【作 用】昇華反応の進行に応じて炭素成分ガス及びケ
イ素成分ガスを補充しながら炭化ケイ素単結晶6を成長
させるとき、原料粉末2から発生した昇華ガスの経時的
な成分変動が相殺され、一定化された昇華ガスからの結
晶成長が可能となる。そのため、得られた炭化ケイ素単
結晶6は、結晶欠陥等の原因となるSi粒子や炭素粒子
等の混入がなく、高純度,高品質の製品になる。
[Operation] When the silicon carbide single crystal 6 is grown while replenishing the carbon component gas and the silicon component gas in accordance with the progress of the sublimation reaction, the time-dependent component variation of the sublimation gas generated from the raw material powder 2 is offset, Crystal growth from a sublimated gas that has been stabilized becomes possible. Therefore, the obtained silicon carbide single crystal 6 is a high-purity, high-quality product without inclusion of Si particles, carbon particles, or the like that cause crystal defects and the like.

【0015】[0015]

【実施例】黒鉛製ルツボ1の下蓋3の台座に種結晶を載
せ、ルツボ1の上部に多孔質黒鉛板4を装着して炭化ケ
イ素原料粉末2を収容した。ここで、チャンバー7を貫
通するフランジに取り付けた黒鉛製のガス供給管8を上
蓋9を介してルツボ1の内部に臨ませた装置を使用し
た。ガス供給管8は、チャンバー7外側でステンレス鋼
製の配管を介してガス供給系に接続した。
Example A seed crystal was placed on the pedestal of the lower lid 3 of the graphite crucible 1, and a porous graphite plate 4 was attached to the upper part of the crucible 1 to contain the silicon carbide raw material powder 2. Here, a device was used in which a graphite gas supply pipe 8 attached to a flange penetrating the chamber 7 was exposed to the inside of the crucible 1 via an upper lid 9. The gas supply pipe 8 was connected to the gas supply system outside the chamber 7 via a stainless steel pipe.

【0016】チャンバー7内を排気し、不活性ガスの導
入によって減圧不活性雰囲気にした後、ヒータ7に通電
して加熱を開始した。ルツボ1内が2200℃に達した
とき、原料粉末2から昇華ガスが発生し始めた。そこ
で、炭素成分ガスとしてプロパンを、流量15ml/分
でキャリアガスと共にルツボ1内に導入した。このと
き、チャンバー1内が所定の減圧雰囲気に維持されるよ
うに、キャリアガスの流量を調整した。
The chamber 7 was evacuated and a reduced pressure inert atmosphere was created by introducing an inert gas, and then the heater 7 was energized to start heating. When the temperature inside the crucible 1 reached 2200 ° C., sublimation gas began to be generated from the raw material powder 2. Therefore, propane as a carbon component gas was introduced into the crucible 1 together with the carrier gas at a flow rate of 15 ml / min. At this time, the flow rate of the carrier gas was adjusted so that the inside of the chamber 1 was maintained in a predetermined reduced pressure atmosphere.

【0017】昇華開始から3時間経過した時点で、ケイ
素成分ガスとしてシランを流量15ml/分でプロパン
に加えてルツボ1内に導入した。プロパン及びシランの
同時導入を1時間継続した後、プロパンの供給を停止
し、シランガスのみを同じ流量で導入しながら昇華反応
を3時間継続した。全工程を通して、チャンバー7内
は、キャリアガスの流量制御によって一定の減圧雰囲気
に維持された。
After 3 hours from the start of sublimation, silane as a silicon component gas was added to propane at a flow rate of 15 ml / min and introduced into the crucible 1. After the simultaneous introduction of propane and silane was continued for 1 hour, the supply of propane was stopped and the sublimation reaction was continued for 3 hours while introducing only silane gas at the same flow rate. Throughout the entire process, the inside of the chamber 7 was maintained at a constant reduced pressure atmosphere by controlling the flow rate of the carrier gas.

【0018】昇華工程を終えた後、ヒータ5を切り、結
晶成長を終了させた。得られた炭化ケイ素単結晶6は、
直径20mm及び高さ5mmのサイズをもっていた。こ
の炭化ケイ素単結晶6を高さ方向に順次スライスし、結
晶成長の初期,中期及び後期に作製された試験片を切り
出した。各試験片の表面及び内部を顕微鏡観察したとこ
ろ、従来の昇華法で得られた単結晶に発生していたSi
粒子や炭素粒子の結晶内への混入は、何れの試験片につ
いても観察されなかった。また、化学量論的に純粋で且
つ高品質の単結晶であった。
After the sublimation process was completed, the heater 5 was turned off to complete the crystal growth. The obtained silicon carbide single crystal 6 is
It had a diameter of 20 mm and a height of 5 mm. This silicon carbide single crystal 6 was sequentially sliced in the height direction, and test pieces produced in the early, middle, and late stages of crystal growth were cut out. When the surface and the inside of each test piece were observed with a microscope, Si generated in the single crystal obtained by the conventional sublimation method was observed.
No inclusion of particles or carbon particles in the crystal was observed in any of the test pieces. Further, it was a stoichiometrically pure and high quality single crystal.

【0019】[0019]

【発明の効果】以上に説明したように、本発明において
は、炭化ケイ素原料粉末の昇華が進行するに応じてケイ
素成分ガス及び/又は炭素成分ガスを結晶成長域に送り
込み、昇華ガスの時系列的な成分変動を相殺している。
これにより、一定化された昇華蒸気が結晶成長面に降り
注ぎ、炭化ケイ素単結晶が成長する。したがって、従来
のように結晶内に取り込まれるSi粒子や炭素粒子がな
く、高品質の炭化ケイ素単結晶が得られる。
As described above, according to the present invention, the silicon component gas and / or the carbon component gas is sent to the crystal growth region in accordance with the progress of sublimation of the silicon carbide raw material powder, and the sublimation gas is time-series. It offsets the fluctuation of the component.
As a result, the stabilized sublimation vapor falls on the crystal growth surface, and a silicon carbide single crystal grows. Therefore, a high-quality silicon carbide single crystal can be obtained without Si particles and carbon particles taken into the crystal as in the conventional case.

【図面の簡単な説明】[Brief description of drawings]

【図1】 従来の炭化ケイ素原料粉末を使用した単結晶
製造装置
FIG. 1 Conventional single crystal production apparatus using silicon carbide raw material powder

【図2】 本発明に従ってケイ素成分ガス及び炭素成分
ガスを結晶成長域に送り込むガス供給管を組み込んだ単
結晶製造装置
FIG. 2 is a single crystal manufacturing apparatus incorporating a gas supply pipe for feeding a silicon component gas and a carbon component gas into a crystal growth region according to the present invention.

【符号の説明】[Explanation of symbols]

1 黒鉛製のルツボ 2 炭化ケイ素原料粉末 3
ルツボの下蓋 4 多孔質の黒鉛板 5 ヒータ 6
炭化ケイ素単結晶 7 チャンバー 8 ガス供給管 9
上蓋
1 Graphite crucible 2 Silicon carbide raw material powder 3
Lower lid of crucible 4 Porous graphite plate 5 Heater 6
Silicon carbide single crystal 7 Chamber 8 Gas supply pipe 9
Top lid

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 炭化ケイ素原料を昇華させ種結晶の上に
炭化ケイ素単結晶を成長させる際、昇華反応の経過に伴
った昇華ガスの経時的な成分変動を相殺するケイ素成分
ガス及び/又は炭素成分ガスを成長反応域に導入するこ
とを特徴とする炭化ケイ素単結晶の製造方法。
1. A silicon component gas and / or carbon that offsets a time-dependent component variation of a sublimation gas with the progress of a sublimation reaction when a silicon carbide raw material is sublimated to grow a silicon carbide single crystal on a seed crystal. A method for producing a silicon carbide single crystal, which comprises introducing a component gas into a growth reaction zone.
【請求項2】 ケイ素成分ガスがシラン,テトラメチル
シラン,テトラエチルシラン,テトラノルマルプロピル
シラン,テトラブチルシランの1種又は2種以上である
請求項1記載の製造方法。
2. The method according to claim 1, wherein the silicon component gas is one kind or two or more kinds of silane, tetramethylsilane, tetraethylsilane, tetranormalpropylsilane and tetrabutylsilane.
【請求項3】 炭素成分ガスがメタン,エタン,プロパ
ン,アセチレン等の炭化水素系ガスである請求項1記載
の製造方法。
3. The method according to claim 1, wherein the carbon component gas is a hydrocarbon-based gas such as methane, ethane, propane and acetylene.
JP30610092A 1992-10-19 1992-10-19 Production of silicon carbide single crystal Withdrawn JPH06128094A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30610092A JPH06128094A (en) 1992-10-19 1992-10-19 Production of silicon carbide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30610092A JPH06128094A (en) 1992-10-19 1992-10-19 Production of silicon carbide single crystal

Publications (1)

Publication Number Publication Date
JPH06128094A true JPH06128094A (en) 1994-05-10

Family

ID=17953043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30610092A Withdrawn JPH06128094A (en) 1992-10-19 1992-10-19 Production of silicon carbide single crystal

Country Status (1)

Country Link
JP (1) JPH06128094A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5964944A (en) * 1996-03-29 1999-10-12 Kabushiki Kaisha Toyota Chuo Kenkyusho Method of producing silicon carbide single crystal
US6056820A (en) * 1998-07-10 2000-05-02 Northrop Grumman Corporation Advanced physical vapor transport method and apparatus for growing high purity single crystal silicon carbide
WO2001048277A1 (en) * 1999-12-27 2001-07-05 Showa Denko Kabushiki Kaisha Method and apparatus for producing single crystal of silicon carbide
US6299683B1 (en) * 1996-01-30 2001-10-09 Siemens Aktiengesellschaft Method and apparatus for the production of SiC by means of CVD with improved gas utilization
JP2002527342A (en) * 1998-10-09 2002-08-27 クリー インコーポレイテッド Aluminum nitride, silicon carbide, and aluminum nitride: production of silicon carbide bulk single crystal
US6451112B1 (en) * 1999-10-15 2002-09-17 Denso Corporation Method and apparatus for fabricating high quality single crystal
JP2002293694A (en) * 2001-04-03 2002-10-09 Nippon Steel Corp Silicon carbide single crystal ingot and method of manufacturing for the same
US6514338B2 (en) 1999-12-27 2003-02-04 Showa Denko Kabushiki Kaisha Method and apparatus for producing silicon carbide single crystal
US7220313B2 (en) * 2003-07-28 2007-05-22 Cree, Inc. Reducing nitrogen content in silicon carbide crystals by sublimation growth in a hydrogen-containing ambient
US7767021B2 (en) * 2005-09-29 2010-08-03 Neosemitech Corporation Growing method of SiC single crystal
CN109234798A (en) * 2018-11-02 2019-01-18 山东天岳先进材料科技有限公司 The continuous long crystal method of single-crystal silicon carbide
CN113774487A (en) * 2021-09-15 2021-12-10 哈尔滨科友半导体产业装备与技术研究院有限公司 Thermal field structure for growing silicon carbide single crystal by improved pvt method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6299683B1 (en) * 1996-01-30 2001-10-09 Siemens Aktiengesellschaft Method and apparatus for the production of SiC by means of CVD with improved gas utilization
US5964944A (en) * 1996-03-29 1999-10-12 Kabushiki Kaisha Toyota Chuo Kenkyusho Method of producing silicon carbide single crystal
US6056820A (en) * 1998-07-10 2000-05-02 Northrop Grumman Corporation Advanced physical vapor transport method and apparatus for growing high purity single crystal silicon carbide
JP2002527342A (en) * 1998-10-09 2002-08-27 クリー インコーポレイテッド Aluminum nitride, silicon carbide, and aluminum nitride: production of silicon carbide bulk single crystal
US6451112B1 (en) * 1999-10-15 2002-09-17 Denso Corporation Method and apparatus for fabricating high quality single crystal
US6514338B2 (en) 1999-12-27 2003-02-04 Showa Denko Kabushiki Kaisha Method and apparatus for producing silicon carbide single crystal
WO2001048277A1 (en) * 1999-12-27 2001-07-05 Showa Denko Kabushiki Kaisha Method and apparatus for producing single crystal of silicon carbide
JP2002293694A (en) * 2001-04-03 2002-10-09 Nippon Steel Corp Silicon carbide single crystal ingot and method of manufacturing for the same
JP4585137B2 (en) * 2001-04-03 2010-11-24 新日本製鐵株式会社 Method for producing silicon carbide single crystal ingot
US7220313B2 (en) * 2003-07-28 2007-05-22 Cree, Inc. Reducing nitrogen content in silicon carbide crystals by sublimation growth in a hydrogen-containing ambient
US7767021B2 (en) * 2005-09-29 2010-08-03 Neosemitech Corporation Growing method of SiC single crystal
CN109234798A (en) * 2018-11-02 2019-01-18 山东天岳先进材料科技有限公司 The continuous long crystal method of single-crystal silicon carbide
CN109234798B (en) * 2018-11-02 2019-07-23 山东天岳先进材料科技有限公司 The continuous long crystal method of single-crystal silicon carbide
CN113774487A (en) * 2021-09-15 2021-12-10 哈尔滨科友半导体产业装备与技术研究院有限公司 Thermal field structure for growing silicon carbide single crystal by improved pvt method

Similar Documents

Publication Publication Date Title
TW552325B (en) Method and apparatus for growing silicon carbide crystals
US6048398A (en) Device for epitaxially growing objects
EP1129238B1 (en) Production of bulk single crystals of silicon carbide
JP4733485B2 (en) Method for producing seed crystal for silicon carbide single crystal growth, seed crystal for silicon carbide single crystal growth, method for producing silicon carbide single crystal, and silicon carbide single crystal
JPH05208900A (en) Apparatus for growing silicon carbide single crystal
JPH06128094A (en) Production of silicon carbide single crystal
EP1540048B1 (en) Silicon carbide single crystal and method and apparatus for producing the same
US6797060B2 (en) Method and apparatus for producing silicon carbide single crystal
US6458207B1 (en) Silicon carbide single-crystals
JP4505202B2 (en) Method and apparatus for producing silicon carbide single crystal
JPH0710697A (en) Device for producing silicon carbide single crystal
JPH06183897A (en) Method for growing silicon carbide single crystal
JP4309509B2 (en) Method for producing crucible for single crystal growth comprising pyrolytic graphite
JP4222630B2 (en) Method for epitaxially growing objects and apparatus for performing such growth
KR100816764B1 (en) Synthetic apparatus of semiconductor polycrystal compound and synthetic method of the same
JPS61158890A (en) Crystal growth apparatus
CN208685106U (en) A kind of device preparing large scale compound block crystalline substance
JPH0648899A (en) Production of silicon carbide single crystal
JPH05208897A (en) Production of silicon carbide single crystal substrate
JPH08109094A (en) Production of compound semiconductor single crystal
JPH0710674A (en) Method for growing inorganic compound signal crystal
JPH089517B2 (en) Single crystal manufacturing method
JPH01298100A (en) Production of silicon carbide single crystal by liquid phase temperature difference method
JP2002326897A (en) Silicon carbide single crystal

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000104